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Let μ be a Borel measure on Rd which may be nondoubling. The only condition that μ
must satisfy is μ(Q) ≤ c0l(Q)n for any cube Q ⊂ Rd with sides parallel to the coordinate
axes and for some fixed n with 0 < n ≤ d. This paper is to establish the weighted norm
inequality for commutators of Calderón-Zygmund operators with RBMO(μ) functions
by an estimate for a variant of the sharp maximal function in the context of the nonho-
mogeneous spaces.
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1. Introduction

Let μ be some nonnegative Borel measure on Rd satisfying

μ(Q)≤ c0l(Q)n (1.1)

for any cube Q ⊂ Rd with sides parallel to the coordinate axes, where l(Q) stands for
the side length of Q and n is a fixed real number such that 0 < n ≤ d. Throughout this
paper, all cubes we will consider will be those with sides parallel to the coordinate axes.
For r > 0, rQ will denote the cube with the same center as Q and with l(rQ) = rl(Q).
Moreover, Q(x,r) will be the cube centered at x with side length r.

The classical theory of harmonic analysis for maximal functions and singular inte-
grals on (Rd,μ) has been developed under the assumption that the underlying mea-
sure μ satisfies the doubling property, that is, there exists a constant c > 0 such that
μ(B(x,2r)) ≤ cμ(B(x,r)) for every x ∈ Rd and r > 0. But recently, many classical results
have been proved still valid without the doubling condition; see [1–18] and their refer-
ences.

Orobitg and Pérez [11] have studied an analogue of the classical theory of Ap(μ)
weights in Rd without assuming that the underlying measure μ is doubling. Then, they
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obtained weighted norm inequalities for the (centered) Hardy-Littlewood maximal func-
tion and corresponding weighted estimates for nonclassical Calderón-Zygmund oper-
ators. They also considered commutators of those Calderón-Zygmund operators with
BMO(μ) functions. The purpose of this paper is to establish weighted estimates for com-
mutators of those nonclassical Calderón-Zygmund operators with RBMO(μ) in this new
setting.

Let us introduce some notations and definitions. Given two cubes Q ⊂ R in Rd, we set

KQ,R = 1+
NQ,R∑

k=1

μ
(
2kQ

)

l
(
2kQ

)n , (1.2)

where NQ,R is the first integer k such that l(2kQ)≥ l(R). KQ,R was introduced by Tolsa in
[15].

Given βd (depending on d) big enough (e.g., βd > 2n), we say that some cube Q ⊂Rd

is doubling if μ(2Q)≤ βdμ(Q).
Given a cube Q ⊂Rd, let N be the smallest integer ≥ 0 such that 2NQ is doubling. We

denote this cube by Q̃.
Let η > 1 be some fixed constant. We say that a function b(x) is in RBMO(μ) if there

exists some constant c1 such that for any cube Q,

1
μ(ηQ)

∫

Q

∣∣b−mQ̃b
∣∣dμ≤ c1,

∣∣mQb−mRb
∣∣≤ c1KQ,R for any two doubling cubes Q ⊂ R,

(1.3)

wheremQb = 1/μ(Q)
∫
Q bdμ. The minimal constant c1 is the RBMO(μ) norm of b, and it

will be denoted by ‖b‖∗. The RBMO(μ) function space was introduced by Tolsa in [15]
and shares more properties with the classical BMO function space than BMO(μ) space.

We say a kernel k(x, y) : Rd ×Rd\{(x, y) : x = y} → C is an n-dimensional Calderón-
Zygmund kernel in the new setting if

(1) |k(x, y)| ≤ A/|x− y|n if x 	= y,
(2) there exists 0 < γ ≤ 1 such that

∣∣k(x, y)− k(x′, y)
∣∣+

∣∣k(y,x)− k(y,x′)
∣∣≤ A|x− x′|γ

|x− y|n+γ (1.4)

if |x− y| > 2|x− x′|.
A bounded linear operator T from L2(μ) to L2(μ) is said to be a Calderón-Zygmund

operator with n-dimensional kernel k if for every compacted supported function f ∈
L2(μ),

T f (x)=
∫

Rd
k(x, y) f (y)dμ(y) for x 	∈ supp f . (1.5)

For r > 0, we define the truncated operators by

Tr f (x)=
∫

Rd\B(x,r)
k(x, y) f (y)dμ(y) (1.6)
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and define the maximal operator associated with T as follows:

T∗ f (x)= sup
r>0

∣∣Tr f (x)
∣∣. (1.7)

2. Sharp maximal function estimates for commutators

In [15], Tolsa defined a sharp maximal operatorM# f (x) such that

f ∈ RBMO(μ)⇐⇒M# f ∈ L∞(μ), (2.1)

where

M# f (x)= sup
x∈Q

1
μ
(
(3/2)Q

)
∫

Q

∣∣ f −mQ̃ f
∣∣dμ+ sup

x∈Q⊂R
Q,R doubling

∣∣mQ f −mR f
∣∣

KQ,R
. (2.2)

We also consider the noncentered doubling maximal operator N :

N f (x)= sup
x∈Q

Q doubling

1
μ(Q)

∫

Q
| f |dμ. (2.3)

By [15, Remark 2.3], for μ-almost all x ∈Rd one can find a sequence of doubling cubes
{Qk}k centered at x with l(Qk)→ 0 as k→∞ such that

lim
k→∞

1
μ
(
Qk
)
∫

Qk

b(y)dμ(y)= b(x). (2.4)

So, | f (x)| ≤N f (x) for μ-a.e. x ∈Rd. Moreover, it is easy to show that N is of weak type
(1,1) and bounded on Lp(μ), p ∈ (1,∞].

In order to obtain the estimate for a variant of the sharp maximal function for the
commutators of Calderón-Zygmund operators defined as above with RBMO(μ) func-
tions, we need the following definition.

A function B : [0,∞)→ [0,∞) is called a Young function if it is continuous, convex,
increasing, and satisfying B(0)= 0 and B(t)→∞ as t→∞. We define the B-average of a
function f over a cube Q by means of the following Luxemburg norm:

‖ f ‖B,Q,(ρ) = inf

{
λ > 0 :

1
μ(ρQ)

∫

Q
B

(∣∣ f (y)
∣∣

λ

)
dμ≤ 1

}
. (2.5)

The generalized Hölder’s inequality

1
μ(ρQ)

∫

Q

∣∣ f (y)g(y)
∣∣dμ(y)≤ ‖ f ‖B,Q,(ρ)‖g‖B,Q,(ρ) (2.6)

holds, where B is the complementary Young function associated to B. For every locally
integrable function f , define its maximal operatorMB,(ρ) by

MB,(ρ) f (x)= sup
x∈Q

‖ f ‖B,Q,(ρ). (2.7)
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Theorem 2.1. Let b ∈ RBMO(μ), let 0 < δ < ε < 1, there exists C = Cδ,ε such that

M#
δ

(
[b,T] f

)
(x)≤ C‖b‖∗

(
Mε,(3/2)(T f )(x) +M2

(9/8) f (x) +T∗ f (x)
)
, (2.8)

where M#
δ f (x) =M#(| f |δ)1/δ , Mp,(ρ) f (x) = supx∈Q((1/μ(ρQ))

∫
Q | f |pdμ)1/p, 0 < p <∞.

SetM(ρ) f (x)=M1,(ρ) f (x).

Before proving the theorem, another equivalent norm for RBMO(μ) is needed. Sup-
pose that for a given function b∈ L1loc(μ) there exist some c2 and a collection of numbers
{bQ}Q (i.e., for each cube Q, there exists bQ ∈R) such that

sup
Q

1
μ(ηQ)

∫

Q

∣∣b− bQ
∣∣dμ≤ c2,

∣∣bQ− bR
∣∣≤ c2KQ,R for any two cubes Q ⊂ R.

(2.9)

Then, set ‖b‖∗∗ = inf c2, where the infimum is taken over all the constants c2 and all the
numbers {bQ} satisfying (2.9). By [15, Lemma 2.8, page 99], for a fixed η > 1, the norms
‖ · ‖∗ and ‖ · ‖∗∗ are equivalent.

Proof of Theorem 2.1. We follow the argument from [15, proof of Theorem 9.1]. Let Q =
Q(x,r) be a cube with center x and side length r. For 0 < δ < 1 and α,β ∈ R, we have
||α|δ −|β|δ| ≤ |α−β|δ . Let {bQ}Q be a sequence of numbers satisfying

∫

Q

∣∣b− bQ
∣∣dμ≤ 2μ(2Q)‖b‖∗∗, (2.10)

for all cubes Q and

∣∣bQ− bR
∣∣≤ 2KQ,R‖b‖∗∗ (2.11)

for all cubes Q, R with Q ⊂ R. For any cube Q, we denote hQ := −mQ(T((b− bQ) f χRd\
(4/3)Q)). We will show that for all x, Q with x ∈Q,

1
μ
(
(3/2)Q

)
(∫

Q

∣∣[b,T] f −hQ
∣∣δdμ

)1/δ
≤ C‖b‖∗∗

(
Mε,(3/2)(T f )(x) +M2

(9/8) f (x)
)
;

(2.12)

and for all cubes Q, R with Q ⊂ R, x ∈Q,

∣∣hQ−hR
∣∣≤ C‖b‖∗∗

(
M2

(9/8) f (x) +T∗ f (x)
)
K2
Q,R. (2.13)

To obtain (2.12) for some fixed cube Q and x with x ∈Q, we rewrite [b,T] f :

[b,T] f = (b− bQ
)
T f −T

((
b− bQ

)
f1
)−T

((
b− bQ

)
f2
)
, (2.14)
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where f1 = f χ(4/3)Q, f2 = f − f1. Let us estimate the term (b− bQ)T f first. Take 1 < r <
ε/δ. By Hölder’s inequality, we have

(
1

μ
(
(3/2)Q

)
∫

Q

∣∣(b(y)− bQ
)
T f (y)

∣∣δdμ(y)
)1/δ

≤
(

1
μ
(
(3/2)Q

)
∫

Q

∣∣b(y)− bQ
∣∣δr′dμ(y)

)1/δr′(
1

μ
(
(3/2)Q

)
∫

Q

∣∣T f (y)
∣∣δrdμ(y)

)1/δr

≤ C‖b‖∗∗Mδr,(3/2)(T f )(x)≤ C‖b‖∗∗Mε,(3/2)(T f )(x).
(2.15)

Since T : L1(μ)→ L1,∞(μ) (see [9]) and 0 < δ < 1, Kolmogorov’s inequality and gener-
alized Hölder’s inequality yield

(
1

μ
(
(3/2)Q

)
∫

Q

∣∣T
((
b− bQ

)
f1(y)

)∣∣δdμ(y)
)1/δ

≤ 1
μ
(
(3/2)Q

)
∫

(4/3)Q

∣∣(b(y)− bQ
)
f (y)

∣∣dμ(y)

≤ C
∥∥b− bQ

∥∥
expL,(4/3)Q,(9/8)‖ f ‖LLogL,(4/3)Q,(9/8),

(2.16)

while John-Nirenberg inequality implies that

1
μ
(
(3/2)Q

)
∫

(4/3)Q
exp

(∣∣b(y)− bQ
∣∣

C‖b‖∗

)
dμ(y)≤ C0. (2.17)

So there exists a positive constant C such that for all cubes Q,

∥∥b− bQ
∥∥
expL,(4/3)Q,(ρ) ≤ C‖b‖∗. (2.18)

Therefore

(
1

μ((3/2)Q)

∫

Q

∣∣T
((
b− bQ

)
f1(y)

)∣∣δdμ(y)
)1/δ

≤ C‖b‖∗MLLogL,(9/8) f (x). (2.19)

In order to prove (2.12), we only need to estimate |T((b− bQ) f2)−hQ|δ . Note that

KQ,2k(4/3)Q = 1+
k+1∑

j=1

μ
(
2 jQ

)

l
(
2 jQ

)n ≤ 1+ (k+1)C0 ≤ Ck. (2.20)
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For x, y ∈Q, we have

∣∣(T
((
b− bQ

)
f2
))
(x)− (T((b− bQ

)
f2
))
(y)
∣∣

≤ C
∫

Rd\(4/3)Q
|y− x|γ
|z− x|n+γ

∣∣b(z)− bQ
∣∣∣∣ f (z)

∣∣dμ(z)

≤ C
∞∑

k=1

∫

2k(4/3)Q\2k−1(4/3)Q
l(Q)γ

|z−x|n+γ
(∣∣b(z)−b2k(4/3)Q

∣∣+
∣∣bQ− b2k(4/3)Q

∣∣)∣∣ f (z)
∣∣dμ(z)

≤ C
∞∑

k=1
2−kγ

1

l
(
2kQ

)n
∫

2k(4/3)Q

∣∣b(z)− b2k(4/3)Q
∣∣∣∣ f (z)

∣∣dμ(z)

+C
∞∑

k=1
k2−kγ‖b‖∗ 1

l
(
2kQ

)n
∫

2k(4/3)Q

∣∣ f (z)
∣∣dμ(z)

≤ C
∞∑

k=1
2−kγ

1
μ
(
(9/8)2k(4/3)Q

)
∫

2k(4/3)Q

∣∣b(z)− b2k(4/3)Q
∣∣∣∣ f (z)

∣∣dμ(z)

+C
∞∑

k=1
k2−kγ‖b‖∗M(9/8) f (x)

≤ C
∞∑

k=1
2−kγ

∥∥b− b2k(4/3)Q
∥∥
expL,2k(4/3)Q,(9/8)‖ f ‖LLogL,2k(4/3)Q,(9/8) +C‖b‖∗M(9/8) f (x)

≤ C‖b‖∗MLLogL,(9/8) f (x) +C‖b‖∗M(9/8) f (x).
(2.21)

For ρ > 1, it is easy to seeM(ρ) f (x)≤MLLogL,(ρ) f (x). Thus

∣∣(T
((
b− bQ

)
f2
))
(x)− (T((b− bQ

)
f2
))
(y)
∣∣≤ C‖b‖∗MLLogL,(9/8) f (x). (2.22)

According to Jensen’s inequality, we obtain

(
1

μ
(
(3/2)Q

)
∫

Q

∣∣T
((
b− bQ

)
f2
)
(y)−mQ

(
T
(
b− bQ

)
f2
)∣∣δdμ(y)

)1/δ

≤ 1
μ
(
(3/2)Q

)
∫

Q

∣∣T
((
b− bQ

)
f2
)
(y)−mQ

(
T
(
b− bQ

)
f2
)∣∣dμ(y)

≤ C‖b‖∗MLLogL,(9/8) f (x).

(2.23)

Note that for ρ > 1, M2
(ρ) f (x) ≈MLLogL,(ρ) f (x). By (2.15), (2.16), and (2.23) we obtain

(2.12).
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For {hQ}Q, we want to prove (2.13). Consider two cubes Q ⊂ R and x ∈Q. We denote
N =NQ,R +1. We write hQ−hR in the following way:

∣∣mQ
(
T
((
b− bQ

)
f χRd\(4/3)Q

))−mR
(
T
((
b− bR

)
f χRd\(4/3)R

))∣∣

≤ ∣∣mQ
(
T
((
b− bQ

)
f χ2Q\(4/3)Q

))∣∣+
∣∣mQ

(
T
((
bQ− bR

)
f χRd\2Q

))∣∣

+
∣∣mQ

(
T
((
b− bR

)
f χ2NQ\2Q

))∣∣

+
∣∣mQ

(
T
((
b− bR

)
f χRd\2NQ

))−mR
(
T
((
b− bR

)
f χRd\2NQ

))∣∣

+
∣∣mR

(
T
((
b− bR

)
f χ2NQ\(4/3)R

))∣∣

=M1 +M2 +M3 +M4 +M5.

(2.24)

Let us estimateM1. For y ∈Q we have

∣∣T
((
b− bQ

)
f χ2Q\(4/3)Q

)
(y)
∣∣≤ C

l(2Q)n

∫

2Q

∣∣b− bQ
∣∣| f |dμ

≤ C
∥∥b− bQ

∥∥
expL,2Q,(9/8)‖ f ‖LLogL,2Q,(9/8)

≤ C‖b‖∗MLLogL,(9/8) f (x)≤ C‖b‖∗M2
(9/8) f (x).

(2.25)

So we deriveM1 ≤ C‖b‖∗M2
9/8) f (x). Let us considerM2. For x, y ∈Q,

∣∣T f
(
χRd\2Q

)
(y)
∣∣=

∣∣∣∣∣

∫

Rd\2Q
f (z)k(y,z)dμ(z)

∣∣∣∣∣

≤
∣∣∣∣∣

∫

Rd\2Q
f (z)

(
k(y,z)− k(x,z)

)
dμ(z)

∣∣∣∣∣+

∣∣∣∣∣

∫

Rd\2Q
k(x,z) f (z)dμ(z)

∣∣∣∣∣

≤
∣∣∣∣∣

∫

Rd\2Q
|y− z|γ
|y− z|n+γ

∣∣ f (z)
∣∣dμ(z)

∣∣∣∣∣+T∗ f (x)

≤ C sup
Q0�x

1

l
(
Q0
)n
∫

Q0

| f |dμ+T∗ f (x)≤ CM(9/8) f (x) +T∗ f (x).

(2.26)

Thus

M2 =
∣∣(bR− bQ

)
T f
(
χRd\2Q

)∣∣≤ CKQ,R‖b‖∗
(
T∗ f (x) +CM2

(9/8) f (x)
)
. (2.27)

For the termM4, we execute the process as in (2.21). For any y,z ∈Rd, we get

∣∣T
((
b− bR

)
f χRd\2Q

)
(y)−T

((
b− bR

)
f χRd\2Q

)
(z)
∣∣

≤ C‖b‖∗MLLogL,(9/8) f (x)≤ C‖b‖∗M2
(9/8) f (x).

(2.28)



8 Commutator on nonhomogeneous space

The termM5 can be estimated asM1. We can obtain

M5 ≤ C‖b‖∗M2
(9/8) f (x). (2.29)

Finally we have to deal withM3. For y ∈Q, we have

∣∣b2k+1Q− bR
∣∣≤ CK2k+1Q,R‖b‖∗ ≤ CKQ,R‖b‖∗. (2.30)

Then,

∣∣T
((
b− bR

)
f χ2N\2Q

)
(y)
∣∣

≤ C
N−1∑

k=1

1

l
(
2kQ

)n
∫

2k+1Q\2kQ

∣∣b− bR
∣∣| f |dμ

≤ C
N−1∑

k=1

1

l
(
2kQ

)n
∫

2k+1Q

∣∣b− b2k+1Q
∣∣| f |dμ+C

N−1∑

k=1

× 1

l
(
2kQ

)n
∫

2k+1Q

∣∣b2k+1Q− bR
∣∣| f |dμ

≤ C
N−1∑

k=1

∥∥b− b2k+1Q
∥∥
expL,2k+1Q,(9/8)‖ f ‖LLogL,2k+1Q,(9/8)

+C
N−1∑

k=1
KQ,R‖b‖∗ μ

(
2k+1Q

)

l
(
2kQ

)n
1

μ
(
2k+1Q

)
∫

2k+1Q
| f |dμ

≤ C‖b‖∗MLLogL,(9/8) f (x) +CKQ,R‖b‖∗
N−1∑

k=1

μ
(
2k+1Q

)

l
(
2kQ

)n M(9/8) f (x)

≤ C‖b‖∗MLLogL,(9/8) f (x) +CK2
Q,R‖b‖∗M(9/8) f (x)

≤ C‖b‖∗M2
(9/8) f (x)K

2
Q,R.

(2.31)

Taking the mean over Q, we get

M3 ≤ C‖b‖∗M2
(9/8) f (x)K

2
Q,R. (2.32)

By the estimates onM1,M2,M3,M4,M5, we can get (2.13).
Let us see how from (2.12) and (2.13) one obtains (2.8). If Q is a doubling cube and

x ∈Q, then we have by (2.12)

∣∣mQ
(∣∣[b,T] f

∣∣δ)−∣∣hδQ
∣∣∣∣1/δ ≤

(
1

μ(Q)

∫

Q

∣∣∣∣[b,T] f
∣∣δ −hδQ

∣∣dμ
)1/δ

≤ C‖b‖∗
(
Mε,(3/2)(T f )(x) +M2

(9/8) f (x) +T∗ f (x)
)
.

(2.33)
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Also, for any cube Q � x, KQ,Q̃ ≤ C, and then by (2.12) and (2.13) we get

(
1

μ((3/2)Q)

∫

Q

∣∣∣∣[b,T] f
∣∣δ −mQ̃

(∣∣[b,T] f
∣∣δ)∣∣dμ

)1/δ

≤
(

1
μ
(
(3/2)Q

)
∫

Q

∣∣∣∣[b,T] f
∣∣δ −∣∣hQ

∣∣δ∣∣dμ
)1/δ

+
∣∣∣∣hQ

∣∣δ −∣∣hQ̃
∣∣δ∣∣1/δ

+
∣∣∣∣hQ̃

∣∣δ −mQ̃

(∣∣[b,T] f
∣∣δ)∣∣1/δ

≤
(

1
μ
(
(3/2)Q

)
∫

Q

∣∣[b,T] f −hQ
∣∣δdμ

)1/δ

+
∣∣hQ−hQ̃

∣∣+
∣∣hδ

Q̃
−mQ̃

(∣∣[b,T] f
∣∣δ)∣∣1/δ

≤ C‖b‖∗
(
Mε,(3/2)(T f )(x) +M2

(9/8) f (x) +T∗ f (x)
)
.

(2.34)

On the other hand, for all doubling cubes Q ⊂ R with x ∈Q such that KQ,R ≤ P0, where
P0 is the constant in [15, Lemma 9.3, page 143]. By (2.13) we have

∣∣hQ−hR
∣∣≤ C‖b‖∗

(
M2

(9/8) f (x) +T∗ f (x)
)
KQ,RP0. (2.35)

So by [15, Lemma 9.3, page 143], we get

∣∣hQ−hR
∣∣≤ C‖b‖∗

(
M2

(9/8) f (x) +T∗ f (x)
)
KQ,R (2.36)

for all doubling cubes Q ⊂ R with x ∈Q, using (2.13) again, we get

∣∣∣mQ

(∣∣[b,T] f
∣∣δ
)
−mR

(∣∣[b,T] f
∣∣δ
)∣∣∣

≤
∣∣∣mQ

(∣∣[b,T] f
∣∣δ
)
−hδQ

∣∣∣+
∣∣hδQ−hδR

∣∣+
∣∣∣hδR−mR

(∣∣[b,T] f
∣∣δ
)∣∣∣

≤ C
(‖b‖∗

(
Mε,(3/2)(T f )(x) +M2

(9/8) f (x) +T∗ f (x)
)
KQ,R

)δ
.

(2.37)

From the above estimates, we can obtain

M#
δ

(
[b,T] f

)
(x)≤ C‖b‖∗

(
Mε,(3/2)(T f )(x) +M2

(9/8) f (x) +T∗ f (x)
)
. (2.38)

�

Now we are in the position to give the definition of weights we will consider. Here we
will consider the Ap(μ) weights introduced by Orobitg and Pérez in [11]. So we need the
assumption that μ(∂Q)= 0 for any cube Q with sides parallel to the coordinates axes.

Let 1 < p <∞ and let p′ = p/(p− 1). We say that a weight w satisfies the Ap(μ) condi-
tion if there exists a constant K such that for all cubes Q

(
1

μ(Q)

∫

Q
wdμ

)(
1

μ(Q)

∫

Q
w1−p′dμ

)p−1
≤ K. (2.39)

And we define the A∞(μ) class as A∞(μ)=
⋃

p>1Ap(μ).
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Theorem 2.2. Let 0 < p <∞, let ρ > 1, w(x)∈A∞(μ) defined above, then
∫

Rd

∣∣T f (x)
∣∣pw(x)dμ(x)≤ C

∫

Rd

(
M(ρ) f (x)

)p
w(x)dμ(x) (2.40)

holds for every function f for which the left-hand side is finite.

Proof. For each ε > 0 we define the maximal operator

T∗ε f (x)= sup
δ>ε

∣∣Tδ f (x)
∣∣. (2.41)

We only need to prove that for w ∈A∞(μ), there exist suitable constants α, β, ε such that

w
({
x : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

})≤ αw
({
x : T∗ε f (x) > t

})
, t > 0, (2.42)

for all αp < (1+β)−1. We may assume f is nonnegative and locally integrable. Follow the
idea of [11], we first consider the special case when w = 1, then (2.42) turns to

μ
({
x : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

})≤ αμ
({
x : T∗ε f (x) > t

})
. (2.43)

Since Ω = {x ∈ Rd : T∗ε f (x) > t} is open, we decompose it into disjoint Whitney cubes
Ω=⋃ j Qj , where Qj are disjoint and 2ρdiam(Qj)≤ dist(Qj ,Ωc)≤ 8ρdiam(Qj), and ev-
ery point of Rd at most lies in 4ρQj cubes. Obviously 4ρQj ⊂Ω. We will show that for
given β > 0, 0 < α < 1, there exists c = c(β,α,n) such that for all j,

μ
({
x ∈Qj : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

})≤ αμ
(
4Qj

)
. (2.44)

Summing over all j, we have

μ
({
x ∈Rd : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

})≤ α4nμ(Ω). (2.45)

Choose α such that α4n < 1, then we can obtain (2.42) in the special case. For the general
case w, recall that if w ∈ A∞(μ), then by [11, Lemma 2.3, page 2017], there exist positive
constants c, δ such that for all cubes Q and all E ⊂Q,

w(E)
w(Q)

≤ c

(
μ(E)
μ(Q)

)δ

. (2.46)

Looking back at (2.44), we get

w
({
x ∈Qj : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

})≤ cαδw
(
4Qj

)
. (2.47)

Summing again over j, we obtain

w
({
x : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

})≤ cαδ4nw(Ω). (2.48)

Choosing α such that cαδ4n < (1+β)−1, we can get (2.42).
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It remains to prove (2.44). Fix j and letQ =Qj and let r = l(Q). Assume that there ex-
ists b ∈Q such thatM(ρ) f (x)≤ εt (otherwise the left-hand set of (2.44) would be empty).
Set z ∈Ωc, that is, T∗ε f (z) ≤ t such that dist(z,Q) = dist(Q,Ωc). By a simple computa-
tion, we get

Q ⊂ P ≡Q
(
b,
5
2
r
)
⊂ 4Q⊂ B ≡Q(z,18r). (2.49)

Set f1 = f χB, f2 = f − f1. Then for x ∈Q, γ > ε, by the growth condition (1.1),

∣∣Tγ f1(x)
∣∣≤ ∣∣Tγ

(
f χP
)
(x)
∣∣+

∫

Rd

f χB\P
|x− y|n dμ(y)≤ T∗ε

(
f χP
)
(x) +

c

rn

∫

B
f (y)dμ(y)

≤ T∗ε
(
f χP
)
(x) + cM(ρ) f (x)(b)≤ T∗ε

(
f χP
)
(x) + cεt,

(2.50)

and so

∣∣Tγ f (x)
∣∣≤ ∣∣Tγ f2(x)

∣∣+T∗ε
(
f χP
)
(x) + cεt. (2.51)

To compare Tγ f2(x) with Tγ f2(z), we use the standard arguments. We get

∣∣Tγ f2(x)−Tγ f2(z)
∣∣≤ cM(ρ) f (x)(b),

∣∣Tγ f2(z)
∣∣≤ T∗ε f (z)≤ t.

(2.52)

Therefore

T∗ε f (x)≤ T∗ε
(
f χP
)
(x) + (1+ cε)t. (2.53)

Now choose ε such that 2cε < β and consequently

{
x ∈Q : T∗ε f (x) > (1+β)t, M(ρ) f (x)≤ εt

}⊂
{
x ∈Q : T∗ε

(
f χP
)
(x) >

β

2
t
}
. (2.54)

Finally, since T∗ε is of weak type (1,1) (see [9]), we get

μ
({

x ∈Q : T∗ε
(
f χP
)
(x) >

β

2
t
})
≤ c

βt

∫

P

∣∣ f (y)
∣∣dμ(y)

= cμ(ρP)
βtμ(ρP)

∫

P

∣∣ f (y)
∣∣dμ(y)

≤ cμ(ρP)
βt

M(ρ) f (x)(b)

≤ c

β
εμ(4ρQ)≤ αμ(4ρQ)

(2.55)

always provided that ε is chosen small enough so that cε/β ≤ α. �
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Lemma 2.3. Let 1 < p <∞, let ρ > 1, w ∈ Ap(μ), then

∫

Rd

(
M(ρ) f (x)

)p
w(x)dμ(x)≤ C

∫

Rd

∣∣ f (x)
∣∣pw(x)dμ(x). (2.56)

Proof. Lemma 2.3 is a part of [5, Lemma 1]. Here we can give a more direct proof. By
[6, Theorem 3], M(ρ) is weighted weak type (q,q) if w ∈ Aq(μ), 1 < q <∞. Since w ∈
Ap(μ), then by [11, Corollary 2.5], there exists ε > 0 such that w ∈Ap−ε(μ). Finally by the
Marcinkiewicz interpolation theorem, we can get the desired result. �

Theorem 2.4. Let 0 < p <∞, let ρ > 1, w ∈ A∞(μ), b ∈ RBMO(μ). Then there exists con-
stant C such that

∫

Rd

∣∣[b,T] f
∣∣pw(x)dμ(x)≤ C

∫

Rd

(
M(ρ) f (x)

)p
w(x)dμ(x) (2.57)

holds for every function f for which the left-hand side is finite.

Proof. For w ∈ A∞(μ) and b ∈ RBMO(μ), by the estimate for the variant of the sharp
maximal function, we get

∫

Rd

∣∣[b,T] f
∣∣pw(x)dμ(x)≤ C

∫

Rd

(
Nδ
(
[b,T] f

)
(x)
)p
w(x)dμ(x)

≤ C
∫

Rd

(
M#

δ

(
[b,T] f (x)

))p
wdμ(x)

≤ C
∫

Rd

∣∣Mε,(3/2)(T f )(x)
∣∣pw(x)dμ(x)

+C
∫

Rd

(
M2

(9/8) f (x))
pw(x)dμ(x)

+C
∫

Rd

∣∣T∗ f (x)
∣∣pw(x)dμ(x).

(2.58)

Here we have to justify the second inequality, precisely

∫

Rd

(
Nδ
(
[b,T] f

)
(x)
)p
w(x)dμ(x)≤ C

∫

Rd

(
M#

δ

(
[b,T] f (x)

))p
wdμ(x). (2.59)

This inequality can be obtained by using a good-λ argument similar to [15, Theorem
6.2]. For brevity, we omit the details. Since w ∈ A∞(μ), there exists 1 < r <∞ such that
w ∈Ar(μ). Choose ε > 0 such that 0 < ε < p/r, then by Lemma 2.3, we have

∫

Rd

(
Mε,(3/2)(T f )(x)

)p
wdμ≤ C

∫

Rd
|T f |pwdμ. (2.60)

From Theorem 2.2 and Lemma 2.3, we can get the proof of Theorem 2.4. �
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Corollary 2.5. Let w ∈Ap(μ), let 1 < p <∞. Then

∫

Rd

∣∣[b,T] f
∣∣pw(x)dμ(x)≤ C

∫

Rd

∣∣ f (x)
∣∣pw(x)dμ(x). (2.61)

Remark 2.6. Han in [5] obtained a similar result with Corollary 2.5 for higher-order com-
mutators. But Theorems 2.1, 2.2, and 2.4 in our paper are new and are of independent
interest in themselves.
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