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1. Introduction

Let Ω be an open bounded set in Rn, n > 2, with a sufficiently regular boundary, and let
A(x) = {ai j(x)}i, j=1,...,n be a real matrix, with coefficients ai j ∈ L∞(Ω). We consider the
following problem:

u∈H2,2∩H1,2
0 (Ω),

n∑

i, j=1
ai j(x)Diju(x)= f (x), a.e. x ∈Ω.

(1.1)

If f ∈ L2(Ω), it is known (see the counterexamples in [6]) that problem (1.1) is not well
posed with the only hypothesis of uniform ellipticity on the matrix A(x): there exists a
positive constant ν̄ such that

n∑

i, j=1
ai j(x)ηiηj ≥ ν̄‖η‖2n, a.e. in Ω, ∀η = (η1, . . . ,ηn

)∈Rn. (1.2)

It is therefore essential, in order to be able to solve Problem (1.1), to assume some hy-
potheses on A(x) stronger than (1.2). In this paper we consider some of these ones and
compare them. More precisely, we will consider the following conditions and show that
they are equivalent.
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Condition 1.1 (the Cordes condition, see [5, 8]). ‖A(x)‖Rn2 �= 0, a.e. inΩ, and there exists
ε ∈ (0,1) such that

(∑n
i, j=1 aii(x)

)2
∑n

i, j=1 a
2
i j(x)

≥ n− 1+ ε, a.e. in Ω. (1.3)

Condition 1.2 (Condition Axp). There exist four real constants σ , γ, δ, p with σ > 0, γ > 0,
δ ≥ 0, γ+ δ < 1, p ≥ 1, and a function a(x)∈ L∞(Ω), with a(x)≥ σ a.e. in Ω, such that

∣∣∣∣∣

n∑

i=1
ξii− a(x)

n∑

i, j=1
ai j(x)ξi j

∣∣∣∣∣

p

≤ γ‖ξ‖pn2 + δ

∣∣∣∣∣

n∑

i=1
ξii

∣∣∣∣∣

p

(1.4)

for all ξ = {ξi j}i, j=1,...,n ∈Rn2 , a.e. in Ω.

When p = 1, the above conditionwill be simply denoted byConditionAx; it was defined
in [10], where it has also been shown to be equivalent to the Cordes condition. If a(x)
is constant on Ω, Conditon Ax is the formulation for linear operators of Campanato’s
condition A, (see [4]), which was defined for nonlinear operators. A particular version of
ConditionAxp, that is, with p = 2 and (x) constant, is stated in [7] for nonlinear operators.

Condition 1.3 (Condition Bx). There exist four real positive real constants σ , c1, c2, c3 and
a function β ∈ L∞(Ω) such that

(i) 0 < c1− c2− c3 < 1,
(ii) β(x)≥ σ a.e. in Ω,

and moreover

β(x)
n∑

i, j=1
ai j(x)ξi j

n∑

i=1
ξii ≥ c1

( n∑

i=1
ξii

)2

− c2

∣∣∣∣∣

n∑

i=1
ξii

∣∣∣∣∣‖ξ‖n2 − c3‖ξ‖2n2 (1.5)

for all ξ = {ξi j}i, j=1,··· ,n ∈Rn2 , a.e. in Ω.

If β(x) is constant on Ω, we will denote this condition as Condition B; it has been
defined by Buică in [2].

The importance of Conditions Axp or Bx is in the fact that they allow to show in a
relatively simple manner, by means of near operators theory (see [4, 9]) or weakly near
operators theory (see [1–3]), that problem (1.1) is well posed. The usefulness of showing
the equivalence among these conditions is due to the fact that to verify whether a matrix
satisfies Condition Axp or Bx is very complicated, even if n= 2, while to verify whether it
satisfies the Cordes condition is much simpler.
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2. A procedure of decomposition for matrices

In this section we consider a short procedure of decomposition of the matrices A and I
which has been developed in [10]. We set

Ω0 =
{
x ∈Ω : there exists b(x)∈R such that b(x)A(x)= I

}
;

Ω1 =Ω\Ω0.
(2.1)

Remark 2.1. Set M = supΩ‖A(x)‖, ν̄ = infΩ‖A(x)‖, accordingly nν̄ ≤ (A(x) | I) ≤ nM.
Then, for each x ∈Ω0, we obtain 1/M ≤ b(x)≤ 1/ν̄.

We can assume measΩ1 > 0, since otherwise as we will see in the following it is easy to
show the equivalence between the above conditions.We set for all x ∈Ω1:W(x)= {B(x) :
B(x)= sI + rA(x), s,r ∈R}; Σx =W(x)∩ S(I ,1) (where S(I ,1)= {B : ‖B− I‖Rn2 < 1}).

Let v1,w2 ∈W(x) be the projections of I on the lines through the zero vector of Rn2

and tangent to Σx. Moreover let v2 be the projection of I on the line through the zero
vector ofRn2 and perpendicular to v1, and letw1 be the projection of I on the line through
the zero vector of Rn2 and perpendicular to w2. In this manner we find two systems of
orthogonal vectors {v1,v2}, {w1,w2}, with vi = vi(x) , wi = wi(x), i = 1,2. Each of them
is a basis in the planeW(x). Then I = v1 + v2 = w1 +w2, and there are L∞ functions ai =
ai(x) and bi = bi(x), i= 1,2, such that

A(x)= a1(x)v1(x) + a2(x)v2(x)= b1(x)w1(x) + b2(x)w2(x). ( As ‖v1‖=‖w2‖=
√
n− 1

and ‖v2‖ = ‖w1‖ = 1, then for i= 1,2, a2i ≤ a21(n− 1)+ a22 = (a1v1 + a2v2 | a1v1 + a2v2)=
(A(x) | A(x)) = ‖A(x)‖2; here if B={bi j}i, j=1,··· ,n and C={ci j}i, j=1,··· ,n, we set (B |C)=∑n

i, j=1 bi jci j .) Set

Qv(x,ν,τ)=
{
ξ ∈Rn2 : ξ = sv1 + tv2, 0 < ν≤ s, t ≤ τ

}
,

Qw(x,ν,τ)=
{
ξ ∈Rn2 : ξ = sw1 + tw2, 0 < ν≤ s, t ≤ τ

}
,

R
(
x,ν0,τ0

)= {ξ ∈Rn2 : ξ = sw2 + tv1, 0 < ν0 ≤ s, t ≤ τ0
}
,

C
(
Σx
)= {v : v ∈W(x) such that ∃z ∈ Σx, ∃t > 0 for which v = tz

}
,

Cρ(x)=
{
v : v ∈ C

(
Σx
)
: ∃t > 0 such that ‖I − tv‖ < ρ

}
, 0 < ρ < 1.

(2.2)

The following propositions are proved in [10].

Proposition 2.2. For all τ,ν > 0 with ν≤ τ, ∃τ0, ν0, 0 < τ0 < ν0, such that for all x ∈Ω1,

Qv(x,ν,τ)∩Qw(x,ν,τ)⊂ R
(
x,ν0,τ0

)
. (2.3)

Proposition 2.3. For all τ0,ν0, 0 < τ0 < ν0, there exists ρ ∈ (0,1) such that for all x ∈Ω1,

R
(
x,ν0,τ0

)⊂ Cρ(x). (2.4)

3. Condition Bx

Proposition 3.1. Condition Ax and Condition Bx are equivalent.
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Proof. We assume that A satisfies Condition Ax. It follows (from (1.4) with p = 1) by
squaring both members

(
I | ξ)2− 2a(x)

(
A | ξ)(I | ξ)≤ γ2‖ξ‖2 + 2γδ|(I | ξ)|‖ξ‖+ δ2

(
I | ξ)2 (3.1)

then

2a(x)
(
A | ξ)(I | ξ)≥ (1− δ2)

(
I | ξ)2− 2γδ|(I | ξ)|‖ξ‖− γ2‖ξ‖2. (3.2)

This is Condition Bx with b(x)= 2a(x), c1 = 1− δ2, c2 = 2γδ, c3 = γ2. �

Conversely, we set A(x)= β(x)A(x) and assume that Condition B holds for A, then we
will show that A also satisfies Condition Ax. To this purpose we write Condition B in the
following form: there exist four real positive constantsM, c1, c2, c3 with 0 < c1− c2− c3 <
1, supx∈Ω‖A(x)‖ ≤M such that

(
A(x) | ξ)(I | ξ)≥ c1

(
I | ξ)2− c2

∣∣(I | ξ)∣∣‖ξ‖− c3‖ξ‖2, (3.3)

for all ξ ∈Rn2 , a.e. in Ω. Then we obtain the thesis by using the decomposition of A and
I stated in Section 2. For this we distinguish two cases: x ∈Ω0 and x ∈Ω1.

If x ∈Ω0, that is, there exists b(x) such that b(x)A(x)= I , then Condition Ax is trivially
true (take in (1.4) a(x)= b(x)).

Instead, if x ∈Ω1, with measΩ1 > 0, we observe that (3.3) holds in particulcular for
ξ ∈W(x). So we can write ξ as a linear combination of the basis {v1(x),v2(x)}. Now, let
t1, t2 ∈ R be such that ξ = t1v1(x) + t2v2(x), accordingly ‖ξ‖2 = (ξ | ξ) = t21(n− 1) + t22,
then

(
A | ξ)= (a1(x)v1 + a2(x)v2 | t1v1 + t2v2

)= a1t1(n− 1)+ a2t2,
(
I | ξ)= (v1 + v2 | t1v1 + t2v2

)= t1(n− 1)+ t2.
(3.4)

Now, (3.4) and the above remarks yield the following form of Condition B: for each ξ ∈
W(x),

(
A | ξ)(I | ξ)= [a1t1(n− 1)+ a2t2][t1(n− 1)+ t2

]

≥ c1
[
t1(n− 1)+ t2

]2− c2
[
t1(n− 1)+ t2

]√
t21(n− 1)+ t22 − c3

[
t21(n− 1)+ t22

]
.

(3.5)

Put

F
(
t1, t2

)= [a1t1(n− 1)+ a2t2
][
t1(n− 1)+ t2

]− c1
[
t1(n− 1)+ t2

]2

+ c2
[
t1(n− 1)+ t2

]√
t21(n− 1)+ t22 + c3

[
t21(n− 1)+ t22

]
.

(3.6)

Remark that

F
(
t1, t2

)≥ 0, ∀(t1, t2
)∈R2 (by (3.5)). (3.7)
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In particular

F
(

1√
n− 1

,0
)
= a1(n− 1)− c1(n− 1)+ c2

√
n− 1+ c3 ≥ 0 (3.8)

from which

a1(x)≥ c1− c2√
n− 1

− c3
n− 1

≥ c1− c2− c3 > 0. (3.9)

While the inequality F(0,1)= a2(x)− c1 + c2 + c3 ≥ 0 implies a2(x)≥ c1− c2− c3 > 0.
In the same way, by taking the system of orthogonal vectors {w1,w2} as basis ofW(x),

it follows that

bi(x)≥ c1− c2− c3 > 0, i= 1,2, x ∈Ω1. (3.10)

So we have shown (see Section 2) that A(x) ∈ Qv(x,ν,τ)∩Qw(x,ν,τ). This implies, by
Proposition 2.2, A(x) ∈ R(x,ν0,τ0), then by Proposition 2.3, A(x) ∈ Cρ(x), which is
equivalent to say that Condition Ax is valid with δ = 0.

Taking into account this proposition and the equivalence between the Cordes condition
and Condition Ax, shown in [10], we have the following.

Corollary 3.2. Condition Bx and the Cordes condition are equivalent.

The following example states thatCondition B is stronger thanConditionAx and there-
fore is also stronger than the Cordes condition.

Example 3.3. Let Ω = Ω1 ∪Ω2, where Ω1 = {(x1,x2) ∈ R2 : 0 < x1 < 1, 0 < x2 ≤ 1} and
Ω2 = {(x1,x2)∈R2 : 0 < x1 < 1, 1 < x2 < 2}, moreover

A(x)=
⎧
⎨
⎩
A1, if x ∈Ω1,

A2, if x ∈Ω2,
A1 =

(
1 0
0 1

)
, A2 =

(
200 −150
−150 200

)
. (3.11)

A is uniformly elliptic on Ω and, since n= 2, this implies the Cordes condition and there-
fore also Condition Ax (see [10]). Nevertheless A does not satisfy Condition B. Indeed, we
consider x ∈Ω1, then A(x)=A1. We observe that if A1 satisfied Condition B, it would be

(
A1 | ξ

)(
I | ξ)≥ c1

(
I | ξ)2− c2

∣∣(I | ξ)∣∣‖ξ‖− c3‖ξ‖2 (3.12)

for each ξ ∈R4, that is,

(
1− c1

)(
I | ξ)2 + c2

∣∣(I | ξ)∣∣‖ξ‖+ c3‖ξ‖2 ≥ 0. (3.13)

The bilinear form Φ(X ,Y) = (1− c1)X2 + c2XY + c3Y 2, where (X ,Y) ∈ R2, is nonneg-
ative if (1− c1)c3 ≥ c22/4. In particular it must hold c1 < 1. Otherwise if A(x) satisfied
Condition B on Ω2 it would be

(
A2 | ξ

)(
I | ξ)≥ c1

(
I | ξ)2− c2

∣∣(I | ξ)∣∣‖ξ‖− c3‖ξ‖2, (3.14)
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where c1, c2, c3 are the above determined constants for the matrix A1. Now we consider
the matrix

ξ =
(
−1 0
−2 0

)
, (3.15)

by replacing it in (3.14), we obtain −100 ≥ c1 − c2
√
5− 5c3, that is, c2(

√
5− 1) + 4c3 ≥

c1 − c2 − c3 + 100; that implies (because by hypothesis it holds c1 > c2 + c3) 4c1 > 4(c2 +
c3)≥ 100, then c1 ≥ 25. This contradicts what we have obtained for A1, that is, c1 < 1.

4. ConditionAxp

We prove equivalence between the Cordes condition and Condition Axp in the same way
used in [10] for the proof of equivalence between Condition A and the Cordes condition.
The first step is following.

Lemma 4.1. Condition Axp with δ = 0 is equivalent to Cordes Condition.

Proof (see also [10]). We can write Condition Axp, if δ = 0, as follows:

∣∣(I − a(x)A(x) | ξ)∣∣≤ γ1/p‖ξ‖ (4.1)

for all ξ ∈ Rn2 , and p ≥ 1. This is just Condition Ax with δ = 0 and, accordingly to what
proved in [10], this is equivalent to the Cordes condition. �

The second step for the achievement of our goal is following.

Lemma 4.2. If A(x) satisfies Condition Axp for some function a(x) and some constants σ , γ,
δ, then it satisfies the same condition with δ = 0 and possibly different σ , γ, a(x).

Proof. We proceed on the line of the proof of [10, Lemma 3.3]. We follow the notations
of Section 2. Condition Axp, with δ �= 0, yields Condition Axp with δ = 0, by replacing the
coefficient a(x) of the first condition with a new coefficient ā(x), defined by

ā(x)=
⎧
⎨
⎩
b(x), if x ∈Ω0,

c(x), if x ∈Ω1.
(4.2)

If x ∈Ω0, then Condition Axp with δ = 0 is trivially satisfied. Moreover, by Remark 2.1,
1/M ≤ b(x)≤ 1/ν̄. Now let x ∈Ω1. We prove the existence of a function c(x) by means of
the decomposition of matrices A(x), I stated in Section 2 and replacing the expressions
obtained in Condition Axp:

∣∣(I − a(x)A(x) | ξ)∣∣p = ∣∣(v1 + v2− a(x)
(
a1v1 + a2v2

) | ξ)∣∣p

= (take ξ = vi, i= 1,2
)

= ∣∣(v1 + v2− a(x)
(
a1v1 + a2v2

) | vi
)∣∣p =

∣∣∣
∥∥vi
∥∥2− a(x)ai

∥∥vi
∥∥2
∣∣∣
p

=∣∣1−a(x)ai
∣∣p∥∥vi

∥∥2p ≤ γ
∥∥vi
∥∥p+δ

(
v1+v2 | vi

)p = γ
∥∥vi
∥∥p+δ

∥∥vi
∥∥2p.
(4.3)
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From this

1
a(x)

⎛
⎝1−

p
√
γ+ δ‖vi‖p
∥∥vi
∥∥

⎞
⎠≤ ai ≤ 1

a(x)

⎛
⎝1+

p
√
γ+ δ

∥∥vi
∥∥p

∥∥vi
∥∥

⎞
⎠ . (4.4)

We observe that

1− (γ+ δ)1/p ≤ 1−
p
√
γ+ δ

∥∥vi
∥∥p

∥∥vi
∥∥ , 1 +

p
√
γ+ δ

∥∥vi
∥∥p

∥∥vi
∥∥ ≤ 1+ (γ+ δ)1/p. (4.5)

Using ‖v1‖ =
√
n− 1, v2 = 1, we can write

γ+ δ
∥∥vi
∥∥p

∥∥vi
∥∥p ≤ γ+ δ, i= 1,2. (4.6)

We conclude, from (4.4), by setting

M1 = sup
Ω

a(x), ν= 1
M1

[
1− (γ+ δ)

1
p

]
, τ = 1

σ

[
1+ (γ+ δ)1/p

]
(4.7)

for all x ∈Ω1, A(x)∈Qv(x,ν,τ). Then by taking ξ = wi (i= 1,2) in Condition Axp, with
similar calculations, we obtain for all x ∈ Ω1, A(x) ∈ Qw(x,ν,τ). Then for all x ∈ Ω1,
A(x)∈Qv(x,ν,τ)∩Qw(x,ν,τ). From Proposition 2.2 it follows that there exist ν0,τ0, with
0 < ν0 < τ0, such that A(x) ∈ R(x,ν0,τ0). By Proposition 2.3 there exists ρ ∈ (0,1) such
that A(x)∈ Cρ(x), that is, there exist c(x) > 0 and ρ ∈ (0,1) such that

∥∥I − c(x)A(x)
∥∥≤ ρ. (4.8)

(This inequality also implies (
√
n− 1)/M < c(x) < (

√
n+1)/ν̄, x ∈Ω1.) �

From Lemmas 4.1 and 4.2 we have the following.

Theorem 4.3. The Cordes condition and Condition Axp are equivalent.

This theorem and Corollary 3.2 imply the following.

Corollary 4.4. Condition Bx and Condition Axp are equivalent.

Theorem 4.3 and Corollary 3.2, by the results proved in [10], imply the following.

Corollary 4.5. Let n= 2. Then every uniformly elliptic symmetric matrix satisfies Condi-
tion Axp and Condition Bx.
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