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We establish Lp estimates for certain class of maximal functions with kernels in Lq(Sn−1).
As a consequence of such Lp estimates, we obtain the Lp boundedness of our maximal
functions when their kernels are in L(logL)1/2(Sn−1) or in the block space B0,−1/2

q (Sn−1),
q > 1. Several applications of our results are also presented.

Copyright © 2006 Ahmad Al-Salman. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and statement of results

Let Rn, n ≥ 2, be the n-dimensional Euclidean space and let Sn−1 be the unit sphere in
Rn equipped with the normalized Lebesgue measure dσ . For nonzero y ∈Rn, we will let
y′ = |y|−1y. Let Ω be an integrable function on Sn−1 that is homogeneous of degree zero
on Rn and satisfies the cancelation property

∫
Sn−1

Ω(y′)dσ(y′)= 0. (1.1)

Consider the maximal function �Ω,

�Ω( f )(x)= sup
h∈U

∣∣∣∣
∫
Rn

f (x− y)|y|−nh(|y|)Ω(y′)dy
∣∣∣∣, (1.2)

where U is the class of all h∈ L2(R+,r−1dr) with ‖h‖L2(R+,r−1dr) ≤ 1.
The operator �Ω was introduced by Chen and Lin [7]. They showed that �Ω is

bounded on Lp(Rn) for all p > 2n/(2n− 1) provided that Ω ∈ �(Sn−1). Recently, we
have been able to show that the Lp(Rn) boundedness of �Ω still holds for all p ≥ 2 if
the condition Ω ∈ �(Sn−1) is replaced by the more natural and weaker condition Ω ∈
L(logL)1/2(Sn−1) [2]. Moreover, we showed that if the condition Ω∈ L(logL)1/2(Sn−1) is
replaced by any condition in the form Ω ∈ L(logL)r(Sn−1) for some r < 1/2, then �Ω

might fail to be bounded on L2.
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On the other hand, when Ω lies in B0,−1/2
s (Sn−1), s > 1, which is a special class of block

spaces Bκ,υ
q (Sn−1) (see Section 5 for the definition), we were able to show that �Ω is

bounded on Lp for all p ≥ 2 [3]. Moreover, we showed that the condition Ω ∈
B0,−1/2
s (Sn−1), s > 1 is nearly optimal in the sense that the exponent −1/2 cannot be re-

placed by any smaller number for the L2 boundedness of �Ω to hold. We remark here
that block spaces have been introduced by Jiang and Lu to improve previously obtained
Lp boundedness results for singular integrals [7]. It should be noted here that the relation
between the spaces B0,−1/2

s (Sn−1) and L(logL)1/2(Sn−1) is unknown.
However, it is known that Lq(Sn−1) is properly contained in L(logL)1/2(Sn−1) ∩

B0,−1/2
s (Sn−1) for all q, s > 1. Moreover, it is not hard to see that every Ω in

L(logL)1/2(Sn−1)∪B0,−1/2
s (Sn−1) can be written as an infinite sum of functions in Lq(Sn−1).

This gives rise to the question whether the results pertaining the Lp boundedness of�Ω in
[2, 3] can be obtained via certain corresponding Lp estimates with kernels in Lq(Sn−1). It
is one of our main goals in this paper to consider such problem. It should be pointed out
here that a positive solution for this problem will not only make life easier when dealing
with kernels in L(logL)1/2(Sn−1) or B0,−1/2

s (Sn−1), but also will pave the way for extending
several results that are known when kernels are in Lq(Sn−1).

Our work in this paper will be mainly concerned with the following general class of
maximal functions:

�Ω,P( f )(x)= sup
h∈U

∣∣∣∣
∫
Rn
eiP(y) f (x− y)|y|−nh(|y|)Ω(y′)dy

∣∣∣∣, (1.3)

where P :Rn→R is a real-valued polynomial.
Clearly, if P(y)= 0, then �Ω,P =�Ω. For the significance of considering integral op-

erators with oscillating kernels, we refer the readers to consult [1, 4, 11, 16, 19, 22–24],
among others.

Our result concerning Lp estimates with kernels in Lq(Sn−1) is the following theorem.

Theorem 1.1. Let Ω ∈ Lq(Sn−1), q > 1, be a homogeneous function of degree zero on Rn

with ‖Ω‖1 ≤ 1. Let P : Rn → R be a real-valued polynomial of degree d. Let �Ω,P be given
by (1.3). Then

∥∥�Ω,P( f )
∥∥
p ≤

{
1+ log1/2

(
e+‖Ω‖q

)}
Cp,q‖ f ‖p (1.4)

for all p ≥ 2, where Cp,q = (21/q
′
/(21/q

′ − 1))Cp. Here 1/q′ = 1− 1/q and Cp is a constant
that may depend on the degree of the polynomial P but it is independent of the function Ω,
the index q, and the coefficients of the polynomial P.

We remark here that the constant Cp,q in Theorem 1.1 satisfies Cp,q →∞ as q→ 1+.
That is, the constant Cp,q diverges when q tends to 1. This behavior of Cp,q is natural
since, by [2, Theorem B(b)], the special operator �Ω =�Ω,0 is not bounded on L2 if the
function Ω is assumed to satisfy only the sole condition that Ω∈ L1(Sn−1) (i.e., q = 1).

By a suitable decomposition of the function Ω and an application of Theorem 1.1, we
prove the following theorem which is a proper extension of the corresponding result in
[2].
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Theorem 1.2. Suppose that Ω ∈ L(log+L)1/2(Sn−1) satisfying (1.1). Let P : Rn → R be a
real-valued polynomial. Then �Ω,P is bounded on Lp(Rn) for all p ≥ 2 with Lp bounds
independent of the coefficients of the polynomial P.

We should point out here that an alternative proof of Theorem 1.2 can be obtained
by observing that Cp,q ≈ Cp/(q− 1), where Cp,q is the constant in Theorem 1.1, and then
using a Yano-type extrapolation technique [27].

By another suitable application of Theorem 1.1, we will prove the following extension
of [3, Theorem 1.2].

Theorem 1.3. Suppose that Ω ∈ B0,−1/2
q (Sn−1), q > 1, satisfying (1.1). Let P : Rn → R be

a real-valued polynomial. Then �Ω,P is bounded on Lp(Rn) for all p ≥ 2 with Lp bounds
independent of the coefficients of the polynomial P.

As an immediate consequence of Theorem 1.1 and the observation that

∣∣TΩ,P,h( f )(x)
∣∣≤ ‖h‖L2(R+,r−1dr)�Ω,P( f )(x), (1.5)

we obtain the following result concerning oscillatory singular integrals.

Theorem 1.4. Let Ω ∈ Lq(Sn−1), q > 1, be a homogeneous function of degree zero on Rn

with ‖Ω‖1 ≤ 1. Let P : Rn → R be a real-valued polynomial of degree d and let h ∈
L2(R+,r−1dr). Then the oscillatory singular integral operator �Ω,P ;

TΩ,P,h( f )(x)= p · v
∫
Rn
eiP(y) f (x− y)|y|−nh(|y|)Ω(y′)dy (1.6)

satisfies

∥∥TΩ,P,h( f )
∥∥
p ≤

{
1+ log1/2

(
e+‖Ω‖q

)}‖h‖L2(R+,r−1dr)Cp,q‖ f ‖p (1.7)

for all p ≥ 2, where Cp,q = (21/q
′
/(21/q

′ − 1))Cp. Here 1/q′ = 1− 1/q and Cp is a constant
that may depend on the degree of the polynomial P but it is independent of the function Ω,
the index q, and the coefficients of the polynomial P.

By Theorem 1.4, we obtain the following two results.

Corollary 1.5. Let Ω ∈ L(logL)1/2(Sn−1) be a homogeneous function of degree zero on
Rn and satisfies (1.1). Let P : Rn → R be a real-valued polynomial of degree d and let h ∈
L2(R+,r−1dr). Then the oscillatory singular integral operator �Ω,P ;

TΩ,P,h( f )(x)= p · v
∫
Rn
eiP(y) f (x− y)|y|−nh(|y|)Ω(y′)dy (1.8)

is bounded on Lp for all p ≥ 2 with Lp bounds that may depend on the degree of the polyno-
mial P but they are independent of the coefficients of the polynomial P.

Corollary 1.6. Let Ω ∈ B0,−1/2
q (Sn−1), s > 1, be a homogeneous function of degree zero

on Rn and satisfies (1.1). Let P : Rn → R be a real-valued polynomial of degree d and let
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h∈ L2(R+,r−1dr). Then the oscillatory singular integral operator �Ω,P ;

TΩ,P,h( f )(x)= p · v
∫
Rn
eiP(y) f (x− y)|y|−nh(|y|)Ω(y′)dy (1.9)

is bounded on Lp for all p ≥ 2 with Lp bounds that may depend on the degree of the polyno-
mial P but they are independent of the coefficients of the polynomial P.

Further applications of the results stated above will be presented in Section 6.
Throughout this paper, the letter C will stand for a constant that may vary at each

occurrence, but it is independent of the essential variables.

2. Preliminary estimates

We start by recalling the following result in [10].

Lemma 2.1 (see [10]). Let � = (P1, . . . ,Pd) be a polynomial mapping from Rn into Rd.
Suppose that Ω∈ L1(Sn−1) and

MΩ,� f (x)= sup
j∈Z

∫
2 j≤|y|<2 j+1

∣∣ f (x−�(y)
)∣∣|y|−n∣∣Ω(y′)∣∣dy. (2.1)

Then for 1 < p ≤∞, there exist a constant Cp > 0 independent of Ω and the coefficients of
P1, . . . ,Pd such that

∥∥MΩ,� f
∥∥
p ≤ Cp‖Ω‖L1(Sn−1)‖ f ‖p (2.2)

for every f ∈ Lp(Rd).

Lemma 2.2 (van der Corput [26]). Suppose φ is real valued and smooth in (a,b), and that
|φ(k)(t)| ≥ 1 for all t ∈ (a,b). Then the inequality

∣∣∣∣
∫ b

a
e−iλφ(t)ψ(t)dt

∣∣∣∣≤ Ck|λ|−1/k (2.3)

holds when
(i) k ≥ 2, or
(ii) k = 1 and φ′ is monotonic.

The bound Ck is independent of a, b, φ, and λ.

Lemma 2.3. Let Ω∈ Lq(Sn−1), q > 1, be a homogeneous function of degree zero on Rn with
‖Ω‖1 ≤ 1. Let P(x) =∑|α|≤d aαxα be a real-valued polynomial of degree d > 1 such that
|x|d is not one of its terms. For k ∈ Z, let Ek,Ω : [1, log(e+ ‖Ω‖q)]×P(Sn−1)×R→ C and
let Jk,Ω :Rn→R be given by

Ek,Ω
(
r,P(y′),s

)= e−i[P(2
−(k+1)log(e+‖Ω‖q )r y′)+2−(k+1)log(e+‖Ω‖q )sr],

Jk,Ω(ξ)=
∫ 22log(e+‖Ω‖q )

1

∣∣∣∣
∫
Sn−1

Ω(y′)Ek,Ω
(
r,P(y′),ξ · y′)dσ(y′)

∣∣∣∣
2 d

r
r.

(2.4)
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Then, Jk,Ω satisfies

sup
ξ∈Rn

Jk,Ω(ξ)≤ 2(k+1)/4q
′
log
(
e+‖Ω‖q

){ ∑
|α|=d

∣∣aα∣∣
}−ε/q′

C (2.5)

for some 0 < ε < 1, where C is a constant that may depend on the degree of the polynomial P
but it is independent of the functionΩ, the index q, and the coefficients of the polynomial P.

Proof of Lemma 2.3. First, we notice the following:

Jk,Ω(ξ)≤ log
(
e+‖Ω‖q

)
, (2.6)

(
Jk,Ω(ξ)

)q′ ≤ ‖Ω‖2q′q

∫∫
Sn−1

∣∣∣∣
∫ 22log(e+‖Ω‖q )

1
Ek,Ω

(
r,P(y′),ξ · y′)

×Ek,Ω
(
r,P(z′),ξ · z′)dr

r

∣∣∣∣
q′

dσ(y′)dσ(z′).

(2.7)

Next, notice that

P
(
2−γk,Ωr y′

)
+2−γk,Ω(ξ · y′)r−P

(
2−γk,Ωrz′

)
+2−γk,Ω(ξ · z′)r

= 2−γk,Ωdrd
{ ∑
|α|=d

aαy
′α−

∑
|α|=d

aαz
′α
}
+2−γk,Ωξ · (y′ − z′)r +Hk(r, y′,z′,ξ)

(2.8)

with (dd/drd)Hk = 0, where γk,Ω = (k+1)log(e+‖Ω‖q). Thus, by Lemma 2.2, we have

∣∣∣∣∣
∫ 22log(e+‖Ω‖q )

1
Ek,Ω

(
r,P(y′),ξ · y′)Ek,Ω(r,P(z′),ξ · z′)dr

r

∣∣∣∣∣≤
∣∣2−dγk,Ω{P(y′)−P(z′)}∣∣−1/d.

(2.9)

Now, by (2.9) and the inequality

∣∣∣∣∣
∫ 22log(e+‖Ω‖q )

1
Ek,Ω

(
r,P(y′),ξ · y′)Ek,Ω(r,P(z′),ξ · z′)dr

r

∣∣∣∣∣≤ C log
(
e+‖Ω‖q

)
, (2.10)

we obtain

∣∣∣∣∣
∫ 22log(e+‖Ω‖q )

1
Ek,Ω

(
r,P(y′),ξ · y′)Ek,Ω(r,P(z′),ξ · z′)dr

r

∣∣∣∣∣
≤ ∣∣2−dγk,Ω{P(y′)−P(z′)

}∣∣−1/4dq′C{ log(e+‖Ω‖q)}1−1/4q′ .
(2.11)

Therefore, by (2.7), (2.11), and [12, (3.11)], we obtain

Jk,Ω(ξ)≤ 2γk,Ω/4q′ ‖Ω‖2q′q C
{
log
(
e+‖Ω‖q

)}1−1/4q′
. (2.12)
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Hence, by (2.6) and (2.12), we get

Jk,Ω(ξ)≤ 2γk,Ω/4log(e+‖Ω‖q)q
′‖Ω‖2/ log(e+‖Ω‖q)q log

(
e+‖Ω‖q

)

≤ 2(k+1)/4q
′
log
(
e+‖Ω‖q

)
C.

(2.13)

This completes the proof. �

Now, we will need the following lemma.

Lemma 2.4. Let Ω∈ Lq(Sn−1), q > 1, be a homogeneous function of degree zero on Rn with
‖Ω‖1 ≤ 1. Then

∥∥�Ω( f )
∥∥
p ≤ log1/2

(
e+‖Ω‖q

){ 21/q
′

21/q′ − 1

}
Cp‖ f ‖p (2.14)

for all p ≥ 2 with constants Cp independent of the function Ω and the index q.

We remark here that since Lq(Sn−1)⊂ L log1/2L, it follows from [2, Theorem B(a)] that
‖�Ω‖p ≤ ‖Ω‖qCp for all p ≥ 2. But, clearly the constant {1+ log1/2(e+‖Ω‖q)} in (2.14)
is sharper than the constant ‖Ω‖q that can be deduced from [2, Theorem B(a)]. However,
the former constant can be obtained by following a similar argument as in the proof of
Theorem B(a) in [2] and keeping track of certain constants. For completeness, we, below,
present the main ideas of the proof.

Proof of Lemma 2.4. Choose a collection of �∞ functions {ωk}k∈Z on (0,∞) with the
properties sup(ωk) ⊆ [2− log(e+‖Ω‖q)(k+1),2− log(e+‖Ω‖q)(k−1)], 0 ≤ ωk ≤ 1,

∑
k∈Zωk(u) = 1,

|(dsωk/dus)(u)| ≤ Csu−s, where Cs is a constant independent of log(e+‖Ω‖q). For k ∈ Z,

let Gk be the operator defined by (Gk( f ))̂(ξ)= ωk(|ξ|) f̂ (ξ). Let

Ej( f )(x)=
(∑

k∈Z

∫ 22log(e+‖Ω‖q )

1

∣∣∣∣
∫
Sn−1

Ω(y′)Gk+ j( f )
(
x− 2k log(e+‖Ω‖q)r y′

)
dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

.

(2.15)

Then

�Ω( f )(x)≤
∑
j∈Z

Ej( f )(x). (2.16)

By exactly the same argument in [2], we obtain

∥∥Ej( f )
∥∥
2 ≤ C2−β| j|/q

′
log1/2

(
e+‖Ω‖q

)‖ f ‖2. (2.17)

On the other hand, by a duality argument; see (3.24)-(3.25) for similar argument, we get

∥∥Ej( f )
∥∥
p ≤ C log1/2

(
e+‖Ω‖q

)‖ f ‖p (2.18)

for all 2 < p <∞. Thus, by interpolation between (2.17) and (2.18), we have

∥∥Ej( f )
∥∥
p ≤ C2−ε(| j|/q

′) log1/2
(
e+‖Ω‖q

)‖ f ‖p (2.19)
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for some ε > 0 and for all 2≤ p <∞, and j ∈ Z with constant C independent ofΩ, k, and
j. Hence, (2.14) follows by (2.16) and (2.19). This completes the proof. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We will argue by induction on the degree of the polynomial P. If
d = deg(P)= 0, then (1.4) follows easily from Lemma 2.4. In fact, if d = 0, then by duality
it can be easily seen that

�Ω,P( f )(x)≤ C�Ω( f )(x). (3.1)

Thus, by Lemma 2.4, we have

∥∥�Ω,P( f )
∥∥
p ≤

{
21/q

′

21/q′ − 1

}
log1/2

(
e+‖Ω‖q

)
Cp‖ f ‖p

≤
{

21/q
′

21/q′ − 1

}{
1+ log1/2

(
e+‖Ω‖q

)}
Cp‖ f ‖p

(3.2)

for all p ≥ 2.
Now, if d = 1, that is, P(y)=−→a · y for some −→a ∈Rn, then by (3.2), we have

∥∥�Ω,P( f )
∥∥
p ≤

{
21/q

′

21/q′ − 1

}{
log1/2‖Ω‖q

}
Cp‖g‖p

=
{

21/q
′

21/q′ − 1

}{
1+ log1/2

(
e+‖Ω‖q

)}
Cp‖ f ‖p,

(3.3)

where g(y)= e−iP(y) f (y).
Next, assume that (1.4) holds for all polynomials Q of degree less than or equal to

d > 1. Let

P(x)=
∑

|α|≤d+1
aαx

α (3.4)

be a polynomial of degree d+1. Then by duality, we have

�Ω,P( f )(x)=
(∫∞

0

∣∣∣∣
∫
Sn−1

eiP(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

. (3.5)

We may assume that P does not contain |x|d+1 as one of its terms. By dilation invari-
ance, we may also assume that

∑
|α|=d+1

∣∣aα∣∣= 1. (3.6)
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We now choose a collection {ωk}k∈Z of �∞ functions defined on (0,∞) that satisfy the
following properties:

supp
(
ψk
)⊆ [2− log(e+‖Ω‖q)(k+1),2− log(e+‖Ω‖q)(k−1)], 0≤ ψk ≤ 1,

∑
k∈Z

ψk(u)= 1.
(3.7)

Set

η∞(u)=
0∑

k=−∞
ψk(u), η0(u)=

∞∑
k=1

ψk(u). (3.8)

Then,

η∞(u) +η0(u)= 1,

supp
(
η∞(u)

)⊂ [2− log(e+‖Ω‖q),∞), supp
(
η0(u)

)⊂ (0,1].
(3.9)

Define the operators �Ω,P,∞ and �Ω,P,0 by

�Ω,P,∞( f )(x)=
(∫∞

2− log(e+‖Ω‖q )

∣∣∣∣η∞(r)
∫
Sn−1

eiP(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

,

�Ω,P,0( f )(x)=
(∫ 1

0

∣∣∣∣η0(r)
∫
Sn−1

eiP(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

.

(3.10)

Thus, by (3.9), we have

�Ω,P( f )(x)≤�Ω,P,0( f )(x) +�Ω,P,∞( f )(x). (3.11)

Now, we estimate ‖�Ω,P,0‖p.
Let

Q(x)=
∑
|α|≤d

aαx
α. (3.12)

Assume that deg(Q)= l, where 0≤ l ≤ d. Define the operators �(1)
Ω,P,0 and �(2)

Ω,Q,0 by

�(1)
Ω,P,0( f )(x)=

(∫ 1

0

∣∣∣∣
∫
Sn−1

(
eiP(r y

′)− eiQ(r y
′))Ω(y) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

,

�(2)
Ω,Q,0( f )(x)=

(∫ 1

0

∣∣∣∣
∫
Sn−1

eiQ(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

.

(3.13)

Now, by the observation that η0(r)≤ 1 and by Minkowski’s inequality, we obtain

�Ω,P,0( f )(x)≤�(1)
Ω,P,0( f )(x) +�(2)

Ω,Q,0( f )(x). (3.14)
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By induction assumption, it follows that

∥∥�(2)
Ω,Q,0( f )

∥∥
p ≤

{
1+ log1/2(e+‖Ω‖q)

}{ 21/q
′

21/q′ − 1

}
Cp‖ f ‖p (3.15)

for all p ≥ 2.
On the other hand, by Cauchy-Schwarz inequality, by the fact that ‖Ω‖1 ≤ 1, and the

inequality

∣∣(eiP(r y′)− eiQ(r y
′))∣∣≤ rd+1

∣∣∣∣∣
∑

|α|=d+1
aαy

′α
∣∣∣∣∣

≤ rd+1,

(3.16)

we get

�(1)
Ω,P,0( f )(x)≤

(∫ 1

0

∫
Sn−1

∣∣(eiP(r y′)− eiQ(r y
′))∣∣2∣∣Ω(y′)

∣∣∣∣ f (x− r y′)
∣∣2dσ(y′)r−1dr

)1/2

≤
(∫ 1

0

∫
Sn−1

∣∣Ω(y′)
∣∣∣∣ f (x− r y′)

∣∣2dσ(y′)r2d+1dr
)1/2

=
( −1∑

j=−∞

∫ 2 j+1

2 j

∫
Sn−1

∣∣Ω(y′)
∣∣∣∣ f (x− r y′)

∣∣2dσ(y)r2d+1dr
)1/2

≤
( −1∑

j=−∞
2(2d+2) j

∫ 2 j+1

2 j

∫
Sn−1

∣∣Ω(y′)
∣∣∣∣ f (x− r y′)

∣∣2dσ(y)r−1dr
)1/2

≤ C
(
MΩ

(| f |2))1/2(x),
(3.17)

where MΩ is the operator given by (2.1) with �(y)= y. Thus, by (3.17), by the fact that
‖Ω‖1 ≤ 1, and Lemma 2.1, we obtain

∥∥�(1)
Ω,P,0( f )

∥∥
p ≤ Cp‖ f ‖p (3.18)

for all p ≥ 2 with constant Cp independent of the function Ω and the coefficients of the
polynomial P. Therefore, by (3.14), by Minkowski’s inequality, by (3.15), and (3.18), we
obtain

∥∥�Ω,P,0( f )
∥∥
p ≤

{
1+ log1/2

(
e+‖Ω‖q

)}{ 21/q
′

21/q′ − 1

}
Cp‖ f ‖p (3.19)

for all p ≥ 2.
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Finally, we prove the Lp boundedness of �Ω,P,∞. By generalized Minkowski’s inequal-
ity, we can write �Ω,P,∞ as

�Ω,P,∞( f )(x)=
(∫∞

2− log(e+‖Ω‖q )

∣∣∣∣η∞(r)
∫
Sn−1

eiP(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

=
(∫∞

0

∣∣∣∣∣
0∑

k=−∞
ψk(r)

∫
Sn−1

eiP(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣∣
2
1
r
dr

)1/2

≤
0∑

k=−∞
�Ω,P,∞,k( f )(x),

(3.20)

where

�Ω,P,∞,k( f )(x)=
(∫ 2− log(e+‖Ω‖q )(k−1)

2− log(e+‖Ω‖q )(k+1)

∣∣∣∣
∫
Sn−1

eiP(r y
′)Ω(y′) f (x− r y′)dσ(y′)

∣∣∣∣
2

r−1dr

)1/2

.

(3.21)

By Plancherel’s theorem, Fubini’s theorem, and Lemma 2.3, we have

∥∥�Ω,P,∞,k( f )
∥∥2
2 =

∫
Rn

∣∣ f̂ (ξ)∣∣2Jk,Ω(ξ)dξ ≤ 2(k+1)/4q
′
log
(
e+‖Ω‖q

)‖ f ‖22. (3.22)

Thus,
∥∥�Ω,P,∞,k( f )

∥∥
2 ≤ 2(k+1)/8q

′
log1/2

(
e+‖Ω‖q

)‖ f ‖2. (3.23)

Now, for p > 2, choose g ∈ L(p/2)
′
with ‖g‖(p/2)′ = 1 such that

∥∥�Ω,P,∞,k( f )
∥∥2
p

=
∫
Rn

∫ 22log(e+‖Ω‖q )

1

∣∣∣∣
∫
Sn−1

Ek,Ω
(
r,P(y′),0

)
Ω(y′) f

(
x− 2−γk,Ωr y′

)
dσ(y′)

∣∣∣∣
2

r−1dr
∣∣g(x)∣∣dx

≤
∫
Rn

∣∣ f (z)∣∣2
∫ 22log(e+‖Ω‖q )

1

∫
Sn−1

∣∣Ω(y′)
∣∣∣∣g(z+2−γk,Ωr y′

)∣∣dσ(y′)dr
r

dz

≤ C log
(
e+‖Ω‖q

)‖ f ‖2p
∥∥MΩg̃(z)

∥∥
(p/2)′ ,

(3.24)

where MΩ is the operator given by (2.1) with �(y) = y. Thus, Lemma 2.1 and (3.24)
imply that

∥∥�Ω,P,∞,k( f )
∥∥
p ≤ log1/2

(
e+‖Ω‖q

)
C‖ f ‖p, (3.25)

which when combined with (3.23) implies
∥∥�Ω,P,∞,k( f )

∥∥
p ≤ 2(k+1)δ/8q

′
log1/2

(
e+‖Ω‖q

)
C‖ f ‖p, (3.26)
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where δ is a constant that is independent of the essential variables. Thus, by (3.20), (3.26),
and Minkowski’s inequality, we get

∥∥�Ω,P,∞( f )
∥∥
p ≤ C log1/2

(
e+‖Ω‖q

){ 21/q
′

21/q′ − 1

}
Cp‖ f ‖p (3.27)

for all p ≥ 2. Hence, by Minkowski’s inequality, (3.11), (3.19), and (3.27), we obtain (1.4)
for the given polynomial P. This completes the proof. �

4. Proof of results concerning L(logL)1/2(Sn−1)

Proof of Theorem 1.2. Given Ω ∈ L(logL)1/2(Sn−1), then we decompose Ω as a sum of
functions in L2(Sn−1). More precisely, there exists a sequence {Ωm : m = 0,1,2, . . .} of
functions in L1(Sn−1) with

Ω=
∞∑

m=0
Ωm (4.1)

such that
∫
Sn−1

Ωm(y′)dσ(y′)= 0,
∥∥Ωm

∥∥
1 ≤ C, Ω0 ∈ L2

(
Sn−1

)
,

∥∥Ωm

∥∥∞ ≤ 24mC form= 1,2,3, . . . ,
(4.2)

∞∑
m=1

√
m
∥∥Ωm

∥∥
1 ≤ ‖Ω‖L(logL)1/2(Sn−1)C. (4.3)

For a detailed proof of the existence of the decomposition (4.1), one might look into
[2, 5].

Now, by (4.1), we have the following:

�Ω,P( f )(x)≤�Ω0,P( f )(x) +
∞∑

m=1

∥∥Ωm

∥∥
1�Ωm,P( f )(x). (4.4)

By Lemma 2.4, we have

∥∥�Ω0,P( f )
∥∥
p ≤

{
1+ log1/2

(
e+
∥∥Ω0

∥∥
2

)}
Cp‖ f ‖p (4.5)

for all p ≥ 2.
Next, by observing that

1+ log1/2
(
e+
∥∥Ωm

∥∥∞
)≤ 1+ log1/2

(
e+24m

)≤ 4
√
m (4.6)

for allm≥ 1, Theorem 1.1 implies that

∥∥�Ωm,P( f )
∥∥
p ≤ 4

√
mCp‖ f ‖p (4.7)

for all p ≥ 2 with constant Cp independent ofm.
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Thus, by Minkowski’s inequality, (4.4), (4.5), (4.7), and (4.2), we obtain

∥∥�Ω,P( f )
∥∥
p ≤ Cp‖ f ‖p (4.8)

for all p ≥ 2. This completes the proof. �

Proof of Corollary 1.5. By the inequality (1.5) and the decomposition (4.1), we have

∣∣TΩ,P,h( f )(x)
∣∣≤ ∣∣TΩ0,P,h( f )(x)

∣∣+
∞∑

m=1

∥∥Ωm

∥∥
1

∣∣TΩm,P,h( f )(x)
∣∣. (4.9)

Thus, by Theorem 1.4, (4.9), and a similar argument as in the proof of Theorem 1.2, the
proof is complete. �

5. Proof of results concerning block spaces

We start this section by recalling the definition of block spaces introduced by Jiang and
Lu (see [16]).

Definition 5.1. (1) For x′0 ∈ Sn−1 and 0 < θ0 ≤ 2, the set B(x′0,θ0)= {x′ ∈ Sn−1 : |x′ − x′0| <
θ0} is called a cap on Sn−1.

(2) For 1 < q ≤∞, a measurable function b is called a q−block on Sn−1 if b is a function
supported on some cap I = B(x′0,θ0) with ‖b‖Lq ≤ |I|−1/q′ , where |I| = σ(I) and 1/q +
1/q′ = 1.

(3) Bκ,υ
q (Sn−1) = {Ω ∈ L1(Sn−1) :Ω =∑∞

μ=1 cμbμ, where each cμ is a complex number;
each bμ is a q-block supported on a cap Iμ on Sn−1; andMκ,υ

q ({cμ},{Iμ})=
∑∞

μ=1 | cμ|(1+
φκ,υ(|Iμ|)) <∞, where φκ,υ(t)=

∫ 1
t u

−1−κ logυ(u−1)du if 0 < t < 1 and φκ,υ(t)= 0 if t ≥ 1}.
Notice that φκ,υ(t) ∼ t−κ logυ(t−1) as t → 0 for κ > 0, υ ∈ R, and φ0,υ(t) ∼ logυ+1(t−1)

as t→ 0 for υ > −1. Moreover, among many properties of block spaces [17], we cite the
following which are closely related to our work:

B0,0
q ⊂ B0,−1/2

q (q > 1),

B0,υ
q2 ⊂ B0,υ

q1

(
1 < q1 < q2

)
,

Lq
(
Sn−1

)⊆ B0,υ
q

(
Sn−1

)
(for υ >−1),

⋃
q>1

B0,υ
q

(
Sn−1

) �⊆⋃
p>1

Lp
(
Sn−1

)
for any υ >−1.

(5.1)

Proof of Theorem 1.3. Assume that Ω∈ B0,−1/2
q (Sn−1), q > 1. Then

Ω=
∞∑
μ=1

cμbμ, (5.2)
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where each cμ is a complex number; each bμ is a q-block supported on a cap Iμ on Sn−1;
and

M0,−1/2
q

({
cμ
}
,
{
Iμ
})=

∞∑
μ=1

∣∣cμ∣∣
(
1+ log1/2

(∣∣Iμ∣∣−1
))

<∞. (5.3)

Without loss of generality, we may assume that |Iμ| < 1. For each μ, let

b̄μ(x)= bμ(x)−
∫
Sn−1

bμ(u)du. (5.4)

Then, it follows that

∥∥b̄μ∥∥q ≤ C|I|−1/q′ , ∥∥b̄μ∥∥1 ≤ C. (5.5)

By the decomposition (5.3), we have

�Ω,P( f )(x)≤
∞∑
μ=1

∣∣cμ∣∣�b̄μ,P( f )(x). (5.6)

Thus, by Minkowski’s inequality, (5.5), and Theorem 1.1, we have

∥∥�Ω,P( f )
∥∥
p ≤ Cp

∞∑
μ=1

∣∣cμ∣∣{1+ log1/2
(
e+ |I|−1/q′)}‖ f ‖p

≤ Cp,q

∞∑
μ=1

∣∣cμ∣∣
(
1+ log1/2

(∣∣Iμ∣∣−1
))
‖ f ‖p

≤ C̃p,q‖ f ‖p

(5.7)

for all p ≥ 2, where the last inequality follows by (5.3). This completes the proof. �

A proof of Corollary 1.6 can be obtained by a similar argument as in the proof of
Corollary 1.5. We omit the details.

6. Further applications

This section is devoted to present some results that follow by applying our results in
Section 1.

Parametric Marcinkiewicz integral operators. The parametric Marcinkiewicz integral op-
erator related to the operator �Ω,P is defined by

μ
ρ
Ω,P f (x)=

(∫∞
−∞

∣∣∣∣2−ρt
∫
|y|≤2t

eiP(y) f (x− y)|y|−n+ρΩ(y)dy
∣∣∣∣
2

dt

)1/2

, (6.1)

where ρ is a positive real number. Clearly, when P = 0, the operator μ
ρ
Ω = μ

ρ
Ω,0 is the well-

known parametric Marcinkiewicz integral operator introduced by Hörmander [15].
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Now, it is straightforward to see that

μ
ρ
Ω,P f (x)≤ C(ρ)�Ω,P f (x). (6.2)

Therefore, by (6.2), Theorem 1.1, and the decompositions (4.1) and (5.2), we can easily
obtain the following theorem.

Theorem 6.1. Suppose that ρ > 0 and that Ω ∈ L(logL)1/2(Sn−1) satisfying (1.1). Then
the parametric Marcinkiewicz integral operator μ

ρ
Ω,P is bounded on Lp for all p ≥ 2 with Lp

bounds that may depend on the degree of the polynomial P but they are independent of the
function Ω and the coefficients of the polynomial P.

Theorem 6.2. Suppose that ρ > 0 and that Ω∈ B0,−1/2
q (Sn−1), q > 1, satisfying (1.1). Then

the parametric Marcinkiewicz integral operator μ
ρ
Ω,P is bounded on Lp for all p ≥ 2 with Lp

bounds that may depend on the degree of the polynomial P but they are independent of the
function Ω and the coefficients of the polynomial P.

We remark here that by specializing to the case P = 0 and ρ = 1, the resulting operator
μΩ = μ

1

Ω,0 is the classical Marcinkiewicz integral operator introduced by Stein [25]. Thus,
Theorems 6.1 and 6.2 generalize as well as improve the result in (see [25]). Furthermore,
Theorems 6.1 and 6.2 generalize the corresponding results in [2, 3, 8]. For more back-
ground information and related results about Marcinkiewicz integral operators, we refer
the readers to consult [6, 8, 15, 25], and the references therein.

Morrey spaces. In [20], Mizuhara introduced the following generalized Morrey spaces.

Definition 6.3. Let φ : (0,∞)→ (0,∞) be an increasing function that satisfies φ(2r) ≤
Dφ(r) for any r > 0, where D is a constant independent of r. Let 1 ≤ p <∞. A locally
integrable function f ∈ Lp,φ if

∫
Br

(
x0
) ∣∣ f (x)∣∣pdx ≤ Cpφ(r) (6.3)

for all x0 ∈Rn and r > 0, where Br(x0) is the ball with center x0 and radius r.

It is worth pointing out here that Morrey spaces have been used to study several prob-
lems in harmonic analysis, such as studying the local behavior of solutions to second-
order elliptic partial differential equations and measuring the regularity of the solution
to an elliptic second-order equation with discontinuous coefficients; see [13, 21], and
references therein.

By Theorem 1.1, the decompositions (4.1) and (5.2), and following a similar argument
as in the proof of Theorem 5 in [13], we obtain the following theorem.

Theorem 6.4. Suppose that Ω∈ L(log+L)1/2(Sn−1)∪B0,−1/2
q (Sn−1), q > 1, satisfying (1.1).

Let P :Rn→R be a real-valued polynomial. Then �Ω,P is bounded on Lp,φ(Rn) for all p ≥ 2
with Lp bounds independent of the coefficients of the polynomial P.

Hence, by (6.2) and Theorem 6.4, we obtain that the operator μ
ρ
Ω,P is bounded on

Lp,φ(Rn) for all p ≥ 2 with Lp bounds independent of the coefficients of the polynomial
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P. Moreover, by (1.5) and Theorem 6.4, it follows that the operator TΩ,P,h is bounded on
Lp,φ for all 1 < p <∞ and h∈ L2(R+,r−1dr).

Lp estimates with radial weights. The results in this paper can be easily extended to the
radial weights setting introduced by Duoandikoetxea [9]. In order to state our weighted
Lp estimates, we recall the definition of the radial weights [9, 13].

Definition 6.5. Suppose that ω(t) ≥ 0 and ω ∈ L1loc(R
+). For 1 < p <∞, ω ∈ Ap(R+) if

there is a constant C > 0 such that for any interval I ⊆R+,

(
|I|−1

∫
I
ω(t)dt

)(
|I|−1

∫
I
ω(t)−1/(p−1)dt

)
≤ C <∞. (6.4)

If there is a constant C > 0 such that

ω∗(t)≤ Cω(t) for a.e. t ∈R+, (6.5)

where ω∗ is the Hardy-Littlewood maximal function of ω on R+, then ω ∈ A1(R+).

We let Ãp(R+) be the class of functions ω that can be written as follows: ω(x) =
ν1(|x|)ν2(|x|)1−p, where either νi ∈ A1(R+) is decreasing or ν2i ∈ A1(R+), i = 1,2. Also,
for 1 < p <∞, we let

Āp
(
R+)= {ω(x)= ω

(|x|) : ω(t) > 0, ω(t)∈ L1loc
(
R+), ω2(t)∈ Ap

(
R+)} (6.6)

and let AI
p(R

n) be the weighted class defined by using all n-dimensional intervals with
sides parallel to coordinate axes. The weighted Lp space Lp(Rn,ω(x)dx) associated to the
weight ω is defined to be the class of all measurable functions f with ‖ f ‖Lp(ω) <∞, where

‖ f ‖Lp(ω) =
(∫

Rn

∣∣ f (x)∣∣pω(x)dx
)1/p

. (6.7)

It is known that Āp(R+) ⊆ Ãp(R+); see [13]. Moreover, if ω(t) ∈ Āp(R+), then ω(|x|) is
in Muckenhoupt weighted class Ap(Rn) whose definition can be found in [14].

By the same argument in this paper with minor modifications, it can be easily shown
that the weighted version of all Lp estimates obtained in this paper holds. In particular,
we have the following theorem.

Theorem 6.6. Suppose that ρ > 0 and that Ω ∈ L(log+L)1/2(Sn−1)∪B0,−1/2
q (Sn−1), q > 1,

satisfying (1.1). Let P :Rn→R be a real-valued polynomial. If ω ∈ Ãp/2∩AI
p/2, 2≤ p <∞,

then the operators �Ω,P and μ
ρ
Ω,P are bounded on L

p(ω) with Lp bounds independent of the
coefficients of the polynomial P.

A special class of radial weights that have received a considerable amount of attention
is the class of power weights |x|α. For background information and related results on
power weights, we refer the readers to consult [9, 13], among others. By the observation
that |x|α ∈ Ãp/2∩AI

p/2 if α∈ (−1, p/2− 1), it follows fromTheorem 6.6 that the following
holds.
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Corollary 6.7. Suppose that ρ > 0 and thatΩ∈ L(log+L)1/2(Sn−1)∪B0,−1/2
q (Sn−1), q > 1,

satisfying (1.1). Let P : Rn → R be a real-valued polynomial. Then the operators �Ω,P and
μ
ρ
Ω,P are bounded on Lp(|x|α) if α∈ (−1, p/2− 1) with Lp(|x|α) bounds independent of the

coefficients of the polynomial P.
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