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1. Introduction

From Nagumo [10], there have been many accomplishments on the study of the exis-
tence of solutions for boundary value problems (BVPs) using the theory of differential
inequality (cf. [1–9, 11–17]). However, for the nth-order nonlinear differential equations
with the nonlinear boundary conditions, results are very few. The authors made some
attempts to solve the nth-order Robin problem [14]. Now we are concerned with the
nth-order nonlinear BVP:

y(n) = f
(
t, y, y′, . . . , y(n−1)

)
,

Pi
(
y(a), y′(a), . . . , y(n−1)(a)

)
= 0, i= 1, . . . ,n− 1,

Pn
(
y(b), y′(b), . . . , y(n−1)(b)

)
= 0,

(1.1)

where t ∈ I = [a,b], f (t,ξ0,ξ1, . . . ,ξn−1) ∈ C(I × Rn,R), Pi(η0,η1, . . . ,ηn−1) ∈ C(Rn,R),
Pn(ζ0,ζ1, . . . ,ζn−1)∈ C(Rn,R).

Our method is not only modifying the nonlinear function in the original equations,
but also transforming the original nonlinear boundary conditions into some new bound-
ary conditions which are easy to discuss. Thus, we get the new BVP which will be dis-
cussed firstly, then the judgement of the existence of solutions for the original BVP will
be attained naturally. This technique dealing with the nonlinear problem is simpler and
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clearer compared with the method of shooting. However, it has scarcely been used in the
available reference materials.

The paper is organized as follows. In Section 2, we give out some basic concepts and
the preparative theorem. In Section 3, the main result is presented and proved. In Section
4, a more general BVP is studied. Finally, in Section 5, we use the results to solve an
example which cannot be solved by [1–17].

2. Preparative theorem

2.1. Basic concepts. We first define a function

δ(r,x,s)≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r if x < r,

x if r ≤ x ≤ s,

s if s < x,

(2.1)

where r,x,s∈R, r ≤ s.

Definition 2.1. Assume that α(t),β(t) ∈ Cn(I ,R). The pair of functions (α(t),β(t)) is
called a bounding function pair (or simply, a bounding pair) of BVP (1.1) in case there
exists N > 0 such that for all u(t)∈ Cn(I ,R):

(i) α( j)(t)≤ β( j)(t), t ∈ I , j = 0,1, . . . ,n− 2;
(ii) α(n)(t)≥ f (t,u(t),u′(t), . . . ,u(n−3)(t),α(n−2)(t),α(n−1)(t)), β(n)(t)≤ f (t,u(t),u′(t),

. . . ,u(n−3)(t),β(n−2)(t),β(n−1)(t)), where u( j)(t)= δ(α( j)(t),u( j)(t),β( j)(t)), j = 0,1,

. . . ,n− 3;
(iii) Pi(u(a), . . . ,u(i−2)(a),α(i−1)(a),α(i)(a),u(i+1)(a), . . . ,u(n−1)(a)) ≤ 0 ≤ Pi(u(a), . . . ,

u(i−2)(a),β(i−1)(a),β(i)(a),u(i+1)(a), . . . ,u(n−1)(a)), Pn(u(b), . . . ,u(n−3)(b),α(n−2)(b),
α(n−1)(b)) ≤ 0 ≤ Pn(u(b), . . . ,u(n−3)(b),β(n−2)(b),β(n−1)(b)), where i = 1,2, . . . ,
n−1, u(n−2)(a)=δ(α(n−2)(a),u(n−2)(a),β(n−2)(a)), u(n−1)(a)=δ(−N ,u(n−1)(a),N).

Definition 2.2. A continuous function f (t,ξ0, . . . ,ξn−1) is said to satisfy a Nagumo condi-
tion with respect to variable ξn−1 on the set

�={(t,ξ0, . . . ,ξn−1
) | t ∈ I ;

∣
∣ξj
∣
∣≤ r j , j=0,1, . . . ,n−2, r j is a positive constant; ξn−1 ∈ R

}

(2.2)

in case there exists function Φ(t)∈ C([0,+∞],(0,+∞)), such that

∣
∣ f
(
t,ξ0, . . . ,ξn−1

)∣∣≤Φ
(∣∣ξn−1

∣
∣),

∫ +∞ sds

Φ(s)
= +∞.

(2.3)

2.2. The modified problem. Assume that there are two functions α(t), β(t) satisfying

α( j)(t)≤ β( j)(t), j = 0,1, . . . ,n− 2. (2.4)
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We define function

f
(
t, y, y′, . . . , y(n−1)

)≡ f
(
t, y, y′, . . . , y(n−1)

)
+h
(
y(n−2)

)
, (2.5)

where y( j)(t) = δ(α( j)(t), y( j)(t),β( j)(t)) ( j = 0,1, . . . ,n− 2) and y(n−1)(t) = δ(−N , y(n−1)

(t),N). N is a positive constant such that

N >max
t∈I

{
2M
b− a

,
∣
∣α(n−1)(t)

∣
∣,
∣
∣β(n−1)(t)

∣
∣
}
, (2.6)

∫ N

2M/(b−a)
sds

Φ(s)
> 2M, (2.7)

in whichM >maxt∈I{|α(n−2)(t)|,|β(n−2)(t)|}. h(y(n−2)) is continuous, bounded, and

h
(
y(n−2)

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

< 0 if y(n−2) < α(n−2),

= 0 if α(n−2) ≤ y(n−2) ≤ β(n−2),

> 0 if y(n−2) > β(n−2).

(2.8)

Such function h(·) is easy to obtain, for example, let

h
(
y(n−2)

)≡ y(n−2)− y(n−2)

1+
∣
∣y(n−2)− y(n−2)

∣
∣ . (2.9)

In addition, we define

Pi

(
y(t), y′(t), . . . , y(n−1)(t)

)

≡ δ
(
α(i−1)(t), y(i−1)(t)−Pi

(
y(t), y′(t), . . . , y(n−1)(t)

)
,β(i−1)(t)

)
, i= 1,2, . . . ,n− 1,

Pn

(
y(t), y′(t), . . . , y(n−1)(t)

)

≡ δ
(
α(n−2)(t), y(n−2)(t)−Pn

(
y(t), y′(t), . . . , y(n−1)(t)

)
,β(n−2)(t)

)
.

(2.10)

Then we consider the following modified problem:

y(n) = f
(
t, y, y′, . . . , y(n−1)

)
,

y(i−1)(a)= Pi

(
y(a), y′(a), . . . , y(n−1)(a)

)
, i= 1, . . . ,n− 1,

y(n−2)(b)= Pn

(
y(b), y′(b), . . . , y(n−1)(b)

)
.

(2.11)
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2.3. Preparative theorem.

Lemma 2.3. Assume that
(A1) BVP (1.1) has a bounding pair (α(t),β(t)) on the interval I by Definition 2.1;
(A2) the function f (t, y, y′, . . . , y(n−1)) in BVP (1.1) satisfies the Nagumo condition with

respect to y(n−1)(t) by Definition 2.2.
Then BVP (2.11) has a solution y(t)∈ Cn(I ,R) such that

α(i)(t)≤ y(i)(t)≤ β(i)(t), i= 0,1, . . . ,n− 2,
∣
∣y(n−1)(t)

∣
∣≤N , t ∈ I ,

(2.12)

where N is the positive constant given in the definition of f .

The proof of Lemma 2.3 is a simple consequence of the following three propositions.

Proposition 2.4. The modified BVP (2.11) has a solution y(t)∈ Cn(I ,R).

Proof. Consider

y(n) = λ f
(
t, y, . . . , y(n−1)

)
≡ g(t),

y(i−1)(a)= λPi

(
y(a), . . . , y(n−1)(a)

)
≡ gi(a),

y(n−2)(b)= λPn

(
y(b), . . . , y(n−1)(b)

)
≡ gn(b),

i= 1,2, . . . ,n− 1, (2.13)

where λ∈ [0,1]. From the representations of f , Pi, and Pn, we know that y(n)(t), y(i−1)(a)
(i = 1,2, . . . ,n− 1), and y(n−2)(b) all are bounded. Also, by the mean value theorem, we
may ensure that y(n−1)(t), . . . , y′(t), y(t) all are bounded functions in I . In fact, by the
mean value theorem, there exists some ξ ∈ (a,b) satisfying

y(n−2)(b)− y(n−2)(a)= y(n−1)(ξ)(b− a), (2.14)

then y(n−1)(ξ) is bounded. From

y(n−1)(t)− y(n−1)(ξ)= y(n)(η)(t− ξ) ∀t ∈ [a,b], (2.15)

y(n−1)(t) is bounded. Thus, from

y(i)(t)− y(i)(a)= y(i+1)(ζ)(t− a), η ∈ (a,b), i= 0,1, . . . ,n− 2, (2.16)

it is easy to see that y(n−2)(t), . . . , y′(t), y(t) all are bounded in I .
Let Ω = {y(t) ∈ Cn(I ,R) | ‖y(i)(t)‖ < K , for all t ∈ I , i = 0,1, . . . ,n − 1,K is some

sufficiently large positive constant}. Then Ω is a bounded open set. BVP (2.13) can be
equivalently written as the following integral equation:

y(t)= c1 + c2t+ c3t
2 + ···+ cnt

n−1 +
∫ t

a

∫ tn−1

a
···

∫ t1

b
g(s)dsdt1 ···dtn−1 ≡ Tλy, (2.17)
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where Tλ is an integral operator with a parameter λ and (c1, . . . ,cn) is determined by the
system of equations

c1 + c2a+ c3a
2 + ···+ cna

n−1 = g1(a),

c2 + c3 · 2a+ ···+ cn(n− 1)an−2 = g2(a),

...

cn−1(n− 2)(n− 3)···3+ cn(n− 1)!a= gn−1(a),

cn−1(n− 2)(n− 3)···3+ cn(n− 1)!b= gn(b)−
∫ b

a

∫ t1

b
g(s)dsdt1.

(2.18)

Let H(λ, y) = (I − Tλ)(y), then H : [0,1]×Ω→ Rn is continuous, where I is identity
mapping. Let hλ(y)=H(λ, y), then 0 /∈ hλ(∂Ω). In fact, for all y ∈ ∂Ω, ‖ y ‖≥ K . Notic-
ing that K is sufficiently large, we have

‖ hλ(y) ‖ =‖ y−Tλy ‖≥‖ y ‖ − ‖ Tλy ‖≥ K− ‖ Tλy ‖> 0 ∀λ∈ [0,1]. (2.19)

Thus, 0 /∈ hλ(∂Ω). By the homotopy invariance theorem of topological degree, deg(hλ,
Ω,0) is a constant, in particular, deg(h1,Ω,0)= deg(h0,Ω,0). Noticing that 0∈Ω, by the
normality of topological degree, we have

deg
(
h1,Ω,0

)= deg
(
h0,Ω,0

)= deg
(
I −T0,Ω,0

)= deg
(
I ,Ω,0

)= 1. (2.20)

Hence, by the solvability theorem of topological degree, it is clear that there exists some
y(t) satisfying (2.17), then this proposition is proved. �

Proposition 2.5. Every solution y(t) of the modified BVP (2.11) satisfies

α(i)(t)≤ y(i)(t)≤ β(i)(t), t ∈ I , i= 0,1, . . . ,n− 2. (2.21)

Proof. First, we show that

α(n−2)(t)≤ y(n−2)(t)≤ β(n−2)(t), t ∈ I. (2.22)

If α(n−2)(t)≤ y(n−2)(t) is not true, then there exists some ξ ∈ [a,b], such that

max
t∈I

(
α(n−2)(t)− y(n−2)(t)

)
= α(n−2)(ξ)− y(n−2)(ξ) > 0. (2.23)

Then ξ �= a,b by the boundary conditions of BVP (2.11). Thus

α(n−1)(ξ)− y(n−1)(ξ)= 0, (2.24)

α(n)(ξ)− y(n)(ξ)≤ 0. (2.25)
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However, on the other hand, from the definition of α(t) and that y(t) is a solution of
(2.11), we have

α(n)(ξ)− y(n)(ξ)≥ f
(
ξ, y(ξ), . . . , y(n−3)(ξ),α(n−2)(ξ),α(n−1)(ξ)

)

− f
(
ξ, y(ξ), . . . , y(n−3)(ξ), y(n−2)(ξ), y(n−1)(ξ)

)
−h
(
y(n−2)(ξ)

)

=−h
(
y(n−2)(ξ)

)
> 0.

(2.26)

This contradicts (2.25). Hence,

α(n−2)(t)≤ y(n−2)(t), t ∈ I. (2.27)

A similar proof shows that

y(n−2)(t)≤ β(n−2)(t), t ∈ I. (2.28)

To sum up, (2.22) is true. From (2.22), the function y(n−3)(t)− α(n−3)(t) is increasing in
I . Noticing

α(n−3)(a)≤ y(n−3)(a), (2.29)

we know that α(n−3)(t)≤ y(n−3)(t). A similar proof shows y(n−3)(t)≤ β(n−3)(t). Using the
same argument, it follows that α(i)(t)≤ y(i)(t)≤ β(i)(t), i= n− 4,n− 5, . . . ,2,1. Thus, the
proof of Proposition 2.5 is completed. �

Proposition 2.6. For every solution y(t) of the modified BVP (2.11) holds

∣
∣y(n−1)(t)

∣
∣≤N , t ∈ I. (2.30)

Proof. Suppose that there exists some τ ∈ [a,b] such that

∣
∣y(n−1)(τ)

∣
∣ > N. (2.31)

Without loss of generality, we assume that y(n−1)(τ) > N . There exists ξ ∈ (a,b), such that

y(n−1)(ξ)= y(n−2)(b)− y(n−2)(a)
b− a

≤ 2M
b− a

< N. (2.32)

Hence, there exists some subinterval [c, d] (or [d, c]) ⊂ [a,b] such that

y(n−1)(c)= 2M
b− a

, y(n−1)(d)=N ,

2M
b− a

≤ y(n−1)(t)≤N , ∀t ∈ [c,d] (or [d,c]).

(2.33)
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From condition (A2),

∣
∣
∣
∣
∣

∫ d

c

y(n−1)(s)y(n)(s)
Φ
(∣∣y(n−1)(s)

∣
∣)ds

∣
∣
∣
∣
∣≤

∣
∣
∣
∣
∣

∫ d

c
y(n−1)(s)ds

∣
∣
∣
∣
∣=

∣
∣
∣y(n−2)(d)− y(n−2)(c)

∣
∣
∣≤ 2M. (2.34)

On the other hand, from (2.7) we know that

∣
∣
∣
∣
∣

∫ d

c

y(n−1)(s)y(n)(s)
Φ
(∣∣y(n−1)(s)

∣
∣)ds

∣
∣
∣
∣
∣=

∣
∣
∣
∣
∣

∫ N

2M/(b−a)
rdr

Φ(r)

∣
∣
∣
∣
∣=

∫ N

2M/(b−a)
rdr

Φ(r)
> 2M. (2.35)

This inequality contradicts the above one and Proposition 2.6 holds. �

3. Main theorem

Now, the main result of this paper is given in the following theorem.

Theorem 3.1. Assume that the conditions (A1), (A2) in Lemma 2.3 hold and added to (A3).
The function Pi(η0, . . . ,ηn−1) (i= 1,2, . . . ,n) satisfies

(i) Pi(η0, . . . ,ηn−1) is increasing in ηi−1 and decreasing in ηi, i= 1,2, . . . ,n− 2;
(ii) Pn−1(η0, . . . ,ηn−1) is decreasing in ηn−1;
(iii) Pn(η0, . . . ,ηn−1) is increasing in ηn−1.

Then BVP (1.1) has a solution y(t)∈ Cn(I ,R) such that

α(i)(t)≤ y(i)(t)≤ β(i)(t), i= 0,1, . . . ,n− 2,
∣
∣y(n−1)(t)

∣
∣≤N , t ∈ I ,

(3.1)

where N is the positive constant given in the definition of f .

Proof. From Lemma 2.3 and the definition of f , the solution y(t) of the modified BVP
(2.11) satisfies (1.1). As soon as it is proved that y(t) satisfies the boundary conditions of
(1.1) under condition (A3), we may say that y(t) is a solution of BVP (1.1).

First, we prove

Pi
(
y(a), . . . , y(n−1)(a)

)
= 0, i= 1,2, . . . ,n− 2. (3.2)

Case 1. Suppose that

α(i−1)(a)≤ y(i−1)(a)−Pi
(
y(a), . . . , y(n−1)(a)

)
≤ β(i−1)(a). (3.3)

Then

y(i−1)(a)= Pi

(
y(a), . . . , y(n−1)(a)

)
= y(i−1)(a)−Pi

(
y(a), . . . , y(n−1)(a)

)
. (3.4)

Thus

Pi
(
y(a), . . . , y(n−1)(a)

)
= 0. (3.5)
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Case 2. Suppose that there exists some i∈ {1,2, . . . ,n− 2} such that

α(i−1)(a) > y(i−1)(a)−Pi
(
y(a), y′(a), . . . , y(n−1)(a)

)
. (3.6)

Then

y(i−1)(a)= Pi

(
y(a), y′(a), . . . , y(n−1)(a)

)
= α(i−1)(a). (3.7)

Hence

Pi
(
y(a), y′(a), . . . , y(n−1)(a)

)
> 0. (3.8)

From Propositions 2.5 and 2.6 and condition (A3),

Pi
(
y(a), . . . , y(i−2)(a),α(i−1)(a),α(i)(a), y(i+1)(a), . . . , y(n−1)(a)

)
> 0. (3.9)

It is easy to see that the last inequality contradicts Definition 2.1(iii). Therefore, Case 2 is
not true.
Case 3. Suppose that there exists some i∈ {1,2, . . . ,n− 2} such that

y(i−1)(a)−Pi
(
y(a), y′(a), . . . , y(n−1)(a)

)
> β(i−1)(a). (3.10)

Then by the analogous analysis, we have

Pi
(
y(a), . . . , y(i−2)(a),β(i−1)(a),β(i)(a), y(i+1)(a), . . . , y(n−1)(a)

)
≤Pi

(
y(a), . . . , y(n−1)(a)

)
<0.

(3.11)

Obviously, the last inequality contradicts Definition 2.1(iii). Therefore, this case cannot
hold.

To sum up, (3.2) holds.
A similar proof shows that

Pn−1
(
y(a), y′(a), . . . , y(n−1)(a)

)
= 0, Pn

(
y(b), y′(b), . . . , y(n−1)(b)

)
= 0. (3.12)

The proof is completed. �

4. A generalized problem

Now, we consider the following boundary value problem with more general boundary
conditions:

y(n) = f
(
t, y, . . . , y(n−1)

)
, Pi

(
y(a), . . . , y(n−1)(a), y(b), . . . , y(n−1)(b)

)
= 0, (4.1)

where t ∈ I , i= 1,2, . . . ,n, f and Pi are continuous functions.
Similarly to Definition 2.1, we give the following.
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Definition 4.1. Assume α(t),β(t)∈ Cn(I ,R). The pair of functions (α(t),β(t)) is called a
bounding function pair of BVP (4.1) in case that for all u(t)∈ Cn(I ,R)

(i) the same as Definition 2.1(i);
(ii) the same as Definition 2.1(ii);

(iii)′

Pi
(
u(a), . . . ,α(i−1)(a),α(i)(a), . . . ,u(n−1)(a),u(b), . . . ,u(n−1)(b)

)

≤ 0≤ Pi
(
u(a), . . . ,β(i−1)(a),β(i)(a), . . . ,u(n−1)(a),u(b), . . . ,u(n−1)(b)

)
,

Pn
(
u(a), . . . ,u(n−1)(a),u(b), . . . ,u(n−3)(b),α(n−2)(b),α(n−1)(b)

)

≤ 0≤ Pn
(
u(a), . . . ,u(n−1)(a),u(b), . . . ,u(n−3)(b),β(n−2)(b),β(n−1)(b)

)
,

(4.2)

where i= 1,2, . . . ,n− 1.

For BVP (4.1), we have the following existence theorem.

Theorem 4.2. Assume that
(A1)′ BVP (4.1) has a bounding function pair (α(t),β(t)) in the interval I by Definition 4.1;
(A2)′ the function f (t, y, y′, . . . , y(n−1)) in BVP (4.1) satisfies the Nagumo condition with

respect to y(n−1)(t) by Definition 2.2;
(A3)′ the function Pi(η0, . . . ,ηn−1,ζ0, . . . ,ζn−1) (i= 1,2, . . . ,n) satisfies

(i) Pi(η0, . . . ,ηn−1,ζ0, . . . ,ζn−1) is increasing in ηi−1 and decreasing in ηi, i = 1,2, . . . ,
n− 2;

(ii) Pn−1(η0, . . . ,ηn−1,ζ0, . . . ,ζn−1) is decreasing in ηn−1;
(iii) Pn(η0, . . . ,ηn−1,ζ0, . . . ,ζn−1) is increasing in ζn−1.

Then BVP (4.1) has a solution y(t)∈ Cn(I ,R) such that

α(i)(t)≤ y(i)(t)≤ β(i)(t), i= 0,1, . . . ,n− 2,
∣
∣y(n−1)(t)

∣
∣≤N , t ∈ I ,

(4.3)

where N is the positive constant given in the definition of f .

Proof. Consider the modified problem

y(n) = f
(
t, y, . . . , y(n−1)

)
, y(i−1)(a)= Pi(a), y(n−2)(b)= Pn(b),

i= 1,2, . . . ,n− 1.
(4.4)

The modified function f (t, y, . . . , y(n−1)) is defined as BVP (2.11), and

Pi(t)≡ Pi

(
y(t), . . . , y(n−1)(t), y(b+ a− t), . . . , y(n−1)(b+ a− t)

)

≡ δ
(
α(i−1)(t), y(i−1)(t)−Pi

(
y(t), . . . , y(n−1)(t),

y(b+ a− t), . . . , y(n−1)(b+ a− t)
)
,β(i−1)(t)

)
,

(4.5)
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where i= 1,2, . . . ,n− 1,

Pn(t)≡ Pn

(
y(b+ a− t), . . . , y(n−1)(b+ a− t), y(t), . . . , y(n−1)(t)

)

≡ δ
(
α(n−2)(t), y(n−2)(t)−Pn

(
y(b+ a− t), . . . , y(n−1)(b+ a− t),

y(t), . . . , y(n−1)(t)
)
,β(n−2)(t)

)
.

(4.6)

Using the same argument as the proof of Lemma 2.3, it follows that under the conditions
(A1)′ and (A2)′, BVP (4.4) has a solution y(t) satisfying the two inequalities in the con-
clusions of Lemma 2.3. Furthermore, in an analogous way to the proof of Theorem 3.1,
it follows that the solution y(t) of BVP (4.4) is a solution of BVP (4.1). Consequently, the
proof of Theorem 4.2 is completed. The details of the proof will be omitted. �

5. An example

In this section, we study an example by making use of Theorems 3.1 and 4.2.

Example 5.1. Consider the 4th-order nonlinear boundary value problem

y(iv) = (t− y)2− t
(
1+ t2

)
y′ +

112
sin2

(
1+ (y′)2

)
sin(y′′) +

(
t+ t2

)2(
1+ (y′′′)2

)
,

4y(1)− 1
8

(
y′(1)

)3− y′′(1)+
k

6
y(2)= A,

5y′(1)− 1
2
y′′(1)+

k

8

(
y′(2)

)2 = B,

y(1)+ 2y′′(1)− y′′′(1)− k

2
y′′(2)= C,

ky(1)− y′(2)− 4
(
y′′(2)

)2
+ 4
(
y′′′(2)

)3 =D,

(5.1)

where t ∈ [1,2], k is a constant.
Let

f
(
t,ξ0,ξ1,ξ2,ξ3

)= (t− ξ0
)2− t

(
1+ t2

)
ξ1 +

112
sin2

(
1+ ξ21

)
sinξ2 +

(
t+ t2

)2(
1+ ξ23

)
,

P1
(
η0,η1,η2,η3,ζ0,ζ1,ζ2,ζ3

)= 4η0− 1
8
η31−η2 +

k

6
ζ0−A,

P2
(
η0,η1,η2,η3,ζ0,ζ1,ζ2,ζ3

)= 5η1− 1
2
η2 +

k

8
ζ21 −B,

P3
(
η0,η1,η2,η3,ζ0,ζ1,ζ2,ζ3

)= η0 + 2η2−η3− k

2
ζ2−C,

P4
(
η0,η1,η2,η3,ζ0,ζ1,ζ2,ζ3

)= kη0− ζ1− 4ζ22 + 4ζ33 −D.

(5.2)



Guangwa Wang et al. 11

Let

α(t)=−t2, β(t)= t. (5.3)

Then, for the case of k = 0,A∈ [−1,31/8], B ∈ [−9,5],C ∈ [−3,−1],D ∈ [−12,−1], and
the case of k = 1, A∈ [−2/3,77/24], B ∈ [−7,5], C ∈ [−2,−1], D ∈ [−11,−2], it is easy
to prove that (α(t),β(t)) is a bounding pair of BVP (5.1) and all assumptions of Theorems
3.1 and 4.2 are fulfilled, respectively. Hence, for any of the two cases, BVP (5.1) has at least
one solution y(t) satisfying

−t2 ≤ y(t)≤ t, −2t ≤ y′(t)≤ 1, −2≤ y′′(t)≤ 0, t ∈ [1,2]. (5.4)
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