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1. Introduction

In this paper, we are concerned with the following impulsive integral inequality:

u(t)≤ a(t) + b(t)
∫ t

0
k1(t,s)um(s)ds

+ c(t)
∫ t

0
k2(t,s)un(s− τ)ds+d(t)

∑
0<tk<t

ηku
(
tk
)
, t ≥ 0,

u(t)≤ ϕ(t), t ∈ [−τ,0], τ > 0,

(1.1)

where a(t), b(t), c(t), and d(t) are nonnegative continuous functions,m,n > 1, ηk ≥ 0, the
points tk (called “instants of impulse effect”) are in the increasing order, and limk→∞ tk =
+∞. The kernels ki(t,s), i= 1,2, are of the form

ki(t,s)= (t− s)βi−1sγiFi(s), i= 1,2, (1.2)

where βi > 0, γi >−1, Fi(t), i= 1,2, and ϕ(t) are nonnegative continuous functions. For
this reason, we say that we are in the presence of an impulsive nonlinear singular version
of the Gronwall inequality with delay.

We would like to find bounds for solutions to this inequality in the space of piecewise
continuous functions u : X → Y (X ⊂R,Y ⊂RN ), with points of discontinuity of the first
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kind at the points tk ∈ X . Our functions will also be assumed to be left continuous at the
points tk. This space will be denoted by PC(X ,Y).

Integral inequalities are an important tool to investigate some qualitative and quan-
titative properties of solutions to differential equations such as existence, uniqueness,
boundedness, and stability. Among these integral inequalities, we cite the famous Gron-
wall inequality and its different generalizations (see [3, 13]).

Impulsive integral equations, impulsive integro-differential equations, and impulsive
differential equations arise naturally in various fields such as population dynamics and
optimal control (see the monographs [2, 9, 15]). It seems that the first treatment of im-
pulsive systems goes back to the monograph by Krylov and Bogolyubov [8].

The following impulsive integral inequality:

u(t)≤ a+
∫ t

c
b(s)u(s)ds+

∑
c<tk<t

ηku
(
tk
)
, t ≥ 0, (1.3)

has been first used by Samoilenko and Perestyuk [14] to investigate problems of the form

x′ = f (t,x), t 	= tk,

Δx = Ik(x), t = tk.
(1.4)

Then, a similar inequality with constant delay was considered by Bainov and Hristova in
[1]. Recently, Hristova in [5] treated a more general inequality with nonlinear functions
in u. However, in all previous works, the functions (kernels) involved in the integrals are
regular, even in the case of integrals of convolution or nonconvolution types (see [3, 13]).

In this work, we consider the case of singular kernels of the form (1.2). The type of
inequalities we are going to discuss arise for instance when we study impulsive evolution
problems of the form

du

dt
+Au= f

(
t,u,ut

)
, t > 0, t 	= tk,

u(0)= u0 ∈ X ,

Δu
(
tk
)= u

(
t+k
)−u

(
t−k
)
, k = 1,2, . . . ,

(1.5)

where A is a sectorial operator (see, for instance, [17] where the case without delay and
with globally Lipschitzian right-hand side is treated).

We point out here that nonlinear singular versions of the Gronwall-Bihari inequality
have been already considered by the present author in [6, 7, 10, 16] and Medved in [11,
12] to investigate problems of the form (1.5) and perturbed problems of (1.5) but without
impulse effects.

The plan of the paper is as follows. In the next section we present some lemmas and
notation which will be needed in the proof of our result. Section 3 contains the statement
and proof of our theorem. It is ended with some important remarks.

2. Preliminaries

In this section, we prepare some lemmas and notation which we will use in the next
section.
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Lemma 2.1. For all β > 0 and γ >−1,
∫ t

0
(t− s)β−1sγds= Ctβ+γ, t ≥ 0, (2.1)

where C = C(β,γ)= Γ(β)Γ(γ+1)/Γ(β+ γ+1).

Lemma 2.2. If β,γ,δ > 0, then for any t > 0,

t1−β
∫ t

0
(t− s)β−1sγ−1e−δsds≤ C, (2.2)

where C = C(β,γ,δ) is a positive constant independent of t. In fact,

C =max
{
1,21−β

}
Γ(γ)

(
1+

γ

β

)
δ−γ. (2.3)

See [6] for the proof.

Lemma 2.3. Let a, b, K , ψ be nonnegative continuous functions on the interval I = (0,T)
(0 < T ≤∞), let ω : (0,∞)→ R be a continuous, nonnegative, and nondecreasing function
with ω(0)=0 and ω(u)>0 for u>0, and letA(t) :=max0≤s≤t a(s) and B(t) :=max0≤s≤t b(s).
Assume that

ψ(t)≤ a(t) + b(t)
∫ t

0
K(s)ω

(
ψ(s)

)
ds, t ∈ I. (2.4)

Then

ψ(t)≤H−1
[
H
(
A(t)

)
+B(t)

∫ t

0
K(s)ds

]
, t ∈ (0,T1

)
, (2.5)

where H(v) := ∫ vv0 dτ/ω(τ) (v ≥ v0 > 0), H−1 is the inverse of H , and T1 > 0 is such that

H(A(t)) +B(t)
∫ t
0K(s)ds∈D(H−1) for all t ∈ (0,T1).

See [4] or [3, 13].
In order to lighten the statement of our result, we adopt the following notation. Let

V(τ) := 1+
∫ τ
0 F

2
2 (s)ϕ

2n(s− τ)ds, r :=max{m,n} > 1, t0 := 0.
For p and q such that 1/p+1/q = 1, we define

fp(t) := sup
{
aq(t),Cq/p

(
pβ1− p+1, pγ1

)
bq(t)tq(β1+γ1)−1,

Cq/p
(
pβ2− p+1, pγ2

)
cq(t)tq(β2+γ2)−1,dq(t)

}
,

(2.6)

with C(pβ1− p+1, pγ1) and C(pβ2− p+1, pγ2) the constants from Lemma 2.1, and Tp
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to be the sup of all values of t for which

k∑
i=1

∫ ti

ti−1
(i+2)(q−1)r

i−1∏
j=1

(
1+ ( j +2)q−1ηqj f

(
t j
))r

× {Fq
1 (s) f

m(s) +F
q
2 (s) f

n(s− τ)
}
ds+ (k+3)(q−1)r

×
k∏
j=1

(
1+ ( j +2)q−1ηqj f

(
t j
))r ∫ t

tk

{
F
q
1 (s) f

m(s) +F
q
2 (s) f

n(s− τ)
}
ds <

V(τ)1−r

(r− 1)
.

(2.7)

If p = q = 2, put f (t) := f2(t) and T := T2.

3. The bounds

Without loss of generality, we will suppose that the tk are such that τ < tk+1 − tk ≤ 2τ,
k = 0,1,2, . . . . For the general case, see Remark 3.2 below.

Theorem 3.1. Let the above assumptions on the different parameters and functions hold.
Suppose that u is in PC([−τ,+∞],[0,+∞]) and satisfies (1.1), then

(a) if βi > 1/2 and γi >−1/2, i= 1,2, it holds that for t ∈ (tk, t+1],

u(t)≤
[
(k+3) f (t)

k∏
l=1

(
1+ (k+2)η2l f

(
tl
))]1/q

×
[
V(τ)1−r − (r− 1)

k∑
i=1

∫ ti

ti−1
(i+2)r

i−1∏
j=1

(
1+ ( j +2)η2j f

(
t j
))r

× {F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
}
ds− (r− 1)(k+3)r

×
k∏
j=1

(
1+ ( j +2)η2j f

(
t j
))r ∫ t

tk

{
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
}
ds
]1/2(1−r)

(3.1)

as long as the expression between the second brackets is positive, that is, on (0,T);
(b) if 0 < βi ≤ 1/2 and −1 < γi ≤−1/2, then it holds that for t ∈ (tk, t+1],

u(t)≤
[
(k+3)q−1 fp(t)

k∏
l=1

(
1+ (k+2)q−1ηql f

(
tl
))]1/q

×
[
V(τ)1−r − (r− 1)

k∑
i=1

∫ ti

ti−1
(i+2)(q−1)r

i−1∏
j=1

(
1+ ( j +2)q−1ηqj f

(
t j
))r

× {Fq
1 (s) f

m
p (s) +F

q
2 (s) f

n
p (s− τ)

}
ds− (r− 1)(k+3)(q−1)r

×
k∏
j=1

(
1+ ( j +2)q−1ηqj f

(
t j
))r ∫ t

tk

{
F
q
1 (s) f

m
p (s) +F2

2 (s) f
n
p (s− τ)

}
ds
]1/q(1−r)

(3.2)

as long as the expression between the second brackets is positive, that is, on (0,Tp).
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Proof. We will use a mathematical induction.

(a) Step 1. We start by proving the validity of (3.1) in the interval [0, t1] (in fact, the
argument we present is valid within the interval (0,T), this fact will be mentioned in
every occasion by indicating the right interval over which the estimate is valid). For t ∈
[0,τ]⊂ [0, t1] (see assumptions on tk), we have

u(t)≤ a(t) + b(t)
∫ t

0
(t− s)β1−1sγ1F1(s)um(s)ds

+ c(t)
∫ t

0
(t− s)β2−1sγ2F2(s)un(s− τ)ds.

(3.3)

If βi > 1/2 and γi >−1/2, i= 1,2, then by the Cauchy-Schwarz inequality and Lemma 2.1,
we obtain

u(t)≤ a(t) +C1/2(2β1− 1,2γ1
)
b(t)tβ1+γ1−1/2

(∫ t

0
F2
1 (s)u

2m(s)ds
)1/2

+C1/2(2β2− 1,2γ2
)
c(t)tβ2+γ2−1/2

(∫ t

0
F2
2 (s)u

2n(s− τ)ds
)1/2

,

(3.4)

where C
(
2β1 − 1,2γ1

)
and C(2β2 − 1,2γ2) are the constants from Lemma 2.1. Squaring

both sides of (3.4), we find

u2(t)≤ 3a2(t) + 3C
(
2β1− 1,2γ1

)
b2(t)t2(β1+γ1)−1

∫ t

0
F2
1 (s)u

2m(s)ds

+3C
(
2β2− 1,2γ2

)
c2(t)t2(β2+γ2)−1

∫ t

0
F2
2 (s)u

2n(s− τ)ds.

(3.5)

Therefore

u2(t)≤ 3 f (t)
(
1+
∫ t

0
F2
1 (s)u

2m(s)ds+
∫ t

0
F2
2 (s)u

2n(s− τ)ds
)

≤ 3 f (t)
(
1+
∫ t

0
F2
1 (s)u

2m(s)ds+
∫ τ

0
F2
2 (s)ϕ

2n(s− τ)ds
)
.

(3.6)

Putting

v1(t) := 1+
∫ τ

0
F2
2 (s)ϕ

2n(s− τ)ds+
∫ t

0
F2
1 (s)u

2m(s)ds, (3.7)

we see that v1(t) is a nondecreasing positive differentiable function on [0,τ],v1(0) =
1+
∫ τ
0 F

2
2 (s)ϕ

2n(s− τ)ds=:V(τ),

u2(t)≤ 3 f (t)v1(t), (3.8)

v′1(t)= F2
1 (t)u

2m(t)≤ 3mF2
1 (t) f

m(t)vm1 (t)≤ 3rF2
1 (t) f

m(t)vr1(t). (3.9)

An integration of (3.9) (or using Lemma 2.3 directly) leads to

v1(t)≤
[
V(τ)1−r − 3r(r− 1)

∫ t

0
F2
1 (s) f

m(s)ds
]1/(1−r)

(3.10)
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as long as
∫ t
0 F

2
1 (s) f

m(s)ds < V(τ)1−r /3r(r− 1). Therefore, for t ∈ [0,τ],

u(t)≤
√
3 f (t)

[
V(τ)1−r − 3r(r− 1)

∫ t

0
F2
1 (s) f

m(s)ds
]1/2(1−r)

(3.11)

as long as
∫ t
0 F

2
1 (s) f

m(s)ds < V(τ)1−r /3r(r− 1).
Let t ∈ (τ, t1]. Then, from (3.6) and (3.7), we have

u2(t)≤ 3 f (t)
(
v1(τ) +

∫ t

τ
F2
1 (s)u

2m(s)ds+
∫ t

τ
F2
2 (s)u

2n(s− τ)ds
)
. (3.12)

Let us designate

w1(t) := v1(τ) +
∫ t

τ
F2
1 (s)u

2m(s)ds+
∫ t

τ
F2
2 (s)u

2n(s− τ)ds. (3.13)

Then w1(t) is a nondecreasing positive differentiable function on (τ, t1],

w1(τ)= v1(τ)≤w1(t), u2(t)≤ 3 f (t)w1(t), (3.14)

w′1(t)= F2
1 (t)u

2m(t) +F2
2 (t)u

2n(t− τ). (3.15)

Since 0 < t− τ ≤ τ (see Remark 3.2) and from (3.7), (3.8), (3.14), and (3.15),

u2(t− τ)≤ 3 f (t− τ)v1(t− τ)≤ 3 f (t− τ)v1(τ)≤ 3 f (t− τ)w1(t), (3.16)

and we can write that

w′1(t)≤ F2
1 (t)

(
3 f (t)w1(t)

)m
+F2

2 (t)
(
3 f (t− τ)w1(t)

)n
≤ 3r

[
F2
1 (t) f

m(t) +F2
2 (t) f

n(t− τ)
]
wr
1(t).

(3.17)

Integrating (3.17) from τ to t and using (3.10), we obtain

w1(t)≤
[
w1(τ)1−r − 3r(r− 1)

∫ t

τ

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds
]1/(1−r)

≤
[
V(τ)1−r − 3r(r− 1)

∫ τ

0
F2
1 (s) f

m(s)ds

− 3r(r− 1)
∫ t

τ

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds
]1/(1−r)

≤
[
V(τ)1−r − 3r(r− 1)

∫ t

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds
]1/(1−r)

(3.18)

and hence, for t ∈ (τ, t1],

u(t)≤
√
3 f (t)

[
V 1−r − 3r(r− 1)

∫ t

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds
]1/2(1−r)

(3.19)
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as long as

∫ t

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds <

V 1−r

3r(r− 1)
. (3.20)

We define the function ψ1 : [0, t1]→R by

ψ1(t) :=
⎧⎨
⎩
v1(t), t ∈ [0,τ],

w1(t), t ∈ (τ, t1]. (3.21)

It can be easily seen that (3.1) in the statement of the theorem is satisfied over [0, t1]
(recall that t0 := 0).

Step 2. Let t ∈ (t1, t2]. If t ∈ (t1, t1 + τ], then

u(t)≤ a(t) + b(t)
∫ t

0
(t− s)β1−1sγ1F1(s)um(s)ds

+ c(t)
∫ t

0
(t− s)β2−1sγ2F2(s)un(s− τ)ds+η1d(t)u

(
t1
)
.

(3.22)

Squaring both sides of (3.22) after applying the Cauchy-Schwarz inequality and
Lemma 2.1, as in the previous steps from (3.4) to (3.6), we find

u2(t)≤ 4 f (t)
(
1+
∫ t

0
F2
1 (s)u

2m(s)ds+
∫ t

0
F2
2 (s)u

2n(s− τ)ds+η21u
2(t1)

)

≤ 4 f (t)
(
v1(τ) +

∫ t1

τ
F2
1 (s)u

2m(s)ds+
∫ t1

τ
F2
2 (s)u

2n(s− τ)ds

+
∫ t

t1
F2
1 (s)u

2m(s)ds+
∫ t

t1
F2
2 (s)u

2n(s− τ)ds+η21u
2(t1)

)
.

(3.23)

Note here that we have used definition (3.7) of v1(t). Thanks to (3.13) and (3.14), we
entail that

u2(t)≤ 4 f (t)
(
w1
(
t1
)
+
∫ t

t1
F2
1 (s)u

2m(s)ds+
∫ t

t1
F2
2 (s)u

2n(s− τ)ds+3η21 f
(
t1
)
w1
(
t1
))

≤ 4 f (t)
[
1+3η21 f

(
t1
)](

w1(t1) +
∫ t

t1
F2
1 (s)u

2m(s)ds+
∫ t

t1
F2
2 (s)u

2n(s− τ)ds
)
.

(3.24)

We define

v2(t) :=w1
(
t1
)
+
∫ t

t1
F2
1 (s)u

2m(s)ds+
∫ t

t1
F2
2 (s)u

2n(s− τ)ds. (3.25)
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It is clear that v2(t) is a nondecreasing positive differentiable function on (t1, t1 + τ],

v2
(
t1
)=w1

(
t1
)≤ v2(t), u2(t)≤ 4 f (t)

[
1+3η21 f

(
t1
)]
v2(t). (3.26)

Since t− τ ≤ t1, by (3.6), (3.12), (3.13), and (3.25), we see that

u2(t− τ)≤ 3 f (t− τ)ψ1(t− τ)≤ 3 f (t− τ)w1
(
t1
)≤ 3 f (t− τ)v2(t), (3.27)

and thus from this estimation, (3.25) and (3.26), we get

v′2(t)= F2
1 (t)u

2m(t) +F2
2 (t)u

2n(t− τ)

≤ {4m[1+3η21 f
(
t1
)]m

f m(t)F2
1 (t) + 3nF2

2 (t) f
n(t− τ)

}
vr2(t).

(3.28)

An integration of (3.28) from t1 to t together with (3.18) leads to

v2(t)≤
[
v2
(
t1
)1−r − (r− 1)

×
∫ t

t1

{
4m
[
1+3η21 f

(
t1
)]m

f m(s)F2
1 (s) + 3nF2

2 (s) f
n(s− τ)

}
ds
]1/(1−r)

≤
[
V(τ)1−r − 3r(r− 1)

∫ t1

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds− (r− 1)

×
∫ t

t1

{
4m
[
1+3η21 f

(
t1
)]m

f m(s)F2
1 (s) + 3nF2

2 (s) f
n(s− τ)

}
ds
]1/(1−r)

(3.29)

and hence, for t ∈ (t1, t1 + τ], we have

u(t)≤ 2
√[

1+3η21 f
(
t1
)]
f (t)

×
[
V(τ)1−r − 3r(r− 1)

∫ t1

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds

− (r− 1)
∫ t

t1

{
4m
[
1+3η21 f

(
t1
)]m

f m(s)F2
1 (s) + 3nF2

2 (s) f
n(s− τ)

}
ds
]1/2(1−r)

(3.30)

as long as

3r
∫ t1

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds

+
∫ t

t1

{
4m
[
1+3η21 f

(
t1
)]m

f m(s)F2
1 (s) + 3nF2

2 (s) f
n(s− τ)

}
ds≤ V 1−r

r− 1
.

(3.31)

Now let t ∈ (t1 + τ, t2], then from (3.7), (3.13), (3.14), (3.25), and

u2(t)≤ 4 f (t)
(
1+
∫ t

0
F2
1 (s)u

2m(s)ds+
∫ t

0
F2
2 (s)u

2n(s− τ)ds+η21u
2(t1)

)
, (3.32)
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we deduce that

u2(t)≤4 f (t)
(
v2
(
t1+τ

)
+
∫ t

t1+τ
F2
1 (s)u

2m(s)ds+
∫ t

t1+τ
F2
2 (s)u

2n(s− τ)ds+3η21 f
(
t1
)
v2
(
t1+τ

))

≤4 f (t)
[
1+3η21 f

(
t1
)](

v2
(
t1 + τ

)
+
∫ t

t1+τ
F2
1 (s)u

2m(s)ds+
∫ t

t1+τ
F2
2 (s)u

2n(s− τ)ds
)

(3.33)

because w1(t1)≤ v2(t1)≤ v2(t1 + τ). At this stage, we denote

w2(t) := v2
(
t1 + τ

)
+
∫ t

t1+τ
F2
1 (s)u

2m(s)ds+
∫ t

t1+τ
F2
2 (s)u

2n(s− τ)ds. (3.34)

Then, clearly w2(t) is a nondecreasing positive differentiable function on (t1 + τ, t2],
w2(t1 + τ)= v2(t1 + τ)≤w2(t), and

w′2(t)= F2
1 (t)u

2m(t) +F2
2 (t)u

2n(t− τ). (3.35)

Observe that by (3.33) and (3.34), we have the estimates

u2(t)≤ 4 f (t)
[
1+3η21 f

(
t1
)]
w2(t), (3.36)

and since t1 < t− τ < t1 + τ, it follows from (3.24) that

u2(t− τ)≤ 4 f (t− τ)
[
1+3η21 f

(
t1
)]
v2(t− τ)

≤ 4 f (t− τ)
[
1+3η21 f

(
t1
)]
v2
(
t1 + τ

)
≤ 4 f (t− τ)

[
1+3η21 f

(
t1
)]
w2(t).

(3.37)

Consequently,

w′2(t)≤ 4r
[
1+3η21 f

(
t1
)]r{

f m(t)F2
1 (t) + f n(t− τ)F2

2 (t)
}
wr
2(t). (3.38)

Again by an integration of (3.38), we end up with

w2(t)≤
[
w1−r
2

(
t1+ τ

)−4r(r−1)[1+3η21 f
(
t1
)]

r

∫ t

t1+τ

{
f m(s)F2

1 (s)+ f n(s− τ)F2
2 (s)

}
ds
]1/(1−r)

≤
[
V(τ)1−r − 3r(r− 1)

∫ t1

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds

− (r− 1)
∫ t1+τ

t1

{
4m
[
1+3η21 f

(
t1
)]m

f m(s)F2
1 (s) + 3nF2

2 (s) f
n(s− τ)

}
ds

− 4r(r− 1)
[
1+3η21 f

(
t1
)]r ∫ t

t1+τ

{
f m(s)F2

1 (s) + f n(s− τ)F2
2 (s)

}
ds
]1/(1−r)

(3.39)
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or simply

w2(t)≤
[
V(τ)1−r − 3r(r− 1)

∫ t1

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds

− 4r(r− 1)
[
1+3η21 f

(
t1
)]r ∫ t

t1

{
f m(s)F2

1 (s) + f n(s− τ)F2
2 (s)

}
ds
]1/(1−r)

.

(3.40)

Hence,

u(t)≤ 2
√
f (t)

[
1+3η21 f

(
t1
)]

×
[
V(τ)1−r − 3r(r− 1)

∫ t1

0

[
F2
1 (s) f

m(s) +F2
2 (s) f

n(s− τ)
]
ds

− 4r(r− 1)
[
1+3η21 f

(
t1
)]r ∫ t

t1

{
f m(s)F2

1 (s) + f n(s− τ)F2
2 (s)

}
ds
]1/2(1−r)

(3.41)

provided that the expression between brackets is positive. We define ψ2 : (t1, t2]→R by

ψ2(t) :=
⎧⎨
⎩
v2(t), t ∈ (t1, t1 + τ

]
,

w2(t), t ∈ (t1 + τ, t2
]
.

(3.42)

It is clear that (3.1) holds on (t1, t2].

Step 3. Finally, suppose that (3.1) is valid over (tk, tk+1], then if t ∈ (tk+1, tk+2], we define

ψk+2(t) :=
⎧⎨
⎩
vk+2(t), t ∈ [tk+1, tk+1 + τ

]
,

wk+2(t), t ∈ (tk+1 + τ, tk+2
]
,

(3.43)

with

vk+2(t) :=wk+1(tk+1) +
∫ t

tk+1
F2
1 (s)u

2m(s)ds+
∫ t

tk+1
F2
2 (s)u

2n(s− τ)ds,

wk+2(t) := vk+2
(
tk+1 + τ

)
+
∫ t

tk+1+τ
F2
1 (s)u

2m(s)ds+
∫ t

tk+1+τ
F2
2 (s)u

2n(s− τ)ds.

(3.44)

In a similar manner as in Steps 1 and 2, we can see that (3.1) is valid over (tk+1, tk+2].
(b) If 0 < βi ≤ 1/2 and −1 < γi ≤−1/2, then instead of the Cauchy-Schwarz inequality

we use the Hölder inequality with

1 < p <min

{
1

1−βi
,− 1

γi
, i= 1,2

}
, (3.45)
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and q > 1 such that 1/p+1/q = 1. We find

u(t)≤ a(t) +C1/p(pβ1− p+1, pγ1
)
b(t)tβ1+γ1−1/q

(∫ t

0
F
q
1 (s)u

qm(s)ds
)1/q

+C1/p(pβ2− p+1, pγ2
)
c(t)tβ2+γ2−1/q

(∫ t

0
F
q
2 (s)u

qn(s− τ)ds
)1/q

.

(3.46)

Then, we raise both sides to the power q and we use the inequality

( n∑
i=1

ai

)r

≤ nr−1
( n∑

i=1
ari

)
, n∈N∗, r,ai ∈R+, i= 1, . . . ,n. (3.47)

The rest of the proof remains the same. The proof is now complete. �

Remark 3.2. Apart from the case treated in the proof, that is, when τ < tk+1 − tk ≤ 2τ,
k = 0,1,2, . . . , there are several other cases, but each and every one of them can fit in the
one considered above or one of the following cases.

Case 1. There exists an nk > 1 such that tk+1− tk ≥ nkτ, that is, tk < tk +nkτ ≤ tk+1. In this
case, we argue in a similar fashion over (tk, tk + τ], (tk + τ, tk +2τ], . . . , (tk + (nk − 1)τ, tk +
nkτ] and then over (tk +nkτ, t] with t > tk +nkτ. Therefore the function ψk+1(t) will have
nk +1 components.

Case 2. There exists k0 ≥ 1 such that (tk0 , tk0+1] does not contain any tk0 +nτ, n= 1,2, . . . ,
that is, tk0+1− tk0 < τ. Here we deal with this interval in a single step using only a function
of the form vk0+1(t), that is, ψk0+1(t) := vk0+1(t).

Case 3. τ ∈ (tk1 , tk1+1] with k1 > 0, that is, τ /∈ (0, t1] as in Case 1. Again, in this situation,
we consider only functions of the form vk(t) until we reach the interval (tk1 , tk1+1] where
we consider both vk1+1(t) and wk1+1(t).

Remark 3.3. Obviously, if ki(t,s)= (t− s)βi−1sγi e−δisFi(s), δi > 0, i= 1,2 . . . , the proof still
works. However, using Lemma 2.2 instead of Lemma 2.1 throughout the proof, we can
have much larger intervals over which the estimations are valid.

Remark 3.4. It is clear that our result can be easily extended to other nonlinearities than
the polynomial ones, iterated integrals and the case of several variables. One may use the
Gronwall-Bihari lemma (Lemma 2.3) in case of a nondecreasing nonlinearity. See also
[3, 13] for other classes of nonlinearities.
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