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For star bodies, the dual affine quermassintegrals were introduced and studied in several
papers. The aim of this paper is to study them further. In this paper, some inequalities for
dual affine quermassintegrals are established, such as the Minkowski inequality, the dual
Brunn-Minkowski inequality, and the Blaschke-Santaló inequality.
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1. Introduction

The setting for this paper is n-dimensional Euclidean space Rn. Let �n denote the set
of convex bodies (compact, convex subsets with nonempty interiors) and �n

o denote the
subset of �n that consists of convex bodies with the origin in their interiors. Denote
by voli(K | ξ) the i-dimensional volume of the orthogonal projection of K onto an i-
dimensional subspace ξ ⊂Rn. Affine quermassintegrals are important geometric invari-
ants related to the projection of convex body. These quermassintegrals were introduced by
Lutwak [7], and can be defined by letting Φ0(K)=V(K),Φn(K)= kn, and for 0 < i < n,

Φi(K)= kn

(∫
G(n,n−i)

[
voln−i

(
K | ξ)

kn−i

]−n
dξ

)−1/n
, (1.1)

where the Grassmann manifold G(n, i) is endowed with the normalized Haar measure,
and kn is the volume of the unit ball Bn in Rn.

Furthermore, in [6], Lutwak introduced the dual affine quermassintegrals of a star
body L containing the origin in its interior, Φ̃i(L), by letting Φ̃0(L)= V(L), Φ̃n(L)= kn,
and for 0 < i < n,

Φ̃i(L)= kn

(∫
G(n,n−i)

[
voln−i(L∩ ξ)

kn−i

]n
dξ

)1/n

, (1.2)
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where voli(L ∩ ξ) denotes the i-dimensional volume of intersection of L with an
i-dimensional subspace ξ ⊂Rn.

Grinberg [4] proved that both the affine quermassintegrals and the dual affine quer-
massintegrals are invariant under volume-preserving affine transformations.

For star bodies, the dual affine quermassintegrals were studied in [3, 4, 7, 10]. The aim
of this paper is to study them further. For reader’s convenience, we try to make the paper
self-contained. This paper, except for the introduction, is divided into three sections. In
Section 2 we recall some basics about convex bodies, star bodies, and dual mixed volume.

In Section 3, we introduce the concept of the mixed p-dual affine quermassintegrals
and establish the Minkowski inequality for them (Theorem 3.1). As an application, the
dual Brunn-Minkowski inequality for the dual affine quermassintegrals is obtained.

In Section 4, we establish a connection between the affine quermassintegrals and the
dual affine quermassintegrals for a given convex body.

2. Notation and preliminary works

As usual, Sn−1 denotes the unit sphere, Bn the unit ball, and o the origin in Euclidean
n-space Rn.

Let K be a nonempty compact convex body in Rn, the support function hK of K is
defined by

hK (u)=max{u · x : x ∈ K}, u∈ Sn−1, (2.1)

where u · x denotes the usual inner product of u and x in Rn.
If K is a convex body that contains the origin in its interior, the polar body K∗ of K ,

with respect to the origin, is defined by

K∗ = {x ∈Rn | x · y ≤ 1, y ∈ K
}
. (2.2)

For a compact subset L of Rn, which is star-shaped with respect to the origin, we will
use ρ(L,·) to denote its radial function; that is, for u∈ Sn−1,

ρ(L,u)= ρL(u)=max{λ > 0 : λu∈ L}. (2.3)

If ρ(L,·) is continuous and positive, L will be called a star body.
Let �n

o denote the set of star bodies in Rn containing the origin in their interiors.
Two star bodies K ,L ∈ �n

o are said to be dilatate (of one another) if ρ(K ,u)/ρ(L,u) is
independent of u∈ Sn−1.

Let Lj ∈�n
o (1≤ j ≤ n). The dual mixed volume Ṽ(L1, . . . ,Ln) is defined by

Ṽ(L1, . . . ,Ln)= 1
n

∫
Sn−1

ρL1 (u)ρL2 (u)···ρLn(u)du. (2.4)

We use the notation Ṽ(L1, i1; . . . ;Ln, in) for the dual mixed volume in which Lj appears i j
times.

If xi ∈ Rn, 1 ≤ i ≤ m, then x1+̃··· +̃xm is defined to be the usual vector sum of the
points xi, if all of them belong to a line through o, and 0 otherwise.
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Let Li ∈�n
o and ti ≥ 0, 1≤ i≤m, then

t1L1+̃··· +̃tmLm =
{
t1x1+̃··· +̃tmxm : xi ∈ Li

}
(2.5)

is called a radial linear combination.
The following elementary property of dual mixed volumes will be used later. For

K ,L,Lj ∈�n
o (1≤ j ≤ n− 1),

Ṽ
(
L1, . . . ,Ln−1,K+̃L

)= Ṽ
(
L1, . . . ,Ln−1,K

)
+ Ṽ(L1, . . . ,Ln−1,L

)
. (2.6)

For K ,L∈�n
o , the Minkowski inequality for dual mixed volumes [3, page 373] states

Ṽ(K ,n− p;L, p)n ≤V(K)n−pV(L)p, (2.7)

with equality if and only if K is a dilatate of L.
The above elementary results (and definitions) are from the theory of convex bodies.

The reader may consult the standard works on the subject [1, 3, 5, 9, 10] for reference.

3. The dual Brunn-Minkowski inequalities for dual affine quermassintegrals

In this section, we will prove the dual Brunn-Minkowski inequality for the dual harmonic
quermassintegrals. At first, we introduce the concept of mixed p-dual affine quermassin-
tegrals.

Let K ,L∈�n
o , ξ ∈G(n, i) and 0≤ p ≤ i. We define mixed p-dual affine quermassinte-

grals, Φ̃p,i(K ,L). Let first Ṽp,i(K ,L;ξ) by

Ṽp,i(K ,L;ξ)= Ṽ(K ∩ ξ, i− p ;L∩ ξ, p). (3.1)

It is easy to verify that Ṽp,i(K ,K ;ξ) = voli(K ∩ ξ), for all 0 ≤ p ≤ n− i, and Ṽi,i(K ,L) =
voli(L∩ ξ), for all K .

Now we define the mixed p-dual affine quermassintegrals Φ̃p,i(K ,L) by

Φ̃p,i(K ,L)= kn

(∫
G(n,n−i)

[
Ṽp,n−i(K ,L;ξ)

kn−i

]n
dξ

)1/n

. (3.2)

If p = 1, we will write Φ̃i(K ,L), rather than Φ̃1,i(K ,L). It follows that Φ̃p,i(K ,K)= Φ̃i(K),

for all 0≤ p ≤ n− i and Φ̃n−i,i(K ,L)= Φ̃i(L), for all K .
For the mixed p-dual affine quermassintegrals, we have the following Minkowski in-

equality.

Theorem 3.1. Let K ,L∈�n
o and 0≤ i < n. If 0≤ p ≤ i, then

Φ̃p,i(K ,L)n−i ≤ Φ̃i(K)n−i−pΦ̃i(L)p, (3.3)

with equality if and only if K is a dilatate of L.
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Proof. Let ξ ∈G(n,n− i). By (2.7), we get

Ṽp,n−i(K ,L;ξ)= Ṽ(K ∩ ξ, n− i− p;L∩ ξ, p)

≤ voln−i(K ∩ ξ)(n−i−p)/(n−i) voln−i(L∩ ξ)p/(n−i).
(3.4)

According to (3.4) and the Hölder integral inequality, we have

Φ̃p,i(K ,L)= kn

(∫
G(n,n−i)

[
Ṽp,n−i(K , L;ξ)

kn−i

]n
dμi(ξ)

)1/n

≤ kn

(∫
G(n,n−i)

[
voln−i(K ∩ ξ)

kn−i

]n(n−i−p)/(n−i)[voln−i(L∩ ξ)
kn−i

]np/(n−i)
dμi(ξ)

)1/n

≤ Φ̃i(K)(n−i−p)/(n−i)Φ̃i(L)p/(n−i).
(3.5)

By the equality conditions of Hölder integral inequality and the Minkowski inequality
for dual mixed volumes, the equality of (3.3) holds if and only if K is a dilatate of L. �

As an application of Theorem 3.1, we have the following dual Brunn-Minkowski in-
equality for the dual affine quermassintegrals.

Theorem 3.2. Let K ,L∈�n
o and 0≤ i≤ n− 1. Then

Φ̃i(K+̃L)1/(n−i) ≤ Φ̃i(K)1/(n−i) + Φ̃i(L)1/(n−i), (3.6)

with equality if and only if K is a dilatate of L.

Proof. Let ξ ∈G(n, i) and K ,L∈�n
o , it is easy to prove that

(K+̃L)∩ ξ = (K ∩ ξ)+̃(L∩ ξ). (3.7)

In fact, for u∈ Sn−1∩ ξ, we have

ρ(K+̃L)∩ξ(u)= ρK+̃L(u)= ρK (u) + ρL(u)= ρK∩ξ(u) + ρL∩ξ(u)= ρK∩ξ+̃L∩ξ(u). (3.8)

By (2.6), (3.7), forM ∈�n
o , we have

Ṽ1,i(M,K+̃L;ξ)= Ṽ
(
M∩ ξ, i− 1; (K+̃L)∩ ξ

)
= Ṽ

(
M∩ ξ, i− 1; (K ∩ ξ)+̃(L∩ ξ)

)
= Ṽ(M∩ ξ, i− 1; K ∩ ξ) + Ṽ(M∩ ξ, i− 1; L∩ ξ)

= Ṽ1,i(M,K ;ξ) + Ṽ1,i(M,L;ξ).

(3.9)
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According to (3.2) and Minkowski integral inequality, we have

Φ̃i(M,K+̃L)= kn

(∫
G(n,n−i)

[
Ṽ1,n−i(M,K+̃L;ξ)

kn−i

]n
dμn−i(ξ)

)1/n

= kn

(∫
G(n,n−i)

[
Ṽ1,n−i(M,K ;ξ) + Ṽ1,n−i(M,L;ξ)

kn−i

]n
dμn−i(ξ)

)1/n

≤ Φ̃i(M,K) + Φ̃i(M,L)≤ Φ̃i(M)(n−i−1)/(n−i)
(
Φ̃i(K)1/(n−i) + Φ̃i(L)1/(n−i)

)
,

(3.10)

with equality if and only if K and L are dilatate ofM. Now we take K+̃L forM, and recall
that Φ̃i(K ,K)= Φ̃i(K); then Theorem 3.2 follows. �

Remark 3.3. Theorem 3.2 is a dual of Lutwak’s inequality for affine quermassintegrals,
which was proved in [7]: let K and L be convex bodies in Rn and 0≤ i≤ n− 1, then

Φi(K +L)1/(n−i) ≥Φi(K)1/(n−i) +Φi(L)1/(n−i), (3.11)

with equality if and only if K and L are homothetic.

4. More about the dual affine quermassintegrals

Let K be a convex body of constant width, K∗ is the polar body of K . We proved that
among convex bodies of constant width, precisely the ball attains the minimal value of
Φ̃n−1(K∗).

Theorem 4.1. Let K ∈�n
o . If

vol1
(
K | ξ)= vol1

(
Bn | ξ

)
, (4.1)

for all ξ ∈G(n,1), then

Φ̃n−1
(
K∗
)≥ Φ̃n−1

(
B∗n
)
, (4.2)

with equality if and only if K = Bn.

Proof. For all u∈ Sn−1, (4.1) is equivalent to

h(K ,u) +h(K ,−u)= 2, (4.3)

and the chord length of K∗ in direction u satisfies

ρ
(
K∗,u

)
+ ρ
(
K∗,−u)≥ 4

h(K ,u) +h(K ,−u) = 2, (4.4)

where we have used the inequality between arthmetic and harmonic means.
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Notice that if ξ ∈G(n,1), then vol1(K∗ ∩ ξ) is just the chord length of K∗ along ξ. By
(1.2), we have

Φ̃n−1
(
K∗
)= kn

(∫
G(n,1)

[
vol1

(
K∗ ∩ ξ

)
2

]n
dξ

)1/n

= kn

(
1
nkn

∫
Sn−1

[
ρ
(
K∗,u

)
+ ρ
(
K∗,−u)

2

]n
du

)1/n

≥ kn = Φ̃n−1
(
B∗n
)
.

(4.5)

Equality holds if and only if h(K ,u) = h(K ,−u) = 1, which implies K is a unit ball cen-
tered at the origin. �

The following theorem which establishes a connection between the affine quermassin-
tegrals and the dual affin equermassintegrals generalizes the Blaschke-Santaló inequality.

Theorem 4.2. Let K be a centered convex body and 0≤ i < n. Then

Φ̃i
(
K∗
)
Φi(K)≤ k2n, (4.6)

with equality if and only if K is an ellipsoid.

To prove the inequality (4.6), the following lemma will be needed.

Lemma 4.3 [8]. Let K ∈�n
o and ξ ∈G(n, i). Then

K∗ ∩ ξ = (K | ξ)∗. (4.7)

Proof of Theorem 4.2. Let s = n− i, and ξ ∈ G(n,s). By the Blaschke-Santaló inequality,
for the body K | ξ in ξ, we have

vols
[(
K | ξ)∗]vols (K | ξ)≤ k2s , (4.8)

with equality if and only if K | ξ is an ellipsoid in ξ.
According to Lemma 4.3, we obtain

[
Vs
(
K∗ ∩ ξ

)
ks

]n
≤
[
Vs
(
K | ξ)
ks

]−n
, (4.9)

with equality if and only if K | ξ is an ellipsoid in ξ. We integrate both sides of inequality
(4.9) over G(n,s) and get

(
Φ̃i
(
K∗
)

kn

)n
≤
(
Φi(K)
kn

)−n
. (4.10)

This is the desired inequality

Φ̃i
(
K∗
)
Φi(K)≤ k2n, (4.11)

with equality if and only if K is an ellipsoid. The equality condition follows from the
fact that, for s > 1, ellipsoid is the only body all of whose s-dimensional projections are
s-dimensional ellipsoids (see [3, page 95]). �
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Remark 4.4. The case i= 0 of (4.6) is the well-known Blaschke-Santaló inequality.
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