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We characterize the pairs of weights (v,w) for which the Hardy-Steklov-type operator

T f (x)= g(x)
∫ h(x)
s(x)K(x, y) f (y)dy applies L

p(v) into weak-Lq(w), q < p, assuming certain
monotonicity conditions on g, s, h, and K .
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1. Introduction

Let us consider the Hardy-Steklov-type operator defined by

T f (x)= g(x)
∫ h(x)

s(x)
K(x, y) f (y)dy, f ≥ 0, (1.1)

where g is a nonnegative measurable function, s and h are continuous and increasing
functions (x < y⇒ s(x)≤ s(y), h(x)≤ h(y)) defined on an interval (a,b) such that s(x)≤
h(x) for all x ∈ (a,b), and the kernel K(x, y) defined on {(x, y) : x ∈ (a,b) and s(x)≤ y ≤
h(x)} satisfies

(i) K(x, y)≥ 0,
(ii) it is increasing and continuous in x and decreasing in y,
(iii) K(x,z) ≤ D[K(x,h(y)) +K(y,z)] for y ≤ x and s(x) ≤ z ≤ h(y), where the con-

stant D > 1 is independent of x, y, and z.
Gogatishvili and Lang [3] characterized the pairs of weights for the strong- and weak-

type (p,q) inequalities for the operator T in the case p ≤ q. Actually, in [3] the au-
thors deal with Banach functions spaces with some extra condition. On the other hand,
Chen and Sinnamon [2] have characterized the weighted strong-type inequality for 1 < p,
q <∞ in terms of a normalizing measure. In both papers, they work with more general
functions s, h, and K .
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2 Generalized Hardy operators

The goal of this paper is to characterize the weighted weak-type inequalities in the case
q < p. It is well known that strong-type inequalities for the operator T can be deduced
directly from the corresponding ones for g(x)= 1, but this is not the case when we work
with weak-type inequalities. In [5] it was characterized the weighted weak-type inequality
in the case q < p for the operator T when s ≡ 0, h(x) = x, and K ≡ 1. The result was
obtained for monotone functions g. In fact, in the proof of the result the authors used the
condition

inf
x∈E

g(x)= inf
x∈(α,β)

g(x) (1.2)

for any bounded set E, where α= inf E and β = supE. This property clearly holds if g is
monotone or if there exists x0 such that g is increasing in (a,x0] and decreasing in [x0,b).
In our result, we will assume (1.2) and the same condition for the function g(x)K(x, y),
that is, for all y and every bounded set Ey ⊂ {x : s(x)≤ y ≤ h(x)},

inf
x∈Ey

[
g(x)K(x, y)

]= inf
x∈(αy ,βy)

[
g(x)K(x, y)

]
, (1.3)

where αy = inf Ey and βy = supEy .
Examples of Hardy-Steklov-type operators are the modified Riemann-Liouville oper-

ators defined for α > 0 and η ∈ R as xη
∫ x
0 (x− y)α f (y)dy or the more general version

xη
∫ Bx
Ax (x− y)α f (y)dy, with 0 < A < B ≤ 1 and x > 0; the modified logarithmic kernel op-

erators xη
∫ x
0 log

β(x/y) f (y)dy, with β > 0 and η ∈R; the Steklov operator T f (x)= ∫ x+1
x−1 f ;

and the Riemann-Liouville operators, with general variable limits
∫ h(x)
s(x) (x− y)α f (y)dy,

with s(x)≤ h(x)≤ x. This last operator was studied in [6] in the case −1 < α < 0.
As far as we know, our result is new even for the particular cases T f (x)= g(x)

∫ x
0 K(x,

y) f (y)dy and T f (x) = ∫ h(x)
s(x) K(x, y) f (y)dy. For this last operator, conditions (1.2) and

(1.3) hold trivially because K(x, y) is increasing in x.
The notation is standard: w(E) denotes the integral

∫
E w; if 1 < p <∞, then p′ denotes

the conjugate exponent of p defined by 1/p+1/p′ = 1, and Lq,∞(w) will denote the space
of measurable functions f such that

‖ f ‖q,∞;w = sup
λ>0

λ
(
w
({
x :

∣
∣ f (x)

∣
∣ > λ

}))1/q
<∞. (1.4)

2. Statement and proof of the result

In the next theorem we state the result of this article.

Theorem 2.1. Let s and h be increasing continuous functions defined on an interval (a,b)
satisfying s(x)≤ h(x) for x ∈ (a,b). Let K(x, y) be defined on {(x, y) : x ∈ (a,b) and s(x)≤
y ≤ h(x)} satisfying (i), (ii), (iii) and let g be a nonnegative function defined on (a,b) satis-
fying (1.2) and (1.3). Let q, p, and r be such that 0 < q < p, 1< p<∞, and 1/r=1/q−1/p.
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Let w and v be nonnegative measurable functions defined on (a,b) and (s(a),h(b)), respec-
tively. The following statements are equivalent.

(i) There exists a positive constant C such that

[
w
({
x ∈ (a,b) : T f (x) > λ

})]1/q ≤ C

λ

(∫ h(b)

s(a)
f pv

)1/p

(2.1)

for all f ≥ 0 and all positive real number λ.
(ii) The functions

Φ1(x)= sup

{

inf
t∈(c,d)

[
g(t)K

(
t,h(c)

)]
(∫ d

c
w
)1/p(∫ h(c)

s(d)
v1−p

′
)1/p′}

, (2.2)

where the supremum is taken over all the numbers c, c, and d such that a≤ c ≤ c < x < d ≤ b
and s(d)≤ h(c) and

Φ2(x)= sup

{(
inf

t∈(c,d)
g(t)

)(∫ d

c
w
)1/p(∫ h(c)

s(d)
Kp′(c, y)v1−p

′
(y)dy

)1/p′}

, (2.3)

where the supremum is taken over all the numbers c and d such that a≤ c < x < d ≤ b and
s(d)≤ h(c), belong to Lr,∞(w).

Let us observe that if g ≡ 1, we get that Φ1 ≤ Φ2. Then, in this case, the weighted
weak-type inequality (i) is equivalent to Φ2 ∈ Lr,∞(w). On the other hand, if K ≡ 1, then
Φ1 =Φ2 and we recover [1, Theorem 1.9].

To prove the theorem we will use the following lemma (see [1, Lemma 1.4] for the
proof).

Lemma 2.2. Let a and b be real numbers such that a < b. Let s,h : (a,b)→ R be increas-
ing and continuous functions such that s(x) ≤ h(x) for all x ∈ (a,b). Let {(aj ,bj)} j be the
connected components of the open set Ω= {x ∈ (a,b) : s(x) < h(x)}. Then

(a) (s(aj),h(bj))∩ (s(ai),h(bi))=∅ for all j �= i,

(b) for every j there exists a (finite or infinite) sequence {mj
k} of real numbers such that:

(i) aj ≤m
j
k < m

j
k+1 ≤ bj for all k and j;

(ii) (aj ,bj)=
⋃

k(m
j
k,m

j
k+1) a.e. for all j;

(iii) s(m
j
k+1)≤ h(m

j
k) for all k and j and s(m

j
k+1)= h(m

j
k) if aj < m

j
k < m

j
k+1 < bj .

Proof of Theorem 2.1. (i)⇒(ii). First, we will prove that Φ1 ∈ Lr,∞(w), that is, we will
prove that

sup
λ>0

λ
[
w
({
x ∈ (a,b) :Φ1(x) > λ

})]1/r
<∞. (2.4)

Let λ > 0 and Sλ = {x ∈ (a,b) :Φ1(x) > λ}. For every z ∈ Sλ there exist cz, cz, and dz, with
a≤ cz ≤ cz < z < dz ≤ b such that s(dz)≤ h(cz) and

λ < inf
t∈(cz ,dz)

[
g(t)K

(
t,h

(
cz
))](

∫ dz

cz
w
)1/p(∫ h(cz)

s(dz)
v1−p

′
)1/p′

. (2.5)
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Let�⊂ Sλ be a compact set. Then there exist (cz1 ,dz1 ), . . . , (czk ,dzk ) which cover�.Wemay
assume without loss of generality that

∑k
j=1 χ(cz j ,dzj ) ≤ 2χ⋃k

j=1(cz j ,dzj )
. Let f : (s(a),h(b))→

R defined by

f (y)=

⎛

⎜
⎜
⎝

k∑

j=1

v−p′(y)χ(s(dzj ),h(cz j ))(y)
(
inf t∈(cz j ,dzj )

[
g(t)K

(
t,h

(
czj
))]∫ h(cz j )

s(dzj )
v1−p′

)p

⎞

⎟
⎟
⎠

1/p

. (2.6)

If z ∈ (czj ,dzj ), then (s(dzj ),h(czj )) ⊂ (s(z),h(z)) and since K(z, y) is decreasing in y, we
get that

T f (z)≥ g(z)
∫ h(cz j )

s(dzj )
K(z, y) f (y)dy ≥ g(z)K

(
z,h

(
czj
))
∫ h(cz j )

s(dzj )
f (y)dy ≥ 1. (2.7)

Therefore,
⋃k

j=1(czj ,dzj )⊂ {x ∈ (a,b) : T f (x)≥ 1}. Applying the weighted weak-type in-
equality and (2.5) we obtain

∫

⋃k
j=1(cz j ,dzj )

w ≤ C

⎛

⎜
⎜
⎝

k∑

j=1

∫ h(cz j )
s(dzj )

v1−p′

(
inf t∈(cz j ,dzj )

[
g(t)K

(
t,h

(
czj
))]∫ h(cz j )

s(dzj )
v1−p′

)p

⎞

⎟
⎟
⎠

q/p

= C

⎛

⎜
⎜
⎝

k∑

j=1

1

inf t∈(cz j ,dzj )
[
g(t)K

(
t,h

(
czj
))]p(∫ h(cz j )

s(dzj )
v1−p′

)p−1

⎞

⎟
⎟
⎠

q/p

≤ C

λq

( k∑

j=1

∫ dzj

cz j

w

)q/p

≤ C

λq

(∫

⋃k
j=1(cz j ,dzj )

w
)q/p

.

(2.8)

The last inequality implies that λ(
∫
�w)1/r ≤ C for any compact set �⊂ Sλ which implies

(2.4). The proof of (2.4) for the function Φ2 follows in a similar way applying (i) to the
function

f (y)=

⎛

⎜
⎜
⎝

k∑

j=1

Kp′(czj , y
)
v−p′(y)χ(s(dzj ),h(cz j ))(y)

(
inf t∈(cz j ,dzj ) g(t)

∫ h(cz j )
s(dzj )

Kp′
(
czj , t

)
v1−p′(t)dt

)p

⎞

⎟
⎟
⎠

1/p

. (2.9)

(ii)⇒(i). Let {aN}∞N=1 and {bN}∞N=1 be sequences in (a,b) such that

lim
N→∞

aN = a, lim
N→∞

bN = b. (2.10)
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In order to prove (i) it will suffice to show that

w
({
x ∈ (

aN ,bN
)
: T f (x) > λ

})≤ C

λq
(2.11)

for all nonnegative function f bounded with compact support such that
∫ h(b)
s(a) f pv = 1

and with a constant C independent of N , λ, and f .
Let us fixN ∈N. Observe that ifOλ = {x ∈ (aN ,bN ) : T f (x) > λ} andU = {x ∈ (a,b) :

Φ1(x)≤ λq/r ,Φ2(x)≤ λq/r}, then

w
(
Oλ

)≤w
(
Oλ∩U

)
+w

({
x ∈ (a,b) :Φ1(x) > λq/r

})

+w
({
x ∈ (a,b) :Φ2(x) > λq/r

})

≤w
(
Oλ∩U

)
+

∥
∥Φ1

∥
∥r
r,∞;w

λq
+

∥
∥Φ2

∥
∥r
r,∞,;w

λq
.

(2.12)

Therefore, the implication will be proved if we establish that w(Oλ ∩U) ≤ C/λq. Let

(aj ,bj) and {mj
k} be the sequences given by the lemma for the set ΩN = {x ∈ (aN ,bN ) :

s(x) < h(x)}. Then, for fixed j,

w
(
Oλ∩U ∩ (

aj ,bj
))=

∑

k

w
(
Oλ∩U ∩ (

m
j
k,m

j
k+1

))
. (2.13)

If x ∈ (m
j
k,m

j
k+1), since s(m

j
k+1)≤ h(m

j
k), we get that

T f (x)= g(x)
∫ s(m

j
k+1)

s(x)
K(x, y) f (y)dy + g(x)

∫ h(m
j
k)

s(m
j
k+1)

K(x, y) f (y)dy

+ g(x)
∫ h(x)

h(m
j
k)
K(x, y) f (y)dy = T1

j,k f (x) +T2
j,k f (x) +T3

j,k f (x).

(2.14)

It is clear that

w
(
Oλ∩U ∩ (

m
j
k,m

j
k+1

))≤w
(
E1)+w

(
E2)+w

(
E3), (2.15)

where E� = {x ∈ (m
j
k,m

j
k+1)∩U : T�

j,k f (x) > λ/3}, � = 1,2,3.
First, notice that the property (iii) of the kernel K implies

K(x, y)≤D
[
K
(
x,h

(
m

j
k

))
+K

(
m

j
k, y

)]
(2.16)

for x ∈ (m
j
k,m

j
k+1) and y ∈ (s(m

j
k+1),h(m

j
k)).
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In order to estimate w(E1) let us observe that

T1
j,k f (x)≤Dg(x)K

(
x,h

(
m

j
k

))
∫ s(m

j
k+1)

s(x)
f (y)dy

+Dg(x)
∫ s(m

j
k+1)

s(x)
K
(
m

j
k, y

)
f (y)dy =DT1,1

j,k f (x) +DT1,2
j,k f (x).

(2.17)

Then, w(E1)≤w(E1,1) +w(E1,2), where

E1,� =
{
x ∈ (

m
j
k,m

j
k+1

)∩U : T1,�
j,k f (x) >

λ

6D

}
, � = 1,2. (2.18)

Let us select an increasing sequence {xi}i, xi ∈ (m
j
k,m

j
k+1), such that x0 =m

j
k and

∫ s(m
j
k+1)

s(xi)
f =

∫ s(xi)

s(xi−1)
f . (2.19)

Let E1,1
i = E1,1 ∩ (xi,xi+1), α1i = inf E1,1

i , and β1i = supE1,1
i . If E1,1

i �= ∅, let t ∈ E1,1
i . Using

the property of the sequence {xi}i we have

λ

6D
≤ 4g(t)K

(
t,h

(
m

j
k

))
∫ s(xi+2)

s(xi+1)
f . (2.20)

Now, by using (1.3) and Hölder inequality we get

λ

6D
≤ 4 inf

t∈(α1i ,β1i )

[
g(t)K

(
t,h

(
m

j
k

))]
(∫ s(xi+2)

s(xi+1)
v1−p

′
)1/p′(∫ s(xi+2)

s(xi+1)
f pv

)1/p

. (2.21)

Now, multiplying by (
∫ β1i
α1i
w)1/p and using the inequalities s(β1i ) ≤ s(xi+1) and s(xi+2) ≤

s(m
j
k+1)≤ h(m

j
k) we get that

λ

6D

(∫ β1i

α1i

w
)1/p

≤ 4Φ1(x)
(∫ s(xi+2)

s(xi+1)
f pv

)1/p

≤ 4λq/r
(∫ s(xi+2)

s(xi+1)
f pv

)1/p

, (2.22)

where x is any element of E1,1
i ; and summing up in i we obtain

w
(
E1,1)≤ C

λq

∫ s(m
j
k+1)

s(m
j
k)

f pv. (2.23)

To estimate w(E1,2), we select an increasing sequence {zi}i, zi ∈ (m
j
k,m

j
k+1) such that z0 =

m
j
k and

∫ s(m
j
k+1)

s(zi)
K
(
m

j
k, y

)
f (y)dy =

∫ s(zi)

s(zi−1)
K
(
m

j
k, y

)
f (y)dy. (2.24)
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As before, let E1,2
i = E1,2 ∩ (zi,zi+1), α2i = inf E1,2

i , and β2i = supE1,2
i . If E1,2

i �= ∅, then
Hölder inequality and (1.2) give

λ

6D
≤ 4 inf

t∈(α2i ,β2i )
g(t)

(∫ s(zi+2)

s(zi+1)
Kp′(m

j
k, t
)
v1−p

′
(t)dt

)1/p′(∫ s(zi+2)

s(zi+1)
f pv

)1/p

. (2.25)

Notice that s(β2i )≤ s(zi+1), m
j
k ≤ α2i , and s(zi+2)≤ s(m

j
k+1)≤ h(m

j
k)≤ h(α2i ). Then multi-

plying by (
∫ β2i
α2i
w)1/p both members of the above inequality we get

λ

6D

(∫ β2i

α2i

w
)1/p

≤ 4Φ2(x)
(∫ s(zi+2)

s(zi+1)
f pv

)1/p

≤ 4λq/r
(∫ s(zi+2)

s(zi+1)
f pv

)1/p

, (2.26)

where x is any element of E1,2
i . Now, summing up in i and putting together with (2.23)

we obtain

w
(
E1)≤ C

λq

∫ s(m
j
k+1)

s(m
j
k)

f pv. (2.27)

To estimate w(E2) we proceed in a similar way. In fact, by using (2.16) we get that

T2
j,k f (x)≤Dg(x)K

(
x,h

(
m

j
k

))
∫ h(m

j
k)

s(m
j
k+1)

f (y)dy

+Dg(x)
∫ h(m

j
k)

s(m
j
k+1)

K
(
m

j
k, y

)
f (y)dy =DT2,1

j,k f (x) +DT2,2
j,k f (x),

(2.28)

which implies that w(E2) ≤ w(E2,1) +w(E2,2), where the sets E2,� , � = 1,2 are defined as
the sets E1,� with T2,�

j,k f instead of T1,�
j,k f . Now, the estimates of w(E2,1) and w(E2,2) follow

as in the previous cases obtaining

w
(
E2)≤ C

λq

∫ h(m
j
k)

s(m
j
k+1)

f pv. (2.29)

Actually, the estimations are easier because we do not need to split the sets E2,� . For the
estimation of w(E3) let us define the function

H(x)=
∫ h(x)

h(m
j
k)
K(x, y) f (y)dy. (2.30)

Since h is continuous and K is continuous in the first variable, we may select a decreasing
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sequence {xi}i in (m
j
k,m

j
k+1) such that x0 = m

j
k+1 and H(xi) =

∫ h(xi)
h(m

j
k)
K(xi, y) f (y)dy =

(D+1)−iH(m
j
k+1). We claim that

H
(
xi
)≤ (D+1)4

(

K
(
xi+2,h

(
xi+3

))
∫ h(xi+3)

h(m
j
k)

f (y)dy +
∫ h(xi+2)

h(xi+3)
K
(
xi+2, y

)
f (y)dy

)

.

(2.31)

In fact, first notice that

H(xi)= (D+1)2
∫ h(xi+2)

h(m
j
k)

K
(
xi+2, y

)
f (y)dy

= (D+1)2
[∫ h(xi+3)

h(m
j
k)

K
(
xi+2, y

)
f (y)dy +

∫ h(xi+2)

h(xi+3)
K
(
xi+2, y

)
f (y)dy

]
.

(2.32)

Now, applying property (iii) of K we get that

H
(
xi
)≤D(D+1)2

[

K
(
xi+2,h

(
xi+3

))
∫ h(xi+3)

h(m
j
k)

f (y)dy +
∫ h(xi+3)

h(m
j
k)

K
(
xi+3, y

)
f (y)dy

]

+ (D+1)2
∫ h(xi+2)

h(xi+3)
K
(
xi+2, y

)
f (y)dy

≤ (D+1)3
[

K
(
xi+2,h

(
xi+3

))
∫ h(xi+3)

h(m
j
k)

f (y)dy +
∫ h(xi+2)

h(xi+3)
K
(
xi+2, y

)
f (y)dy

]

+
D

D+1
H
(
xi
)
,

(2.33)

and the claim follows. Now, we have

w
(
E3)≤

∑

i≥0

[
w
(
E3,1
i

)
+w

(
E3,2
i

)]
, (2.34)

where

E3,1
i =

{

x ∈ (
xi+1,xi

)∩U : g(x)K
(
xi+2,h

(
xi+3

))
∫ h(xi+3)

h(m
j
k)

f (y)dy >
λ

6(D+1)4

}

,

E3,2
i =

{

x ∈ (xi+1,xi)∩U : g(x)
∫ h(xi+2)

h(xi+3)
K
(
xi+2, y

)
f (y)dy >

λ

6(D+1)4

}

.

(2.35)

Working as in previous cases we have

∑

i≥0
w
(
E3,2
i

)≤ C

λq

∫ h(m
j
k+1)

h(m
j
k)

f pv. (2.36)
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In order to estimate
∑

i≥0w(E
3,1
i ) we will apply the ideas of [4, Lemma 1]. Let {u′s} be the

decreasing sequence in (m
j
k,m

j
k+1) defined by u′0 =m

j
k+1 and

∫ h(u′s)

h(m
j
k)
f = 2−s

∫ h(m
j
k+1)

h(m
j
k)

f , (2.37)

and let {un} be the subsequence of {u′s} defined by u0 = u′0 and if [u′s+1,u′s)∩{xi} =∅,
then we delete the term u′s+1 of {u′s}. Let Ẽ3,1

n =⋃
{i≥0: un+1≤xi+3<un}E

3,1
i , α̃n = inf Ẽ3,1

n , and

β̃n = sup Ẽ3,1
n . If u′s+1 = un+1 ≤ xi+3 < un, by the construction of the sequences we get that

xi+3 ≤ u′s and un+2 ≤ u′s+2, then

∫ h(xi+3)

h(m
j
k)

f ≤
∫ h(u′s)

h(m
j
k)
f = 4

∫ h(u′s+1)

h(u′s+2)
f ≤ 4

∫ h(un+1)

h(un+2)
f . (2.38)

Let us assume that Ẽ3,1
n �= ∅. By the above inequalities and the monotonicity of K we have

for all t ∈ Ẽ3,1
n ,

λ

6(D+1)4
≤ 4g(t)K

(
t,h

(
xi+3

))
∫ h(u′s+1)

h(u′s+2)
f ≤ 4g(t)K

(
t,h

(
un+1

))
∫ h(un+1)

h(un+2)
f . (2.39)

Now,multiplying by (
∫ β̃n
α̃n
w)1/p, applying Hölder inequality, and using that s(β̃n)≤h(un+2)

we get that

λ

6(D+1)4

(∫ β̃n

α̃n
w
)1/p

≤ 4Φ1(x)
(∫ h(un+1)

h(un+2)
f pv

)1/p

≤ 4λq/r
(∫ h(un+1)

h(un+2)
f pv

)1/p

, (2.40)

where x is any point in Ẽ3,1
n . Then

∑

i≥0
w
(
E3,1
i

)=
∑

n

∑

{i≥0: un+1≤xi+3<un}
w
(
E3,1
i

)

≤
∑

n

w
(
Ẽ3,1
n

)≤
∑

n

∫ β̃n

α̃n
w

≤ C

λq
∑

n

∫ h(un+1)

h(un+2)
f pv ≤ C

λq

∫ h(m
j
k+1)

h(m
j
k)

f pv.

(2.41)

Putting together the estimations of w(E1), w(E2), and w(E3) we have

w
(
Oλ∩U ∩ (

m
j
k,m

j
k+1

))≤ C

λq

∫ h(m
j
k+1)

s(m
j
k)

f pv. (2.42)
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Summing up in k in the above inequality and by (2.13) we get that

w
(
Oλ∩U ∩ (

aj ,bj
))≤ C

λq

∫ h(bj )

s(aj )
f pv. (2.43)

Keeping in mind the lemma and summing up in j we obtain the desired inequality. �
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