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We denote by Γ(a) and Γ(a;z) the gamma and the incomplete gamma functions, respec-
tively. In this paper we prove some monotonicity results for the gamma function and
extend, to x > 0, a lower bound established by Elbert and Laforgia (2000) for the function∫ x
0 e

−tpdt = [Γ(1/p)−Γ(1/p;xp)]/p, with p > 1, only for 0 < x < (9(3p+1)/4(2p+1))1/p.
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under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and background

In a paper of 1984, Kershaw and Laforgia [4] investigated, for real α and positive x, some
monotonicity properties of the function xα[Γ(1 + 1/x)]x where, as usual, Γ denotes the
gamma function defined by

Γ(a)=
∫∞

0
e−tta−1dt, a > 0. (1.1)

In particular they proved that for x > 0 and α = 0 the function [Γ(1 + 1/x)]x decreases
with x, while when α=1 the function x[Γ(1+1/x)]x increases.Moreover they also showed
that the values α= 0 and α= 1, in the properties mentioned above, cannot be improved if
x ∈ (0,+∞). In this paper we continue the investigation on the monotonicity properties
for the gamma function proving, in Section 2, the following theorem.

Theorem 1.1. The functions f (x) = Γ(x + 1/x), g(x) = [Γ(x + 1/x)]x and h(x) = Γ′(x +
1/x) decrease for 0 < x < 1, while increase for x > 1.

In Section 3, we extend a result previously established by Elbert and Laforgia [2] re-
lated to a lower bound for the integral function

∫ x
0 e

−tpdt with p > 1. This function can be
expressed by the gamma function (1.1) and incomplete gamma function defined by

Γ(a;z)=
∫∞

z
e−tta−1dt, a > 0, z > 0. (1.2)
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In fact we have

∫ x

0
e−t

p
dt = Γ(1/p)−Γ

(
1/p;xp

)

p
. (1.3)

If p = 2 it reduces, by means of a multiplicative constant, to the well-known error func-
tion erf(x)

erf(x)= 2√
π

∫ x

0
e−t

2
dt (1.4)

or to the complementary error function erf c(x)

erf c(x)= 2√
π

∫∞

x
e−t

2
dt = 1− 2√

π

∫ x

0
e−t

2
dt. (1.5)

Many authors established inequalities for the function
∫ x
0 e

−tpdt.
Gautschi [3] proved the following lower and upper bounds

1
2

[(
xp +2

)1/p− x
]
< ex

p

∫∞

x
e−t

p
dt ≤ ap

[√

x2 +
1
ap
− x

]

, (1.6)

where p > 1, x ≥ 0 and

ap =
[
Γ
(
1+

1
p

)]p/(p−1)
. (1.7)

The integral in (1.6) can be expressed in the following way

∫∞

x
e−t

p
dt = 1

p
Γ
(
1
p
;xp
)
= 1

p
Γ
(
1
p

)
−
∫ x

0
e−t

p
dt. (1.8)

Alzer [1] found the following inequalities

Γ
(
1+

1
p

)
(
1− e−x

p)1/p
<
∫ x

0
e−t

p
dt < Γ

(
1+

1
p

)
(
1− e−αx

p)1/p
, (1.9)

where p > 1, x > 0 and

α=
[
Γ
(
1+

1
p

)]−p
. (1.10)

Feng Qi and Sen-lin Guo [5] establisched, among others, the following lower bounds
for p > 1

1
2
x
(
1+ e−x

p)≤
∫ x

0
e−t

p
dt, (1.11)
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if 0 < x < (1− 1/p)1/p, while

1
2

(
1− 1

p

)1/p(
1+ e1/p−1

)
+
(
x−

(
1− 1

p

)1/p)
e−((x+(1−1/p)

1/p)/2)p ≤
∫ x

0
e−t

p
dt, (1.12)

if x > (1− 1/p)1/p.
Elbert and Laforgia established in [2] the following estimations for the functions

∫ x
0e

tpdt
and

∫ x
0 e

−tpdt

1+
u
(
xp
)

p+1
<
1
x

∫ x

0
et

p
dt < 1+

u
(
xp
)

p
, for x > 0, p > 1, (1.13)

1− v
(
xp
)

p+1
<
1
x

∫ x

0
e−t

p
dt, for 0 < x <

(
9(3p+1)
4(2p+1)

)1/p
, p > 1, (1.14)

where

u(x)=
∫ x

0

et − 1
t

dt, v(x)=
∫ x

0

1− e−t

t
dt. (1.15)

In Section 3 we prove the following extension of the lower bound (1.14).

Theorem 1.2. For p > 1, the inequality (1.14) holds for x > 0.

We conclude this paper, Section 4, showing some numerical results related to this last
theorem.

2. Proof of Theorem 1.1

Proof. It is easy to note that minx>0(x + 1/x) = 2, consequently Γ′(x + 1/x) > 0 for every
x > 0. We have

f ′(x)=
(
1− 1

x2

)
Γ′
(
x+

1
x

)
. (2.1)

Since f ′(x) < 0 for x ∈ (0,1) and f ′(x) > 0 for x > 1 it follows that f (x) decreases for
0 < x < 1, while increases for x > 1.

Now consider G(x)= log[g(x)]. We have G(x)= x log[Γ(x+1/x)]. Then

G′(x)= log
[
Γ
(
x+

1
x

)]
+
(
x− 1

x

)
ψ
(
x+

1
x

)
,

G′′(x)= 2ψ
(
x+

1
x

)
+
(
x− 1

x

)(
1− 1

x2

)
ψ′
(
x+

1
x

)
.

(2.2)

Since G′(1)= 0 and G′′(x) > 0 for x > 0 it follows that G′(x) < 0 for x ∈ (0,1) and G′(x) >
0 for x ∈ (1,+∞). Therefore G(x), and consequently g(x), decrease for 0 < x < 1, while
increase for x > 1.

Finally

h′(x)=
(
1− 1

x2

)
Γ′′
(
x+

1
x

)
. (2.3)
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Since Γ′′(x+1/x) > 0, hence h′(x) < 0 for x ∈ (0,1) and h′(x) > 0 for x > 1. It follows that
h(x) decreases on 0 < x < 1, while increases for x > 1. �

3. Proof of Theorem 1.2

By means the series expansion of the exponential function e−tp , we have

∫ x

0
e−t

p
dt =

∞∑

n=0
(−1)n xnp+1

(np+1)n!
,

v
(
xp
)=

∞∑

n=1
(−1)n−1 x

np

nn!
,

(3.1)

consequently the inequality (1.14) is equivalent to the following

1− 1
p+1

∞∑

n=1
(−1)n−1 x

np

nn!
<
1
x

∞∑

n=0
(−1)n xnp+1

(np+1)n!
, (3.2)

that is,

1− xp

p+1
+

x2p

(p+1)2 · 2! −
x3p

(p+1)3 · 3! + ··· < 1− xp

p+1
+

x2p

(2p+1)2!
− x3p

(3p+1)3!
+ ··· .
(3.3)

Since for every integer n

1
(np+1)n!

− 1
n(p+1)n!

=− n− 1
(p+1)n ·n!(np+1)

, (3.4)

by putting z = xp the inequality (1.14) is equivalent to

s(z)= 1
p+1

∞∑

n=2
(−1)n n− 1

(np+1)n ·n!z
n > 0; (3.5)

it is clear that the series to the right-hand side of (3.5) is convergent for any z ∈ R. We
can observe that, for p > 1,

(p+1)s3(z)=
3∑

n=2
(−1)n n− 1

(np+1)n ·n!z
n = z2

(
1

4(2p+1)
− z

9(3p+1)

)
> 0 (3.6)

when 0 < z < 9(3p+1)/4(2p+1). As a consequence of a well known property of Leibniz
type series we have 0 < s3(z) < s(z) for 0 < z < 9(3p+1)/4(2p+1) just like was proved by
Elbert and Laforgia in [2].

It is easy to observe that z = 0 represents a relative minimum point for the function
s(z) defined in (3.5). In fact we have s(z) > 0 for z < 0 and 0 < z < 9(3p+1)/4(2p+1).

Now we can prove Theorem 1.2 by using the following lemma.

Lemma 3.1. The function s(z), defined in (3.5), have not any relative maximum point in
the interval (0,+∞).
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Proof. For any n≥ 1 consider the partial sum of series (3.5)

(p+1)s2n(z)=
2n∑

k=2
(−1)k k− 1

(kp+1)k · k!z
k (3.7)

and multiply this expression by pz1/p; we have

pz1/p(p+1)s2n(z)=
2n∑

k=2
(−1)k k− 1

k · k!((kp+1)/p)
z(kp+1)/p. (3.8)

Deriving and dividing by z1/p−1 we obtain

(p+1)
(
s2n(z) + pzs′2n(z)

)=
2n∑

k=2
(−1)k k− 1

k · k! z
k. (3.9)

A new derivation give us the following expression

(p+1)
(
(p+1)s′2n(z) + pzs′′2n(z)

)=
2n∑

k=2
(−1)k k− 1

k!
zk−1. (3.10)

Dividing by z and re-writing, in equivalent way, the indexes into the sum to the right-
hand side, the last expression yields

(p+1)
(
(p+1)

s′2n(z)
z

+ ps′′2n(z)
)
=

2n−2∑

k=0
(−1)k k+1

(k+2)!
zk. (3.11)

Now consider the following series

∞∑

k=0
(−1)k k+1

(k+2)!
zk; (3.12)

we have for every z ∈R

∞∑

k=0
(−1)k k+1

(k+2)!
zk =

∞∑

k=0
(−1)k zk

(k+1)!
−

∞∑

k=0
(−1)k zk

(k+2)!

=
(
1− z

2
+
z2

3!
− z3

4!
+ ···

)
−
(
1
2
− z

3!
+
z2

4!
− z3

5!
+ ···

)

= 1
z

(
z− z2

2
+
z3

3!
− z4

4!
+ ···

)
− 1
z2

(
z2

2
− z3

3!
+
z4

4!
− z5

5!
+ ···

)

= 1− e−z

z
− e−z− 1+ z

z2
= f (z)

z2
,

(3.13)

where f (z)= 1− (z+1)e−z.
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Since f (0)= 0 and f ′(z)= ze−z > 0 for z > 0, it follows that f (z) > 0∀z ∈ (0,+∞).
From (3.11), by n→ +∞, we obtain

(p+1)
(
(p+1)

s′(z)
z

+ ps′′(z)
)
= f (z)

z2
, (3.14)

for every z ∈R. If we assume that z̄ > 0 is a relative maximum point of s(z) then s′(z̄)= 0
and s′′(z̄) < 0, but this produces an evident contradiction when we substitute z = z̄ in
(3.14). �

Proof of Theorem 1.2. Since s(z) > 0 ∀z ∈ (0,9(3p+1)/4(2p+1)), if we assume the exis-
tence of a point z̄ > 9(3p+1)/4(2p+1) such that s(z̄) < 0 then there exists at least a point
ζ ∈ (9(3p + 1)/4(2p + 1), z̄) such that s(ζ) = 0. Let ζ , eventually, be the smallest positive
zero of s(z), hence we have s(0) = s(ζ) = 0 and s(z) > 0 ∀z ∈ (0,ζ). It follows therefore,
that there exists a relative maximum point z0 ∈ (0,ζ) for the function s(z), but this is in
contradiction whit Lemma 3.1. �

4. Concluding remark on Theorem 1.2

In this concluding section we report some numerical results, obtained by means the com-
puter algebra systemMathematica ©, which justify the importance of the result obtained
by means of Theorem 1.2. We briefly put

I(x)=
∫ x

0
e−t

p
dt, (4.1)

while denote with

A(x)= Γ
(
1+

1
p

)
(
1− e−x

p)1/p
(4.2)

the lower bound established by Alzer [1], with

G(x)= 1
p
Γ
(
1
p

)
− e−x

p
ap

[√

x2 +
1
ap
− x

]

(4.3)

that one established by Gautschi [3], with

Q(x)= 1
2

(
1− 1

p

)1/p
(1+ e1/p−1) +

(
x−

(
1− 1

p

)1/p)
e−((x+(1−1/p)

1/p)/2)p (4.4)

that one established by Qi-Guo [5] when x > (1− 1/p)1/p, and finally with

E(x)= 1− v
(
xp
)

p+1
(4.5)

that one established by Elbert-Laforgia [2].
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Therefore the following numerical results are obtained:
(i) for p = 50 and x = 1.026 > (9(3p+1)/4(2p+1))1/p = 1.023456, we have

I(x)−E(x)= 0.000272222,

I(x)−A(x)= 0.000417332,

I(x)−G(x)=−0.0108717,
I(x)−Q(x)= 0.301341;

(4.6)

(ii) for p = 100 and x = 1.013 > (9(3p+1)/4(2p+1))1/p = 1.01222,

I(x)−E(x)= 0.0000690398,

I(x)−A(x)= 0.000205222,

I(x)−G(x)=−0.0107205,
I(x)−Q(x)= 0.308547;

(4.7)

(iii) for p = 200 and x = 1.0065 > (9(3p+1)/4(2p+1))1/p = 1.0061,

I(x)−E(x)= 0.0000173853,

I(x)−A(x)= 0.000101731,

I(x)−G(x)=−0.106414,
I(x)−Q(x)= 0.312265.

(4.8)

In these three numerical examples we can note that there exist values of x > (9(3p +
1)/4(2p + 1))1/p such that E(x) represents the best lower bound of I(x) with respect to
A(x), Q(x), and G(x). Moreover we state that this is always true in general, more pre-
ciously we state the following conjecture: for any p > 1, there exists a right neighbour-
hood of (9(3p + 1)/4(2p + 1))1/p such that E(x) represents the best lower bound of I(x)
with respect to A(x), Q(x), and G(x).
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