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We deal with the stability of the orthogonality preserving property in the class of map-
pings phase-equivalent to linear or conjugate-linear ones. We give a characterization of
approximately orthogonality preserving mappings in this class and we show some con-
nections between the considered stability and the stability of the Wigner equation.
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1. Introduction

Let X and Y be (real or complex) inner-product spaces (by K we denote the scalar field,
by 〈·|·〉 and ‖ · ‖ the inner product and the corresponding norm, and by ⊥ the standard
orthogonality relation). A mapping f : X → Y is called an isometry if and only if ‖ f (x)−
f (y)‖ = ‖x− y‖ for all x, y ∈ X and is called inner-product preserving if it is a solution of
the orthogonality equation

〈
f (x)| f (y)〉= 〈x|y〉 for x, y ∈ X. (1.1)

One can show that f satisfies (1.1) if and only if it is a linear isometry. Similarly, f : X → Y
is a solution of the functional equation

〈
f (x)| f (y)〉= 〈y|x〉 for x, y ∈ X (1.2)

if and only if f is a conjugate-linear isometry, where conjugate-linear means that f (λx +
μy) = λ f (x) + μ f (y) for x, y ∈ X and λ,μ ∈K. Functions f ,g : X → Y are called phase-
equivalent if and only if there exists a mapping σ : X →K such that g(x)= σ(x) f (x) and
|σ(x)| = 1 for each x ∈ X . Let us denote by �′ =�′(X ,Y) the class of all mappings which
are phase-equivalent to linear or conjugate-linear ones. A mapping f : X → Y which
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satisfies the condition

∀x, y ∈ X : x⊥y =⇒ f (x)⊥ f (y) (1.3)

will be called orthogonality preserving (o.p.). These mappings may be very irregular (cf.
examples in [3]). In [5], the author proved the stability of the orthogonality preserv-
ing property in the class of linear mappings defined on finite-dimensional inner-product
spaces. The main tools used in the proof of that result were a characterization of linear
orthogonality preserving mappings obtained in [3] and the stability of the orthogonality
equation verified in the first part of [5]. In the present paper, we are going to extend the
above-mentioned result to the class �′.

The class of functions preserving the absolute value of the inner product has found
some applications in quantum physics. In the book of Wigner [13], the class of such
operators was described. Therefore the functional equation

∣
∣〈 f (x)| f (y)〉∣∣= ∣∣〈x|y〉∣∣, for x, y ∈ X , (1.4)

is called the Wigner equation. The celebrated Wigner’s theorem states that if f satisfies
(1.4), then it is phase-equivalent to a linear or conjugate-linear isometry (for the proof of
this theorem and comments see, e.g., [1, 11]). Conversely, it is obvious that a mapping f
which is phase-equivalent to a linear or conjugate-linear isometry satisfies (1.4). We will
see that it is enough to assume that f is phase-equivalent to a linear or conjugate-linear
orthogonality preserving mapping. This was already observed by Uhlhorn [12].

2. Approximately orthogonality preserving mappings

For ε ∈ [0,1), we define an ε-orthogonality of vectors u and v:

u⊥ε v :⇐⇒ ∣∣〈u|v〉∣∣≤ ε‖u‖‖v‖. (2.1)

We call a mapping f : X → Y ε-orthogonality preserving (ε-o.p.) or approximately orthog-
onality preserving (a.o.p.) if and only if it satisfies the condition

∀x, y ∈ X : x⊥y =⇒ f (x)⊥ε f (y). (2.2)

Obviously, if ε= 0, then f is orthogonality preserving.
Themain result of [3] states that linear a.o.p. mappings nearly satisfy the orthogonality

equation.

Proposition 2.1 (see [3, Theorem 2]). Let f : X → Y be a nonzero linear mapping satis-
fying (2.2) with some ε ∈ [0,1). Then there exists γ > 0 such that

∣
∣〈 f (x)| f (y)〉− γ〈x|y〉∣∣≤ ε̂min

{
γ‖x‖‖y‖,∥∥ f (x)∥∥∥∥ f (y)∥∥}, x, y ∈ X , (2.3)

with

ε̂ = 4ε

(
1

1− ε
+

√
1+ ε

1− ε

)

. (2.4)
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For real spaces, one can obtain even better approximation; namely with ε/(1− ε) in-
stead of ε̂. Let us replace now the linearity of f by conjugate-linearity.

Proposition 2.2. Let f : X → Y be a nonzero conjugate-linear mapping satisfying (2.2)
with some ε ∈ [0,1). Then there exists γ > 0 such that

∣
∣〈 f (x)| f (y)〉− γ〈y|x〉∣∣≤ ε̂min

{
γ‖x‖‖y‖,∥∥ f (x)∥∥∥∥ f (y)∥∥}, x, y ∈ X , (2.5)

with ε̂ given by (2.4).

Proof. We only sketch the proof which runs similarly like the one of Proposition 2.1. In
the first part of the proof [5, Theorem 2], it is shown (and this part remains unchanged
if we replace linearity of f by its conjugate-linearity) that for an arbitrarily fixed x0 ∈
X \ {0}, γ := ‖ f (x0)‖2/‖x0‖2 and δ :=

√
(1+ ε)/(1− ε) + 2ε

√
(1+ ε)/(1− ε)≥ 1, one has

∣
∣
∣
∥
∥ f (x)

∥
∥2− γ‖x‖2

∣
∣
∣≤ (δ2− 1

)
γ‖x‖2, x ∈ X ,

∣
∣
∣
∥
∥ f (x)

∥
∥2− γ‖x‖2

∣
∣
∣≤ (δ2− 1

)∥∥ f (x)
∥
∥2, x ∈ X

(2.6)

(cf. [3, equations (10) and (12)]). Using the polarization formula, conjugate-linearity of
f , (2.6), we obtain for all x, y ∈ X that

∣
∣〈 f (x)| f (y)〉− γ〈y|x〉∣∣≤ (δ2− 1

)
min

{
γ‖x‖2 + γ‖y‖2,∥∥ f (x)∥∥2 +∥∥ f (y)∥∥2

}
. (2.7)

Now, suppose x, y ∈ X \ {0} (then we have f (x), f (y)∈ Y \ {0}). Applying (2.7) for vec-
tors x/‖x‖ and y/‖y‖, we get

∣
∣〈 f (x)| f (y)〉− γ〈y|x〉∣∣≤ 2

(
δ2− 1

)
γ‖x‖‖y‖. (2.8)

Analogously, applying (2.7) to vectors x/‖ f (x)‖ and y/‖ f (y)‖, we obtain
∣
∣〈 f (x)| f (y)〉− γ〈y|x〉∣∣≤ 2

(
δ2− 1

)∥∥ f (x)
∥
∥
∥
∥ f (y)

∥
∥. (2.9)

Since 2(δ2− 1)= ε̂, (2.5) follows for all x, y ∈ X \ {0} and trivially for x = 0 or y = 0. �

Using the above two propositions, we obtain the following.

Theorem 2.3. Let f : X → Y be a nonzero mapping satisfying (2.2) with some ε ∈ [0,1)
and let f ∈�′. Then there exists γ > 0 such that

∣
∣
∣
∣〈 f (x)| f (y)〉∣∣− γ

∣
∣〈x|y〉∣∣∣∣≤ ε̂min

{
γ‖x‖‖y‖,∥∥ f (x)∥∥∥∥ f (y)∥∥}, x, y ∈ X , (2.10)

with ε̂ given by (2.4).

Proof. Let f be phase-equivalent to a linear or conjugate-linear mapping g. It is easily
visible that g also satisfies (2.2). Following Propositions 2.1 and 2.2, we observe that in
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the case g is linear, g satisfies (2.3) and

∣
∣
∣
∣〈 f (x)| f (y)〉∣∣− γ

∣
∣〈x|y〉∣∣∣∣= ∣∣∣∣〈g(x)|g(y)〉∣∣− γ

∣
∣〈x|y〉∣∣∣∣

≤ ∣∣〈g(x)|g(y)〉− γ〈x|y〉∣∣
≤ ε̂min

{
γ‖x‖‖y‖,∥∥ f (x)∥∥∥∥ f (y)∥∥}

(2.11)

and, in the case g is conjugate-linear, g satisfies (2.5) and

∣
∣
∣
∣〈 f (x)| f (y)〉∣∣− γ

∣
∣〈x|y〉∣∣∣∣= ∣∣∣∣〈g(x)|g(y)〉∣∣− γ

∣
∣〈y|x〉∣∣∣∣

≤ ∣∣〈g(x)|g(y)〉− γ〈y|x〉∣∣
≤ ε̂min

{
γ‖x‖‖y‖,∥∥ f (x)∥∥∥∥ f (y)∥∥}.

(2.12)

�

Taking ε = 0 one gets the following.

Corollary 2.4. Let f : X → Y be a nonzero orthogonality preserving mapping and let f ∈
�′. Then there exists γ > 0 such that

∣
∣〈 f (x)| f (y)〉∣∣= γ

∣
∣〈x|y〉∣∣, x, y ∈ X. (2.13)

Then the following corollary follows fromWigner’s theorem.

Corollary 2.5. If f ∈�′ is a nonzero orthogonality preserving mapping, then it is phase-
equivalent with a linear or conjugate-linear isometry multiplied by a positive constant.

3. Stability

For a general information on the stability of functional equations we refer, for example,
to monographs [7, 8] and numerous papers dealing with this subject, also in this journal
(cf., e.g., [9, 10]).

In [5], the following stability result was proved.

Proposition 3.1 (see [5, Theorem 4]). LetX ,Y be inner-product spaces and letX be finite-
dimensional. Then, there exists a continuous function δ : [0,1)→ [0,+∞) with the property
limε→0+ δ(ε)= 0 such that for each linear ε-o.p. mapping f : X → Y , there exists a linear o.p.
mapping T : X → Y such that

‖ f −T‖ ≤ δ(ε)min
{‖ f ‖,‖T‖}. (3.1)

We can now extend the class of linear mappings to the class �′ and consider in this
broader class the stability of the orthogonality preserving property. First, we prove the
following.

Lemma 3.2. Let X be a finite-dimensional inner-product space with an orthonormal basis
{e1, . . . ,en} and let Y be an arbitrary inner-product space. Then, there exists a continuous
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mapping η : [0,1)→ [0,∞) such that limε→0+ η(ε)= 0 and satisfying the following property:
for f : X → Y such that (with ε≥ 0)

∣
∣
∣
∥
∥ f
(
ei
)∥∥2− 1

∣
∣
∣≤ ε, i= 1, . . . ,n; (3.2)

∣
∣〈 f

(
ei
)| f (ej

)〉∣∣≤ ε, i, j = 1, . . . ,n, i �= j; (3.3)

f
(
e1
)
, . . . , f

(
en
)

linearly independent, (3.4)

there exists I : X → Y—a linear isometry such that

∥
∥ f
(
ei
)− I

(
ei
)∥∥≤ η(ε), i= 1, . . . ,n. (3.5)

Proof. This result is hidden in the proof of [5, Theorem 2]. Therefore we present only a
sketch of the proof.

Let f : X → Y satisfy (3.2), (3.3), and (3.4). Define Y0 = lin{ f (e1), . . . , f (en)} ⊂ Y . Let
Hi := lin{ f (e1), . . . , f (ei−1)} for i = 2, . . . ,n. For a subspace V of Y0 by V⊥, we mean the
orthogonal complement of V in Y0 and PVx denotes the orthogonal projection of x onto
V . We define a linear mapping I : X → Y0 by

I
(
e1
)
:= f

(
e1
)

∥
∥ f
(
e1
)∥∥ , I

(
ei
)
:= PH⊥

i
f
(
ei
)

∥
∥PH⊥

i
f
(
ei
)∥∥ , i= 2, . . . ,n. (3.6)

We have 〈I(ei)|I(ej)〉 = δi j for i, j = 1, . . . ,n, whence 〈I(x)|I(y)〉 = 〈x|y〉 for x, y ∈ X . It is
easily seen from (3.2) that

∥
∥I
(
e1
)− f

(
e1
)∥∥= ∣∣1−∥∥ f (e1

)∥∥
∣
∣≤ 1−√1− ε =: η1(ε). (3.7)

Then one can show inductively, exactly like in the proof of [5, Theorem 2] that for i =
1, . . . ,n, there exist continuous mappings ηi : [0,εi)→ R+ (with some εi > 0) such that
limε→0+ ηi(ε)= 0,

∥
∥ f
(
ei
)− I

(
ei
)∥∥≤ ηi(ε), (3.8)

and η1(ε) ≤ ··· ≤ ηn(ε). Thus we have ‖ f (ei)− I(ei)‖ ≤ ηn(ε) for i = 1, . . . ,n and suffi-
ciently small ε (i.e., for ε < εn). On the other hand, for arbitrary ε we have, using (3.2),

∥
∥ f
(
ei
)− I

(
ei
)∥∥≤ ∥∥ f (ei

)∥∥+
∥
∥I
(
ei
)∥∥≤√1+ ε+1=: η′(ε). (3.9)

Therefore, combining ηn (for small ε) with η′ (for greater), we get a mapping η defined
on the whole interval [0,1), continuous, and satisfying the condition limε→0+ η(ε)= 0, for
which the assertion holds.

Note that η depends only on the dimension of X . �

We will use the above result in the proof of our main result.

Theorem 3.3. Let X , Y be inner-product spaces and let X be finite-dimensional. Then,
there exist an ε0 ∈ (0,1) and a continuous function δ : [0,ε0)→ [0,+∞) with the property
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limε→0+ δ(ε) = 0 such that for each ε-o.p. mapping f : X → Y from �′, there exists an o.p.
mapping T : X → Y from �′ such that

∥
∥ f (x)−T(x)

∥
∥≤ δ(ε)min

{∥∥ f (x)
∥
∥,
∥
∥T(x)

∥
∥}, x ∈ X. (3.10)

Proof. Let dimX = n and let η be the mapping from the assertion of Lemma 3.2. Let ε0
be such that for ε < ε0, ε̂ < 1 and η(ε̂ )

√
n < 1. We will show that the mapping

δ(ε) := η(ε̂ )
√
n

1−η(ε̂ )
√
n
, ε ∈ (0,ε0

)
, (3.11)

satisfies the assertion of the theorem.
From now on, we assume that ε < ε0. Let f �= 0 be an ε-o.p. mapping from �′. Thus,

according to Theorem 2.3, there exists a γ > 0 such that (2.10) holds. Define 〈x|y〉′ :=
γ〈x|y〉 for x, y ∈ X—a new inner product in X (which yields a new norm ‖x‖′ = √γ‖x‖
for x ∈ X). Then (2.10) gives

∣
∣
∣
∣〈 f (x)| f (y)〉∣∣−∣∣〈x|y〉′∣∣∣∣≤ ε̂‖x‖′‖y‖′, x, y ∈ X , (3.12)

with ε̂ given by (2.4). Since f ∈�′, there exist σ : X → K with |σ(x)| = 1, x ∈ X and a
linear or conjugate-linear mapping g : X → Y such that f (x)= σ(x)g(x), x ∈ X . It follows
from (3.12) that

∣
∣
∣
∣〈g(x)|g(y)〉∣∣−∣∣〈x|y〉′∣∣∣∣≤ ε̂‖x‖′‖y‖′, x, y ∈ X. (3.13)

For {e1, . . . ,en} being an orthonormal basis in X (with respect to the original inner prod-
uct), we define e′i := (1/√γ)ei (i = 1, . . . ,n) and {e′1, . . . ,e′n} becomes an orthonormal ba-
sis with respect to 〈·|·〉′. It is clear that g satisfies (3.2) and (3.3), that is, |‖g(e′i )‖2 −
1| ≤ ε̂ for i = 1, . . . ,n and |〈g(e′i )|g(e′j)〉| ≤ ε̂ for i, j = 1, . . . ,n, i �= j. We have also (3.4):
g(e′1), . . . ,g(e′n) are linearly independent. Indeed, we have from (3.13) that ‖g(x)‖ = 0
implies x = 0, whence the assumption λ1g(e′1) + ···+ λng(e′n) = 0 and the fact that g is
linear or conjugate-linear would imply λ1e′1 + ···+ λne′n = 0 or λ1e′1 + ···+ λne′n = 0, re-
spectively, a contradiction. From Lemma 3.2 (remember that η depends only on the di-
mension ofX , in particular not on the inner product), we know that there exists I : X → Y
satisfying

〈
I(x)|I(y)〉= 〈x|y〉′ = γ〈x|y〉, x, y ∈ X , (3.14)

and such that

∥
∥g
(
e′i
)− I

(
e′i
)∥∥≤ η(ε̂ ), i= 1, . . . ,n. (3.15)

Let us consider two possible cases.
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(1) g is linear. Then we take J = I and we have for an arbitrary element x = ξ1e
′
1 + ···+

ξne′n ∈ X :

∥
∥g(x)− J(x)

∥
∥=

∥
∥
∥
∥
∥

n∑

i=1
ξig
(
e′i
)−

n∑

i=1
ξiI
(
e′i
)
∥
∥
∥
∥
∥

≤
n∑

i=1

∣
∣ξi
∣
∣
∥
∥g
(
e′i
)− I

(
e′i
)∥∥≤ η(ε̂ )

n∑

i=1

∣
∣ξi
∣
∣

≤ η(ε̂ )
√
n‖x‖′ = η(ε̂ )

√
n
∥
∥I(x)

∥
∥= η(ε̂ )

√
n
∥
∥J(x)

∥
∥.

(3.16)

(2) g is conjugate-linear. Then we take J(x) := ξ1I(e′1) + ···+ ξnI(e′n) for x = ξ1e
′
1 + ···+

ξne′n ∈ X . Note that 〈J(x)|J(y)〉 = 〈x|y〉′ for x, y ∈ X whence, in particular, ‖J(x)‖ =
‖x‖′ = ‖I(x)‖, x ∈ X . We have also

∥
∥g(x)− J(x)

∥
∥=

∥
∥
∥
∥
∥

n∑

i=1
ξig
(
e′i
)−

n∑

i=1
ξiI
(
e′i
)
∥
∥
∥
∥
∥

≤
n∑

i=1

∣
∣ξi
∣
∣
∥
∥g
(
e′i
)− I

(
e′i
)∥∥≤ η(ε̂ )

n∑

i=1

∣
∣ξi
∣
∣

≤ η(ε̂ )
√
n‖x‖′ = η(ε̂ )

√
n
∥
∥I(x)

∥
∥= η(ε̂ )

√
n
∥
∥J(x)

∥
∥.

(3.17)

Thus, in both cases ‖g(x)− J(x)‖ ≤ η(ε̂ )
√
n‖J(x)‖ for x ∈ X . Now we define for x ∈ X

that T(x) := σ(x)J(x). We have then

∣
∣〈T(x)|T(y)〉∣∣= ∣∣〈J(x)|J(y)〉∣∣= ∣∣〈x|y〉′∣∣= γ

∣
∣〈x|y〉∣∣. (3.18)

This shows that T is an o.p. mapping and, obviously, T ∈�′. We have also for x ∈ X that

∥
∥ f (x)−T(x)

∥
∥= ∥∥σ(x)g(x)− σ(x)J(x)

∥
∥= ∥∥g(x)− J(x)

∥
∥

≤ η(ε̂ )
√
n
∥
∥J(x)

∥
∥= η(ε̂ )

√
n
∥
∥T(x)

∥
∥.

(3.19)

Define δ′(ε) := η(ε̂ )
√
n. Then we have ‖ f (x)−T(x)‖ ≤ δ′(ε)‖T(x)‖ for x ∈ X . But we

have also ‖T(x)‖−‖ f (x)‖ ≤ ‖T(x)− f (x)‖ ≤ δ′(ε)‖T(x)‖, whence (since δ′(ε) < 1 for
ε < ε0)

∥
∥ f (x)−T(x)

∥
∥≤ δ′(ε)

1− δ′(ε)
∥
∥ f (x)

∥
∥. (3.20)

Putting δ(ε) := δ′(ε)/(1− δ′(ε)) > δ′(ε) (for ε < ε0), we get

∥
∥ f (x)−T(x)

∥
∥≤ δ(ε)min

{∥∥ f (x)
∥
∥,
∥
∥T(x)

∥
∥}, x ∈ X. (3.21)

�

We reformulate the above theorem, emphasizing the stability property.

Corollary 3.4. Let X , Y be inner-product spaces and let X be finite-dimensional. Then,
for an arbitrary δ > 0, there exists an ε > 0 such that each ε-o.p. mapping f : X → Y from
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the class �′ can be δ-approximated by an o.p. mapping T : X → Y from �′, that is,
∥
∥ f (x)−T(x)

∥
∥≤ δmin

{∥∥ f (x)
∥
∥,
∥
∥T(x)

∥
∥}, x ∈ X. (3.22)

4. Final remarks

Note that tracing the proof of Theorem 3.3, one can also prove the stability of the Wigner
equation under the assumption that X is finite-dimensional and all the considered map-
pings are in the class �′. Namely, one can show that if f ∈�′ and satisfies the inequality

∣
∣
∣
∣〈 f (x)| f (y)〉∣∣−∣∣〈x|y〉∣∣∣∣≤ ε‖x‖‖y‖, x, y ∈ X , (4.1)

then there exists an exact solution T : X → Y of the Wigner equation such that

∥
∥ f (x)−T(x)

∥
∥≤ δ(ε)‖x‖, x ∈ X , (4.2)

where δ is a continuous mapping depending on the dimension of X only and satisfying
the condition limε→0 δ(ε)= 0. We can make a conjecture that the above statement holds
true without assuming that f ∈�′ (as it has been proved for the orthogonality equation
in [5, Theorem 2]). In the simplest case, when dimX = 1, it has been proved in [2, Propo-
sition 2, Theorem 3]. It is also true in the case X = Y =R2 (see [4]). On the other hand,
if it were true that the Wigner equation is stable (in the considered sense) in general, we
would be able to extend Theorem 3.3 on arbitrary Hilbert spaces.

Note that the stability of the Wigner equation has been proved, for X and Y being
arbitrary Hilbert spaces, in the case where the approximate solutions are given as the
solutions of the inequality

∣
∣
∣
∣〈 f (x)| f (y)〉∣∣−∣∣〈x|y〉∣∣∣∣≤ ε‖x‖p‖y‖p, x ∈ Xp, (4.3)

with p �= 1 (Xp = X for p ≥ 0 and Xp = X \ {0} for p < 0). Then, one can show (cf. [2])
that there exists an exact solution T of the Wigner equation such that

∥
∥ f (x)−T(x)

∥
∥≤√ε‖x‖p, x ∈ Xp. (4.4)

Moreover, we have the superstability in the case X = Y =Rn, that is, all solutions of (4.3)
are in fact exact solutions of the Wigner equation. The case p = 1 remains, generally,
unsolved. We refer also to a survey [6] devoted to various aspects of the stability of the
orthogonality and Wigner equations.
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