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We derive oscillation and nonoscillation criteria for the one-dimensional p-Laplacian in
terms of an eigenvalue inequality for a mixed problem.We generalize the results obtained
in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity.
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1. Introduction

In this work we study the following equation:

(|u′|p−2u′)′ + q(t)|u|p−2u= 0. (1.1)

Here, 1 < p <∞, t ∈ [a,+∞), and q(t) is a nonnegative continuous function not vanishing
in subintervals of the form (b,+∞).

The solutions of (1.1) are classified as oscillatory or nonoscillatory. In the first case,
a solution has an infinite number of isolated zeros; in the second case, a solution has
a finite number of zeros. However, from the Sturm-Liouville theory for the p-laplacian
([11, 16, 22]; see also the recent monograph [10]) if one solution is oscillatory (resp.,
nonoscillatory), then every solution is oscillatory (resp., nonoscillatory). Hence, we may
speak about oscillatory or nonoscillatory equations, instead of solutions.

For the p-laplacian operator, there are several criteria for oscillation and nonoscilla-
tion in the literature; see for example [6–9]. Among the class of nonoscillatory equations,
when any solution has at most one zero in [a,+∞), the equation is called disconjugate on
[a,+∞).

The disconjugacy phenomenon is considerably more difficult and less understood
than nonoscillation; we refer the interested reader to the surveys [3, 5, 23] for the lin-
ear case p = 2.
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2 Eigenvalues and disconjugacy

We consider first the disconjugacy problem on [a,+∞). The relationship between dis-
conjugacy and the eigenvalues of a mixed problem

−u′′ = λq(t)u, u(a)= 0= u′(b) (1.2)

is due to Nehari [17], and was generalized to different equations in [14, 20, 24]. We prove
here the following theorems generalizing some of their results for the p-laplacian.

Theorem 1.1. Let λ1 be the first eigenvalue of

(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u(a)= 0= u′(b), a < b, (1.3)

then (1.1) is disconjugate in [a,+∞) if and only if λ1 > 1 for all b > a.

Also, we have the following result for oscillatory equations.

Theorem 1.2. Equation (1.1) is oscillatory if and only if there exists a sequence of intervals

[an,bn] with an < bn, an ↗ +∞ as n↗ +∞ such that the first eigenvalue λ(n)1 of

(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u
(
an
)= 0= u′

(
bn
)

(1.4)

satisfies λ(n)1 ≤ 1 for n≥ 1.

For the linear case p = 2 and more general functions q(t), the proof in [23] follows by
analyzing a Lagrange identity formed by a positive solution of (1.1) and an eigenfunction,
and by using Riccati equation techniques. Our main tool for the proof of both theorems
is a Picone type identity as in [1, 13] and the variational characterization of the first
eigenvalue which can be obtained from the Rayleigh quotient (see [4, 12], and also [19]
for the equivalence between several abstract formulations),

λ1 = inf
u∈W

∫ b
a |u′|pdt

∫ b
a q(t)|u|pdt

, (1.5)

whereW =W
1,p
0 (a,b) \ {0} for the Dirichlet boundary condition, andW = {u∈W1,p(a,

b) : u(a)= 0} \ {0} for the mixed problem (1.3).
As an application, we prove Leighton-Wintner theorem (see [7, 8]) for oscillation in

the half line.
Let us note that the eigenvalue problem for the p-laplacian has been widely studied in

recent years; see, for example, [2, 22] among several others, and the references therein.
Hence, a characterization for disconjugacy in terms of eigenvalues could be a useful tool.

Moreover, we also consider the disconjugacy phenomenon in a bounded closed inter-
val [a,b]. We will show that the existence of two zeros in [a,b] of a solution u is related
with the Dirichlet eigenvalue problem

−(|u′|p−2u′)′ = λq(t)|u|p−2u, u(a)= 0= u(b), (1.6)

and (1.1) is disconjugate if and only if the first eigenvalue satisfies λ1 > 1. One implication
follows from the Sturmian comparison theorem.
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Lemma 1.3. If (1.1) is disconjugate on [a,b], then the first Dirichlet eigenvalue is greater
than one.

In order to prove the other implication, it is convenient to introduce the p-degree
functional

F(u;a,b)=
∫ b

a
|u′|p− q(t)|u|pdt (1.7)

which is positive for every u∈W
1,p
0 (a,b) not identically zero on (a,b) if and only if (1.1)

is disconjugate on [a,b]. This equivalence can be found in the so-called Roundabout
theorem [8]. Hence, we have another equivalent criterion for disconjugacy on bounded
closed intervals.

As far as we know, this fact was not observed previously even for the linear case. There-
fore, the problem of finding disconjugacy conditions on finite intervals is related to the
problem of find lower bounds for eigenvalues. The search of lower bounds of eigenvalues
has a long history, which can be traced back to Sturm and Liouville; lower bounds for the
p-Laplacian eigenvalues were obtained in [18] by generalizing Lyapunov inequality [15],
a classical tool in oscillation theory.

The paper is organized as follows: in Section 2 we prove the main Theorems 1.1 and
1.2; in Section 3 we prove Lemma 1.3 and discuss its relationship with the Roundabout
theorem.

2. Main theorems

Our main tool is the following Picone-type identity which can be found in [1].

Theorem 2.1. Let v > 0, u≥ 0 be differentiable a.e. in (a,b). Denote

L(u,v)= |u′|p + (p− 1)
up

vp
|v′|p− p

up−1

vp−1
|v′|p−2v′u′,

R(u,v)= |u′|p−|v′|p−2v′
(

up

vp−1

)′
.

(2.1)

Then,
(i) L(u,v)= R(u,v),
(ii) L(u,v)≥ 0 a.e. in (a,b),
(iii) L(u,v)= 0 a.e. in (a,b) if and only if u= kv for some k ∈R.

We are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let us assume that (1.1) is disconjugate, and let us prove that λ1 > 1.
To this end we suppose that λ1 ≤ 1 and first we will show that λ1 < 1 is not possible in any
interval [a,b]. Then, if λ1 = 1 for some interval, we will find a larger interval [a,c] such

that the corresponding first eigenvalue satisfies λ(c)1 < 1, a contradiction.
Hence, we suppose that there exist b > a and λ≤ 1 such that problem (1.3) has a non-

trivial eigenfunction u. Also, since (1.1) is disconjugate, there exists a positive solution v
of (1.1) on [a,+∞). Then, v′(t) > 0 on [a,+∞).
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From the definition of R(u,v) in Theorem 2.1, we have

∫ b

a
R(u,v)dt =

∫ b

a
|u′|pdt−

∫ b

a
|v′|p−2v′

(
up

vp−1

)′
dt. (2.2)

Now, we use the weak formulation of Problems (1.1) and (1.3), multiplying the first
by
(
up/vp−1

)
and the second by u, obtaining

∫ b

a
R(u,v)dt+ |v′(b)|p−2v′(b) up(b)

vp−1(b)
= (λ− 1)

∫ b

a
q(t)|u|pdt. (2.3)

Since R(u,v)= L(u,v)≥ 0, and we assume that λ≤ 1, we have λ= 1.
Let us take c > b, and let us consider the eigenvalue problem in (a,c):

(|w′|p−2w′)′ + λq(t)|w|p−2w = 0, w(a)= 0=w′(c). (2.4)

We extend the eigenfunction u as u(b) in (b,c), and let us call it ũ. Since ũ is an admis-

sible function in the variational characterization of the first eigenvalue λ(c)1 in (a,c), we
obtain

λ(c)1 = inf
w∈W1,p(a,c),w(a)=0

∫ c
a |w′|pdt∫ c

a q(t)|w|pdt
≤

∫ c
a |ũ′|pdt∫ c

a q(t)|ũ|pdt
=

∫ b
a |u′|pdt

∫ b
a q(t)|u|pdt+

∫ c
b q(t)u

p(b)dt
.

(2.5)

Let us observe that λ(c)1 < 1 unless q(t) ≡ 0 in (b,c). Since this argument is valid for
each c > b, and q(t) cannot vanish identically on intervals of the form (b,+∞), there

exists an interval (a,c) where the first eigenvalue satisfies λ(c)1 < 1, which is not possible by
the previous argument.

Let us prove now the converse. Let us assume that the first eigenvalue λ1 of

(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u(a)= 0= u′(b), a < b (2.6)

is greater than 1. If (1.1) is not disconjugate in [a,+∞), there exists a solution v with two
zeros t1, t2 ∈ [a,+∞). Now, we choose v as a test function for the eigenvalue problem in
[a, t2], extending it by zero in [a, t1). Clearly, the Rayleigh quotient gives

λ1 = inf
u∈W1,p(a,b),u(a)=0

∫ b
a |u′|pdt

∫ b
a q(t)|u|pdt

≤
∫ t2
t1 |v′|pdt∫ t2

t1 q(t)|v|pdt
= 1, (2.7)

a contradiction. Hence, (1.1) must be disconjugate. �

Proof of Theorem 1.2. Let us assume first that (1.1) is oscillatory. Therefore, there exists
a solution v with infinitely many zeros a < t1 < t2 < . . . ↗ +∞. Let us choose an = tn, bn =
tn+1. The first Dirichlet eigenfunction in [an,bn] coincides with v up to a multiplicative

constant, with eigenvalue equal to 1. The eigenvalue λ(n)1 of

(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u
(
an
)= 0= u′

(
bn
)

(2.8)
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satisfies λ(n)1 ≤ 1, since v is an admissible function in the variational characterization of it,
and

λ(n)1 = inf
u∈W1,p(an,bn),u(an)=0

∫ bn
an |u′|pdt

∫ bn
an q(t)|u|pdt

≤
∫ bn
an |v′|pdt

∫ bn
an q(t)|v|pdt

= 1. (2.9)

Suppose now that the eigenvalue condition is satisfied for a family of intervals [an,bn].
Let us suppose that there exists a nonoscillatory solution u, and let us take one of the in-
tervals with aN greater than the last zero of u. Therefore, (1.1) is disconjugate in [aN ,+∞)
(if not, there exists a solution with two zeros, and the Sturmian theory implies that u

must have a zero between them). Hence, from Theorem 1.1 we get λ(N)
1 > 1, a contradic-

tion. �

From Theorem 1.2 we have the following classical oscillation result.

Theorem 2.2 (Leighton-Wintner theorem). If
∫ +∞
a q(t)dt = +∞, then (1.1) is oscillatory

on [a,+∞).

Proof. The proof follows from Theorem 1.2. For any an ≥ a, we choose bn such that

∫ bn

an+1
q(t)dt ≥ 1 (2.10)

and we compute the Rayleigh quotient for the first eigenvalue λ(n)1 of the mixed problem
(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u

(
an
)= 0= u′

(
bn
)

(2.11)

with the test function

v =
⎧
⎨

⎩

t− an if t ∈ [an,an +1
)
,

1 if t ∈ [an +1,bn
]
.

(2.12)

Hence,

λ(n)1 = inf
u∈W1,p(an,bn),u(an)=0

∫ bn
an |u′|pdt

∫ bn
an q(t)|u|pdt

≤
∫ bn
an |v′|pdt

∫ bn
an q(t)|v|pdt

< 1. (2.13)

�

Remark 2.3. A different proof of this theorem can be found in [10], without sign condi-
tion on q(t).

3. Disconjugacy on bounded intervals

In this section we consider the disconjugacy problem on a bounded closed interval. We
prove first Lemma 1.3.

Proof of Lemma 1.3. Let us suppose that the first eigenvalue λ1 of
(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u(a)= 0= u(b) (3.1)

satisfies λ1 ≤ 1.
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If λ1 = 1, the corresponding eigenfunction u satisfies u(a)= 0= u(b). Therefore (1.1)
is not disconjugate.

If λ1 < 1, let us consider the unique solution u of

(|u′|p−2u′)′ + q(t)|u|p−2u= 0 (3.2)

satisfying

u(a)= 0, u′(a)= 1. (3.3)

From the Sturmian oscillation theory, we conclude that u has a zero c between a and b,
and (1.1) is not disconjugate. �

Now we state the Roundabout theorem. Lemma 1.3 proves (i)⇒(v); we will prove only
(v)⇒(iv).

Theorem 3.1 (Roundabout theorem). Let q(t)≥ 0, q(t) 
= 0 on [a,b]. The following state-
ments are equivalent.

(i) Equation (1.1) is disconjugate on an interval I = [a,b]; that is, any nontrivial solu-
tion of (1.1) has at most one zero in I .

(ii) There exists a solution of (1.1) having no zero in [a,b].
(iii) There exists a solution w of the generalized Riccati equation corresponding to (1.1),

w′ + q(t) + (p− 1)|w|p′ = 0, p′ = p

p− 1
, (3.4)

which is defined on the whole interval [a,b].
(iv) The p-degree functional

F(u;a,b)=
∫ b

a
|u′|p− q(t)|u|pdt (3.5)

is positive for every u∈W
1,p
0 (a,b), u not identically zero on I .

(v) The first eigenvalue λ1 of

(|u′|p−2u′)′ + λq(t)|u|p−2u= 0, u(a)= 0= u(b) (3.6)

satisfies λ1 > 1.

Proof. From the variational characterization of the first eigenvalue,

λ1 = inf
u∈W1,p

0 (a,b)

∫ b
a |u′|pdt

∫ b
a q(t)|u|pdt

. (3.7)

Hence, if λ1 > 1, we have that

∫ b

a
|u′|pdt−

∫ b

a
q(t)|u|pdt ≥ (λ1− 1

)
∫ b

a
q(t)|u|pdt > 0 (3.8)

for every u∈W
1,p
0 (a,b), u 
= 0. �
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Remark 3.2. The eigenvalue problem in unbounded intervals was studied in [21]. How-
ever, it is not known if the eigenvalues can be characterized variationally.
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[12] S. Fučı́k and J. Nečas, Ljusternik-Schnirelmann theorem and nonlinear eigenvalue problems, Math-
ematische Nachrichten 53 (1972), 277–289.
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