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We establish a result concerning the existence of solutions for the following implicit in-
tegral equation: g(u(t))= ϕ(t,x0 +

∫ t
0 f (τ,u(τ))dτ), where ϕ is not supposed continuous

with respect to the second variable.
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1. Introduction

Let a > 0, x0 ∈ R and let E be a metric space. Let f : [0,a]× E→]0,+∞[, g : E→ R and
ϕ : [0,a]×R→ R be given functions. The aim of this paper is to establish an existence
theorem for an implicit integral equation of the type

g
(
u(t)

)= ϕ
(
t,x0 +

∫ t

0
f
(
τ,u(τ)

)
dτ
)
, (1.1)

where function ϕ is not supposed continuous with respect to the second variable. The
reason for studying (1.1) arises mainly from the paper [3]. Indeed, [3, Theorem A] gives
the existence of solutions for (1.1) assuming, among the other hypotheses, that ϕ is a
Carathéodory function and that f does not depend on t ∈ [0,a]. We note that, using the
arguments employed in the proof of Theorem A of [3], it seems that it is not possible
neither to weaken the assumption of continuity of the function ϕ in the second variable
nor to assume f dependent on t ∈ [0,a]. The purpose of the present paper goes just in
this direction. Namely, studying (1.1) by means of quite different arguments from that
ones used in [3], we are able to suppose f dependent on t ∈ [0,a] and to remove the
continuity of ϕ in the second variable. In particular, as regards to this latter, our assump-
tions allow ϕ(t,·) to be discontinuous at each point. The abstract framework where (1.1)
is studied is that of set-valued analysis. In particular, we will deduce our result by using a
recent selection theorem formultifunction of two variables (see [2, Theorem 2]) jointly to
[9, Theorem 1].
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2 Integral equations with discontinuous right-hand side

The reader who is interested to arguments related to the subject of the present paper
is referred to [1] where singular integral equations and integral inclusions are studied.

2. Basic definitions and notations

Let X , Y be two nonempty sets. A multifunction F from X into Y is a function from X
into the family of all subsets of Y and we briefly denote it by F : X → 2Y . The set gr(F) :=
{(x, y)∈ X ×Y : y ∈ F(x)} is called graph of F. For each A⊆ Y , by F−(A) we denote the
set {x ∈ X : F(x)∩A �= ∅}. We say that a function f : X → Y is a selection of F if f (x)∈
F(x) for all x ∈ X . If X , Y are topological spaces, a multifunction F : X → 2Y is said lower
semicontinuous (briefly l.s.c.) at x ∈ X if for any y ∈ F(x) and any neighborhood V of y
there exists a neighborhood U of x such that F(z)∩V �= ∅ for all z ∈U . We recall that,
when F is a single-valued function, then lower semicontinuity coincides with the usual
continuity. If (X ,	) is a measurable space and Y is a topological space, a multifunction
F : X → 2Y is said measurable when F−(A)∈	 for any open set A⊆ Y .

For all subset A of a topological space, the symbol int(A) stands for the interior of A.
Also, for all subset A of a normed space, the symbol co(A) stands for the closed convex
hull of A.

IfX is a topological space, we denote by�(X) the Borel σ-algebra ofX . If μ is a positive
regular Borel measures on X , we denote by �μ(X) the completion of the Borel σ-algebra
of X with respect to μ.

A Polish space is a topological spaceX which is separable andmetrizable by a complete
metric.

Finally, if (X ,d) is a metric space, we put B(x,r) = {y ∈ X : d(x, y) < r} for all r > 0
and x ∈ X .

We close this section stating, for the reader’s convenience, the following results (the
first two already quoted in the introduction) which will be used in the proof of our main
result.

Theorem 2.1 (see [2, Theorem 2]). Let T , X be two Polish spaces and let μ, ψ be two
positive regular Borel measures on T and X , respectively, with μ finite and ψσ-finite. Let S be
a separable metric space, F : T ×X → 2S a multifunction with non empty complete values,
and let E ⊆ X be a given set. Finally, let assume that:

(i) F is �μ(T)⊗�(X)-measurable;
(ii) for a.a. t ∈ T , one has that {x ∈ X : F(t,·) is not lower semicontinuous at x} ⊆ E.

Then, there exists a selection φ : T ×X → S of F and a negligible set R⊆ X such that
(i)′ φ(·,x) is �μ(T)-measurable for each x ∈ X \ (E∪R);
(ii)′ for a.a. t ∈ T , one has that {x ∈ X : φ(t,·) is not continuous at x} ⊆ E∪R.

Theorem 2.2 (see [9, Theorem 1]). Let (T ,	,μ) be a finite non-atomic complete measure
space; V a non-empty set; (X ,‖ · ‖X), (Y ,‖ · ‖Y ) two separable real Banach spaces, with
Y finite-dimensional; p,q,s ∈ [1,+∞], with q < +∞ and q ≤ p ≤ s; Ψ : V → Ls(T ,Y) a
surjective and one-to-one operator; Φ : V → L1(T ,X) an operator such that, for every v ∈
Ls(T ,Y) and every sequence {vn} in Ls(T ,Y) weakly converging to v in Lq(T ,Y), the se-
quence {Φ(Ψ−1(vn))} converges strongly to {Φ(Ψ−1(v))} in L1(T ,X); χ : [0,+∞[→ [0,+∞]
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a non-decreasing function such that

ess sup
t∈T

∥
∥Φ(u)(t)

∥
∥
X ≤ χ

(∥
∥Ψ(u)

∥
∥
Lp(T ,Y)

)
(2.1)

for all u∈V .
Further, let F : T ×X → 2Y be a multifunction, with non-empty closed convex values,

satisfying the following conditions:
(i) for μ-almost every t ∈ T , the multifunction F(t,·) has closed graph;
(ii) the set {x ∈ X : the multifunction F(·,x)is 	−measurable} is dense in X ;
(iii) there exists a number r > 0 such that the function t→ sup‖x‖X≤χ(r)d(ϑY ,F(t,x)) be-

longs to Ls(T) and its norm in Lp(T) is less or equal to r.
Under such hypotheses, there exists ũ∈V such that

Ψ(ũ)(t)∈ F
(
t,Φ

(
ũ
)
(t)
)

μ− a.e. in T ,
∥
∥Ψ(ũ)(t)

∥
∥
Y ≤ sup

‖x‖X≤χ(r)
d
(
ϑY ,F(t,x)

)
μ− a.e. in T. (2.2)

Theorem 2.3 (see [8, Theorem 2.4]). Let Σ be a connected and locally connected topological
space, I a real interval with extremes a, b and f : Σ→ I a continuous function such that
f −1(t)=∅ for all t ∈]a,b[. Then, there exists a set Σ∗ ⊆ Σ such that

(i) the set f −1(t)∩Σ∗ is non-empty and closed for all t ∈ I ;
(ii) the function f|Σ∗ is open.

Theorem 2.4 (see [5, Proposition 2]). Let I ⊂ R be an interval, ψ : I ×Rn → Rn a given
function and D a countable and dense subset of Rn. Assume that:

(i) for each t ∈ I , the function ψ(t,·) is bounded;
(ii) for each x ∈D, the function ψ(·,x) is measurable.

Let H : I ×Rn→Rn be the multifunction defined by

H(t,x)=
⋂

m∈N
co

⎛

⎝
⋃

y∈P,|y−x|≤1/m

{
ψ(t, y)

}
⎞

⎠. (2.3)

Then, one has:
(a) H has nonempty closed convex values;
(b) for all x ∈R, the multifunction H(·,x) is measurable;
(c) for each t ∈ I , the multifunction H(t,·) has closed graph;
(d) if t ∈ T and ψ(t,·) is continuous at x ∈Rn, then H(t,x)= {ψ(t,x)}.

3. Main result

Before proving our main result, we need the following two well known lemmas. We give
their proofs for sake of clearness.

Lemma 3.1. Let (T ,	) be a measurable space, X be a separable metric space and Y a topo-
logical space. Let F : T ×X → 2Y be a given multifunction. Assume that

(a) F(t,·) is l.s.c for all t ∈ T ;
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(b) there exists a countable dense subset D of X such that F(·,x) is measurable for all
x ∈D.

Then, F is 	⊗�(X)-measurable.

Proof. Let Ω be an open subset of Y . It is easily checked that the following equality

F−(Ω)=
⋂

k∈N

⋃

x∈D

{
t ∈ T : F(t,x)∩Ω

}×B(x,1/k) (3.1)

holds. Thus, by assumption (a) and (b) one has F−(Ω)∈ 	⊗�(X) and conclusion fol-
lows. �

Lemma 3.2. Let (T ,	,μ) be a complete finite measure space, X be a Polish space, Y , Z be
two topological spaces, F : T ×X → Z and H : T ×Y → 2X be two multifunctions. Assume
that

(a) F is 	⊗�(X)-measurable,
(b) H is 	⊗�(Y)-measurable and has closed values.

Then, the multifunction G defined by G(t, y) = F(t,H(t, y)) for all (t, y) ∈ T × Y is 	⊗
�(Y)-measurable.

Proof. Let Ω be an open subset of Z. Then, F−(Ω) is 	 ⊗�(X)-measurable. Hence,
the set

A= {(t, y,x)∈ T ×Y ×X : (t,x)∈ F−(Ω)
}

(3.2)

is 	⊗�(Y)⊗�(X)-measurable. Moreover, owing to [7, Theorem 3.5], gr(H) is 	⊗
�(Y)⊗�(X)-measurable as well and, consequently, so is the set A∩ gr(H). Now, it is
easily seen that

G−(Ω)= PT×Y
(
gr(H)∩A

)
, (3.3)

where PT×Y denotes the projection on T × Y . Thus, by [4, Theorem III.23], one has
G−(Ω)∈	⊗�(Y) from which the conclusion follows. �

Now, we state and prove the main result. In the sequel we will denote by �([0,a]) the
Lebesgue σ-algebra of [0,a] and measurability, unless explicitly specified, will be under-
stood with respect to this latter. Also, we denote bym the Lebesgue-measure on �([0,a]).

Theorem 3.3. Let E be a compact connected and locally connected metric space and x0 ∈R.
Let f : [0,a]× E → R, g : E → R and ϕ : [0,a]×R→ R be given functions. Assume that
there exists a function ϕ1 : [0,a]×R→R such that

(i) there exist S,S1 ⊆R withm(S)=m(S1)= 0 and S1 closed, such that {x ∈R : ϕ1(t,·)
is discontinuous at x} ⊆ S1 and {x ∈R : ϕ1(t,x) �= ϕ(t,x)} ⊆ S for a.a. t ∈ [0,a];

(ii) ϕ1(·,x) is measurable for a.a. x ∈R;
(iii) ϕ1({t}× (R \ S1))⊆ g(E) for a.a. t ∈ [0,a].

Moreover, assume that
(iv) g is continuous and int(g−1(r))=∅ for all r ∈ int(g(E));
(v) f (t,·) is continuous for a.a. t ∈ [0,a] and f (·,z) is measurable for all z belonging to

a countable dense subset of E;
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(vi) there exist α : [0,a]→]0,+∞[ and β ∈ L1([0,a]) such that α(t)≤ f (t,z) ≤ β(t) for
a.a. t ∈ [0,a] and z ∈ g−1(ϕ1({t}× (R \ S1))).

Then, there exists a measurable function u : [0,a]→ E which solves (1.1).

Proof. Without loss of generality, we can suppose that conditions (i), (iii), (v) and (vi)
hold for all t ∈ [0,a]. Since E is a compact metric space, then E is separable. Hence, in
particular, E is a Polish space. By condition (ii), we can find a countable set P ⊆ R \ S1
dense in R such that

ϕ1(·,x) is measurable ∀x ∈ P. (3.4)

Moreover, taking into account of (iv) and hypotheses on E, we can apply Theorem 2.3.
Therefore, there exists a set Y ⊆ [a,+∞[ such that g−1(σ)∩Y is nonempty and closed in
E (hence compact because E is like) for each σ ∈ g(E) and the multifunction g−1(·)∩Y
is l.s.c. in g(E). Now, fix x ∈ P and put

ϕ̂(t,x)=
⎧
⎨

⎩
ϕ1(t,x) if (t,x)∈ [0,a]× (R \ S1

)
,

ϕ1(t,x) if (t,x)∈ [0,a]× S1.
(3.5)

By Lemma 3.1 we have that ϕ̂ is �([0,a])⊗�(R)-measurable. Further, being S1 closed,
one has

{
x ∈R : ϕ̂(t,·) is discontinuous at x}⊆ S1 (3.6)

for a.a. t ∈ [0,a]. At this point, we put

F(t,x)= f
(
t,g−1

(
ϕ̂(t,x)

)∩Y
)

(3.7)

for all (t,x) ∈ [0,a]×R. From the definition of ϕ̂ and condition (iii) F has nonempty
values. Being g−1(ϕ̂(t,x))∩Y compact and f (t,·) continuous for all t ∈ [0,a] and x ∈R,
we also have that F has, in particular, closed values inR (actually, these latter are compact
as well). Moreover, observe that

{
x ∈R : F(t,·) is not l.s.c. at x}⊆ S1. (3.8)

Now, condition (v) and Lemma 3.1 imply that f is �([0,a])⊗�(E)-measurable. So,
by Lemma 3.2, we have that F is �([0,a])⊗�(E)-measurable. Therefore, we can ap-
ply Theorem 2.1. Then, there exist a selection ψ of F and a set D ⊂ R having measure 0
such that

{
x ∈R : ψ(t,·) is discontinuous at x}⊆ S1∪D,

ψ(·,x) is measurable ∀x ∈R \ (S1∪D).
(3.9)

Hence, ψ(t,·) turns out bounded for all t ∈ [0,a]. Consequently, the multifunction H :
[0,a]×R→ 2R defined by setting

H(t,x)=
⋂

m∈N
co

⎛

⎝
⋃

y∈P,|y−x|≤1/m

{
ψ(t, y)

}
⎞

⎠ (3.10)
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satisfies properties (a), (b), (c), (d) of Theorem 2.4. In particular one has H(t,x) =
{ψ(t,x)} for a.a. t ∈ I and all x ∈ R \ S1 ∪D. Moreover, by the above construction, it
follows that

H(t,x)⊆ [α(t),β(t)] ∀x ∈R, t ∈ [0,a]. (3.11)

Now, we want to apply Theorem 2.2 to the multifunction H , taking T = [0,a], X = Y =
R, s = q = p = 1, V = L1([0,a]), Ψ(u) = u, Φ(u)(t) = x0 +

∫ t
a u(τ)dτ, χ ≡ +∞ and r =∫ a

0 |β(t)|dt. To this aim, we observe the following facts
(j) Φ(L1([0,a]))⊆ AC([0,a]), where AC([0,a]) is the set of all absolutely continuous

function on [0,a];
(jj) let {vn} be a sequence in L1([0,a]) weakly converging to v ∈ L1([0,a]). Then, being

Φ affine, one has that Φ(vn) is pointwise converging in [0,a]. Since, in particular, {vn}
bounded in L1([0,a]), we easily deduce that |Φ(vn)(t)| ≤ supn∈N

∫ a
0 |vn(τ)|dτ + |x0| < +∞

for a.a. t ∈ [0,a]. Hence, applying the dominated convergence theorem, we have that
{Φ(vn)} converges strongly in L1([0,a]);

(jjj) the function t ∈ [0,a]→ supx∈R |H(t,x)| is measurable (see, for instance, [9, page
262]) and, by (3.11), it belongs to L1([0,a]) and its norm in this space is less or equal to∫ a
0 |β(t)|dt.
Consequently, all the assumptions of Theorem 2.2 are fulfilled. Hence, there exists v0 ∈

L1([0,a]) such that

v0(t)∈H
(
t,x0 +

∫ t

0
v0(τ)dτ

)
for a.a. t ∈ [0,a]. (3.12)

Put u0(t) = x0 +
∫ t
0 v0(τ)dτ for every t ∈ [0,a]. By (3.11) and since α(t) > 0 for all t ∈

[0,a], we have u′0(t) > 0 for a.a. t ∈ [0,a]. So, by [10, Theorem 2], the function u−10 is ab-
solutely continuous. Thus, by [6, Theorem 18.25], the set Σ= u−10 (S∪ S1∪D) has mea-
sure 0. Now, if t ∈ [0,a] \Σ, one has u0(t)∈ R \ (S∪ S1∪D). Hence, by property (d) of
multifunctionH , by (3.12), and taking into account of the construction of ϕ̂, it turns out

u′0(t)∈ f
(
t,g−1

(
ϕ
(
t,u0(t)

)))
for a.a. t ∈ [0,a]. (3.13)

At this point, we put

Γ(t)= f (t,·)−1(u′0(t)
)∩ g−1

(
ϕ
(
t,u0(t)

))
(3.14)

for all t ∈ [0,a]. Then, Γ has closed values and, by (3.13), they are non empty. Now,
observe that the sets

{
(t,x)∈ [0,a]×E : f (t,x)= u′0(t)

}
,

{
(t,x)∈ [0,a]×E : g(x)= ϕ

(
t,u0(t)

)} (3.15)

are �([0,a])⊗�(E)-measurable. Since these latter are the graphs of the multifunctions

t ∈ [0,a]−→ f (t,·)−1(u′0(t)
)
,

t ∈ [0,a]−→ g−1
(
ϕ
(
t,u0(t)

))
,

(3.16)
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respectively, then by [7, Theorem 3.5 and Corollary 4.2], we have that the multifunction
Γ is measurable. Hence, by Kuratowski and Ryll-Nardzewski theorem, there exists a mea-
surable function u : [0,a]→ E such that u(t) ∈ Γ(t) for a.a. t ∈ [0,a]. In particular, by
(3.13), we have f (t,u(t))= u′0(t) and g(u(t))= ϕ(t,u0(t)) for a.a. t ∈ [0,a]. From this we
deduce that

g
(
u(t)

)= ϕ

(

t,x0 +
∫ t

0
f
(
τ,u(τ)

)
dτ

)

for a.a. t ∈ [0,a]. (3.17)

So, the proof is complete. �

Remark 3.4. The compactness of the metric space E is used in the proof of Theorem 3.3
in order that F has closed values. Nevertheless, if E is a connected and locally connected
Polish space only, we can get that F has closed values assuming, in addiction, that f (t,·)
is a closed function for a.a. t ∈ [0,a], namely having the following property: f (t,C) is a
closed set in E for all closed set C in R and for a.a. t ∈ [0,a].

Example 3.5. We present a simple example of application of Theorem 3.3 where the func-
tion ϕ is discontinuous at each point with respect to the second variable:

let E = {x ∈ Rn : ‖x‖n ≤ 1} be the unit ball of Rn; x0 = 0 and a = 1. Define g(x) =
sin(π‖x‖n) for all x ∈ E. It is immediate to check that g(E)= [0,1] and that int(g−1(r))=
∅ for all r ∈ [0,1]. Also define ϕ(t,x) = α(t)χR\Q(x) where α is a measurable function
with α(t)∈]0,1] for a.a. t ∈ [0,1] and χR\Q is the characteristic function ofR \Q: χR\Q(x)
= 1 if x ∈ R \Q and χR\Q(x) = 0 if x ∈Q. Note that for a.a. t ∈ [0,1], ϕ(t,·) is discon-
tinuous at each point of R. With this choice of ϕ we see that conditions (i), (ii), (iii) are
satisfied if we take ϕ1(t,x)= α(t) for all (t,x)∈ [0,1]×R. So, applying Theorem 3.3, we
have that for every Carathéodory function f : [0,1]×E→]0,+∞[ such that supx∈E f (·,x)
∈ L1([0,1]), there exists u∈ L∞([0,1]) such that

sin
(
π
∥
∥u(t)

∥
∥
n

)
= α(t)χR\Q

(∫ t

0
f
(
τ,u(τ)

)
dt
)

for a.a. t ∈ [0,1]. (3.18)
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