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We investigate the existence of continuous solutions on compact intervals of some non-
linear integral equations. The existence of such solutions is based on some well-known
fixed point theorems in Banach spaces such as Schaefer fixed point theorem, Schauder
fixed point theorem, and Leray-Schauder principle. A special interest is devoted to the
study of nonlinear Volterra equations and to the numerical treatment of these equations.

1. Introduction

In the first part of this work, we study the existence of a solution of the following func-
tional integral equation:

x(t)= f (t) +
∫ b

a
K(t,s)x(s)ds+

∫ b

a
V(t,s)g

(
s,x(s)

)
ds, −∞ < a≤ t ≤ b < +∞. (1.1)

Note that the previous integral equation can be considered as a nonlinear Fredholm equa-
tion expressed as a perturbed linear equation. A Krasnoselkii-Schafer fixed point theorem
[4] is used to prove the existence of a solution of some special cases of (1.1), see [8]. The
general nonlinear integral equation has the following form:

x(t)= f (t) +
∫ b

a
g
(
t,s,x(s)

)
ds, −∞≤ a≤ t ≤ b ≤ +∞. (1.2)

We should mention that an extensive work has been done in the study of the solutions
of various types of (1.2), see, for example, [1, 2, 5, 7, 11, 13, 15, 16, 17, 19]. Usually the
existence of a solution of (1.2) starts with some conditions on the function g(t,s,x) as
well as the integration bounds a, b and the function f (·). Based on these conditions, a
Banach space is chosen in such a way that the existence problem is converted to a fixed
point problem of an operator over this Banach space.

To prove the existence of a continuous solution of the integral equation (1.1), we use
some conditions on the function f (·), the kernelsK(t,s),V(t,s) as well as on the function
g(t,x). By using these conditions, we define a completely continuous operator T over
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the Banach space C([a,b]) whose fixed points are solutions of (1.1). The well-known
fixed point theorem of Schaefer [20] is used to prove the existence of a fixed point of the
operator T . Also, by introducing a convenient new norm ‖ · ‖µ on the space C([a,b]), we
study the existence of continuous solutions of the general nonlinear equation (1.2) with
finite bounds a and b.

In the second part of this work, we study the existence of continuous solution of the
following nonlinear Volterra equation:

x(t)= f (t) +
∫ t

a
g
(
t,s,x(s)

)
ds= f (t) +Tx(t), −∞ < a≤ t ≤ b <∞, (1.3)

where f (·)∈ C([a,b]). The main tool in the proof of the existence of a solution of (1.3)
is the Leray-Schauder principle combined with a general version of Gronwall’s inequality.
Moreover, we prove the uniqueness of the solution of (1.3) by showing that there exists
n∈N such thatTn is a contraction on some closed ball containing all possible continuous
solutions of (1.3).

This paper is organized as follows. In Section 2, we prove the existence of the solutions
of some special cases of (1.1) and (1.2). In Section 3, we investigate the existence and the
uniqueness of a solution of the nonlinear Volterra equation (1.3). Finally in Section 4, we
provide the reader with a numerical scheme for solving nonlinear Volterra equations.

2. Existence of a solution of nonlinear integral equations

In the first part of this paragraph, we show that under some conditions on the kernels
K(t,s), V(t,s) and the function g(s,x), the functional integral equation (1.1) has a solu-
tion in C([a,b]). The following theorem ensures the existence of such a solution. Note
that the proof of this theorem is based on the well-known Schaefer fixed point theorem
that can be easily found in the literature, see for example [8, 20].

Theorem 2.1. Consider the functional integral equation:

x(t)= f (t) +
∫ b

a
K(t,s)x(s)ds+

∫ b

a
V(t,s)g

(
s,x(s)

)
ds, −∞ < a≤ t ≤ b < +∞, (2.1)

where f (·)∈ C([a,b]). Assume that the function g(s,x) satisfies the following conditions:

sup
(∣∣g(s,x)∣∣,∣∣∣∣∂g∂x (s,x)

∣∣∣∣)≤G(s)φ(x), (2.2)

for some measurable function G(·) and bounded function φ(·). Assume that the kernels
K(t,s), V(t,s) satisfy the following conditions:

∣∣K(t,s)∣∣≤ K1(t)K2(s),
∣∣V(t,s)

∣∣≤V1(t)V2(s), (2.3)

for some continuous functions K1(·), V1(·), and L1([a,b]) function K2(·). Also, we assume
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that the function G(·)V2(·) ∈ L1([a,b]). Finally, we assume that one of the following two
conditions is satisfied:

(c1) ‖K1‖∞‖K2‖1 < 1,
(c2) K(t,s)= 0,∀s > t.

Under the above conditions, (2.1) has a solution in C([a,b]).

Proof. We first define the operator T by: Tx(t) = f (t) +
∫ b
a K(t,s)x(s)ds +

∫ b
a V(t,s)g(s,

x(s))ds. By using (2.3) and by applying the dominated convergence theorem, one con-
cludes that

lim
h→0

∣∣Tx(t+h)−Tx(t)
∣∣

= lim
h→0

∣∣ f (t+h)− f (t)
∣∣+∫ b

a
lim
h→0

∣∣K(t+h,s)−K(t,s)
∣∣‖x‖∞ds

+
∫ b

a
lim
h→0

∣∣V(t+h,s)−V(t,s)
∣∣G(s)‖φ‖∞ds= 0.

(2.4)

Hence, Tx ∈ C([a,b]) if x ∈ C([a,b]). Moreover, since∣∣Txn(t)−Tx(t)
∣∣

≤ ∥∥xn− x
∥∥∞[∫ b

a

∣∣K(t,s)∣∣ds+∫ b

a

∣∣V(t,s)
∣∣∣∣∣∣∂g∂x (s,θsxn + (1− θs

)
x
)∣∣∣∣ds], 0 < θs < 1

≤ ∥∥xn− x
∥∥∞[∥∥K1

∥∥∞∥∥K2
∥∥
1 +
∥∥V1

∥∥∞∥∥V2 ·G
∥∥
1‖φ‖∞

]=M
∥∥xn− x

∥∥∞,
(2.5)

then limn→+∞‖Txn−Tx|∞ = 0, or equivalently, T is continuous over C([a,b]). Next, we
prove that T is completely continuous on E = C([a,b]) or equivalently, it maps an arbi-
trary bounded set of the Banach space E into a compact set of E. By using Arzèla theorem
[12], the complete continuity of T is ensured if {Txn; n∈N} is equicontinuous and uni-
formly bounded for every uniformly bounded sequence (xn)n of C([a,b]). This is done
as follows:

∣∣Txn(t)−Txn(τ)
∣∣≤ ∣∣ f (t)− f (τ)

∣∣+∫ b

a

∣∣K(t,s)−K(τ,s)
∣∣∥∥xn(s)∥∥∞ds

+
∫ b

a

∣∣V(t,s)−V(τ,s)
∣∣G(s)‖φ‖∞ds. (2.6)

Since (xn)n is uniformly bounded, then by applying the dominated convergence theorem
to the right-hand side of the previous inequality, one concludes that limt→τ |Txn(t)−
Txn(τ)| = 0 independently of n or equivalently, (Txn)n is equicontinuous. Moreover, it is
easy to see that (Txn)n is uniformly bounded whenever (xn)n is a uniformly bounded se-
quence of C([a,b]).Hence, T is completely continuous. Finally, we prove the existence of
a solution of (2.1). Since T is completly continuous, then by Schaefer fixed point theorem,
we know that either:

(i) x = λTx has a solution for λ= 1, or
(ii) the set �= {u∈ C([a,b]); ∃λ∈]0,1[, u= λTu} is unbounded.

We prove that (ii) is not possible. Two cases are to be considered.
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First case. We assume that (c1) is satisfied and take u ∈ � satisfying u = λTu for some

0 < λ < 1. Since
∫ b
a K2(s)|u(s)|ds = |u(s∗)|

∫ b
a K2(s)ds, for some s∗ ∈ [a,b], then it is easy

to see that there exists a positive real numberM such that

∣∣u(t)∣∣≤M +
∣∣u(s∗)∣∣∥∥K1

∥∥∞∥∥K2
∥∥
1, ∀t ∈ [a,b]. (2.7)

By using (c1) and by taking t = s∗ in the previous inequality, one gets

∣∣u(s∗)∣∣≤ M

1−∥∥K1
∥∥∞∥∥K2

∥∥
1

=M′. (2.8)

By substituting (2.8) in (2.7), one concludes that |u(·)| is bounded and consequently �
is bounded.

Second case. We assume that condition (c2) is satisfied. In this case, it is easy to see that for
all t ∈ [a,b], we have |u(t)| ≤M +‖K1‖∞

∫ t
a K2(s)|u(s)|ds. By using Gronwall’s inequality,

one obtains |u(t)| ≤M exp(‖K1‖∞‖K2‖1). Hence u(·) is bounded and consequently � is
also bounded. �

An extension of the result of the previous theorem to amore general nonlinear integral
equation is given by the following theorem. We skip the proof of this theorem because its
techniques are similar to the techniques of the previous proof.

Theorem 2.2. Consider the nonlinear integral equation:

x(t)= f (t) +
∫ b

a
g
(
t,s,x(s)

)
ds, −∞ < a≤ t ≤ b < +∞, (2.9)

where f (·)∈ C([a,b]). Assume that the function g(t,s,x) satisfies the following conditions:

sup
(∣∣g(t,s,x)∣∣,∣∣∣∣∂g∂t (t,s,x)

∣∣∣∣)≤V1(t)V2(s)φ
(|x|),∣∣∣∣∂g∂x (t,s,x)

∣∣∣∣≤V1(t)V2(s)ψ
(|x|), (2.10)

where V1(·)∈ C([a,b]), V2(·)∈ L1([a,b]), φ(·) is positive and bounded over [0,+∞[ and
ψ(·) is positive and continuous over [0,+∞[. Under the above conditions, (2.9) has a solution
in C([a,b]).

Condition (2.10) with bounded φ(·) is a limitation of the previous theorem. Nonethe-
less, by using a convenient new norm ‖ · ‖µ and the Schauder fixed point theorem, one
can prove the existence of continuous solutions of more general nonlinear integral equa-
tions with some weaker conditions. This is the subject of the next theorem.
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Theorem 2.3. Consider the nonlinear integral equation

x(t)= f (t) +
∫ b

a
g
(
t,s,x(s)

)
ds, −∞ < a≤ t ≤ b < +∞. (2.11)

Assume that f (·) is bounded and g(t,s,x) is continuous w.r.t. t and satisfies the following
conditions:

∣∣g(t,s,x)∣∣≤V1(t)V2(s)φ
(|x|), ∣∣∣∣∂g∂x (t,s,x)

∣∣∣∣≤V1(t)V2(s)ψ
(|x|), (2.12)

whereV1(·) is a measurable and bounded positive function, φ(·) is a positive andmeasurable
function satisfying the condition

sup
x≥0

φ(x)
x

= L < +∞ (2.13)

and where ψ(·) is a positive and continuous function over [0,+∞[. Moreover, assume that
there exists a continuous, positive and bounded away from zero function µ(·) satisying the
following condition:

∥∥V1 ·µ
∥∥∞∥∥∥∥V2

µ

∥∥∥∥
1
<
1
L
. (2.14)

Under the above conditions, the nonlinear integral equation (2.11) has a solution inC([a,b]).

Proof. We first mention that the function ‖ · ‖µ defined on X = C([a,b]) by ‖x‖µ =
supt∈[a,b] |µ(t)x(t)| is a norm on X . Next let r ≥ 0 be a positive real number that will
be fixed later on and define the subset Br of X by Br = {x ∈ C([a,b]); ‖x‖µ ≤ r}. It is
clear that Br is a closed and convex subset of X . Let T be the operator defined on Br

by Tx(t) = f (t) +
∫ b
a g(t,s,x(s))ds. It is easy to check that T maps bounded sets of Br

into relatively compact sets. By Schauder fixed point theorem see [20], to prove the ex-
istence of a solution of (2.11), it suffices to check that T ∈ C(Br ,Br). We first prove that
Tx(·)∈ C([a,b]) whenever x(·)∈ C([a,b]). Let (tn)n be a sequence in [a,b] converging
to t. Since f (·)∈ C([a,b]) and since for all n∈N , we have

∣∣g(tn,s,x(s))∣∣≤V1
(
tn
)
V2(s)Mφ,|x| ≤

∥∥V1
∥∥∞Mφ,|x|V2(s)∈ L1

(
[a,b]

)
, (2.15)

whereMφ,|x| is a constant depending only on φ(·) and |x(·)|, then by applying the dom-
inated convergence theorem, one concludes that

lim
n→+∞Tx

(
tn
)= lim

n→+∞ f
(
tn
)
+
∫ b

a
lim
n→+∞g

(
tn,s,x(s)

)
ds= f (t) +

∫ b

a
g
(
t,s,x(s)

)
ds. (2.16)

Consequently, Tx(·)∈ C([a,b]). Next, we prove that T is continuous over Br w.r.t. ‖ · ‖µ
norm. Let (xn)n be a sequence of Br converging to x in the ‖ · ‖µ norm. Since (Br ,‖ · ‖µ)
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is complete, then x ∈ Br . Moreover, we have∥∥Txn−Tx
∥∥
µ

= sup
t∈[a,b]

∣∣∣∣µ(t)∫ b

a

(
g(t,s,xn(s)

)− g
(
t,s,x(s)

)
ds
∣∣∣∣

≤ ‖µ‖∞
∫ b

a

∣∣xn(s)− x(s)
∣∣∣∣∣∣∂g∂x (t,s,θsxn(s) + (1− θs

)
x(s)

)
ds
∣∣∣∣, θs ∈]0,1[

≤ ‖µ‖∞
∫ b

a
V1(t)µ(s)

∣∣xn(s)− x(s)
∣∣V2(s)
µ(s)

ψ
(∣∣θsxn(s) + (1− θs

)
x(s)

∣∣)ds, θs ∈]0,1[

≤ ‖µ‖∞ sup
s∈[0,1]

ψ
(∣∣θsxn(s) + (1− θs

)
x(s)

∣∣)∥∥xn− x
∥∥
µ

∥∥∥∥V2

µ

∥∥∥∥
1
.

(2.17)

Since µ(·) is continuous and bounded away from zero, then it is clear that convergence
of (xn)n to x in the ‖ · ‖µ norm implies also the uniform convergence over [a,b]. Hence
for all n ∈ N , ∀s ∈ [0,1], one concludes that |θsxn(s) + (1− θs)x(s)| is contained in a
compact set of [0,+∞[. Moreover, since ψ(·) is continuous over [0,+∞[, then one con-
cludes that there exists a positive constantMψ such that ψ(|θsxn(s) + (1− θs)x(s)|)≤Mψ ,
∀s∈[0,1], ∀n∈N . Hence, the previous inequality becomes ‖Txn−Tx‖µ≤‖µ‖∞Mψ‖V2/
µ‖1‖xn − x‖µ. Consequently, T is continuous over Br . It remains to choose the positive
real number r in such a way that T(Br)⊂ Br . Let x ∈ Br , then we have

‖Tx‖µ ≤
∥∥µ(t) f (t)∥∥∞ +

∥∥∥∥µ(t)V1(t)
∫ b

a
V2(s)φ

(∣∣x(s)∣∣)ds∥∥∥∥
∞

≤ ‖ f ‖µ +
∥∥V1

∥∥
µ

∣∣∣∣∫ b

a

V2(s)
µ(s)

µ(s)
∣∣x(s)∣∣φ(∣∣x(s)∣∣)∣∣x(s)∣∣ ds

∣∣∣∣
≤ ‖ f ‖µ +

∥∥V1
∥∥
µrL
∥∥∥∥V2

µ

∥∥∥∥
1
≤ ‖ f ‖µ + r

(
L
∥∥V1

∥∥
µ

∥∥∥∥V2

µ

∥∥∥∥
1

)
.

(2.18)

Hence, the condition T(Br)⊂ Br is satisfied for any positive real number r satisfying

r ≥ ‖ f ‖µ
1−L

∥∥V1
∥∥
µ

∥∥V2/µ
∥∥
1

= r0. (2.19)

By Schauder’s fixed point theorem, one concludes that T has a fixed point in Br for all
r ≥ r0. �

Remark 2.4. In [18], a condition similar to the condition (2.14) has been used to prove the
existence of a weakly continuous solution of a nonlinear integral equation. This solution
is defined on [0,1] and has values in a reflexive Banach space.

3. Existence and uniqueness results for a nonlinear integral equation

If in the Fredholm integral equation (2.11), we replace the integration bound b by the
variable t, we obtain a nonlinear Volterra equation. We should mention that an extensive
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amount of work has been done in the existence and uniqueness of solutions of some
special cases of Volterra integral equations, see for example [3, 6, 10, 18]. Under some
conditions on the function g(t,s,x) and by using the following Leray-Schauder principle,
Theorem 3.2 ensures the existence of a solution of a nonlinear Volterra equation.

Theorem 3.1 (Leray-Schauder principle). Let (X ,| · |) be a Banach space and suppose that
T ∈ C(X ,X) and compact. Suppose that any solution x of x = λTx, 0≤ λ≤ 1 satisfies the a
priori bound |x| ≤M for some constantM > 0, then T has a fixed point.

Theorem 3.2. Consider the nonlinear Volterra integral equation

x(t)= f (t) +
∫ t

a
g
(
t,s,x(s)

)
ds, −∞ < a≤ t ≤ b < +∞, (3.1)

where f is continuous over [a,b]. Assume that g(t,s,x) satisfies the following conditions:

∣∣g(t,s,x)∣∣≤V1(t)V2(s)φ
(|x|), ∣∣∣∣∂g∂x (t,s,x)

∣∣∣∣≤V1(t)V2(s)ψ
(|x|), (3.2)

where V1(·) ∈ C([a,b]) and positive, V2(·) ∈ L1([a,b]) and positive and where ψ(·) is a
positive and continuous function over [0,+∞[. Finally, we assume that the function φ(·)
is positive, continuous and satisfies the condition limy→+∞(φ(y)/y) = L < +∞. Under the
above conditions, (3.1) has a continuous solution over [a,b].

Proof. Let X = (C([a,b]),‖ · ‖∞) denotes the Banach space of continuous functions over
[a,b] and define the operator T over X by Tx(t) = f (t) +

∫ t
a g(t,s,x(s))ds. By using the

conditions of the theorem, it is easy to check that TX ⊂ X and T is compact. From Leray-
Schauder principle, to prove the result of the theorem, it suffices to prove that T is con-
tinuous over X and any solution of x = λTx, 0≤ λ≤ 1 is bounded by the same constant
M > 0. To prove the continuity of T over C([a,b]), it suffices to replace µ(t) by 1 in the
proof of the continuity of the operator T of the previous theorem and follow the different
steps of this proof. Next, we note that the condition limy→+∞(φ(y)/y)= L < +∞ implies
the existence of a positive real number A > 0 such that |φ(u)| ≤ (3/2)L= L′, for all u≥A.
Let x ∈ C([a,b]) be a solution of x = λTx, for some 0≤ λ≤ 1, then we have

∣∣x(t)∣∣≤ |λ|∣∣ f (t)∣∣+ |λ|∫ t

a

∣∣g(t,s,x(s))ds∣∣≤ ‖ f ‖∞ +
∫ t

a
V1(t)V2(s)φ

(∣∣x(s)∣∣)ds
≤ ‖ f ‖∞ +

∥∥V1
∥∥∞∫ b

a
V2(s) sup

u∈[0,A]
φ(u)ds+

∥∥V1
∥∥∞∫ b

a
V2(s)L′

∣∣x(s)∣∣ds
≤
[
‖ f ‖∞ + sup

u∈[0,A]
φ(u)

∥∥V2
∥∥
1

]
+
∫ b

a

(
L′
∥∥V1

∥∥∞V2(s)
)∣∣x(s)∣∣ds

≤M1 +
∫ b

a
M2V2(s)

∣∣x(s)∣∣ds.

(3.3)

By using the general version of Gronwall’s inequality together with the previous inequal-
ity, one concludes that |x(t)≤M1 exp(M2‖V2‖1)=M. Since M1 and M2 do not depend
on the solution x, then one concludes that the solutions of x = λTx, 0 ≤ λ ≤ 1 are uni-
formly bounded by the same constantM. Finally, by using the Leray-Schauder principle,
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one concludes that T has a fixed point in X = C([a,b]) or equivalently, the nonlinear
Volterra equation (3.1) has a continuous solution over [a,b]. �

The uniqueness of the solution of the nonlinear Volterra equation (3.1) is given by the
following proposition.

Proposition 3.3. Consider the nonlinear Volterra equation (3.1) and assume that g(t,s,x)
satisfies the conditions of Theorem 3.2 with V2(·)∈ (L1∩ Lp)([a,b]) for some p > 1. Then
(3.1) has a unique solution.

Proof. The existence of a solution is ensured by Theorem 3.2. Next, note that in the proof
of Theorem 3.2, we have shown that the continuous solutions of x = Tx are uniformly
bounded by the same constant M and consequently they are contained in a closed ball
BM given by

BM =
{
x ∈ C

(
[a,b]

)
; ‖x‖∞ ≤M

}
. (3.4)

Hence, to prove the uniqueness of the solution of (3.1), it suffices to check that there
exists n0 ∈N such that Tn0 is a contraction in BM . By using the notations of the proof of
Theorem 3.2, one can easily check that for all x, y ∈ C([a,b]), we have

∣∣Ty(t)−Tx(t)
∣∣≤ ‖y− x‖∞

∥∥V1
∥∥∞∥∥V2

∥∥
p(t− a)1/q sup

u∈BM

ψ
(|u|)

≤ C‖y− x‖∞(t− a)1/q.
(3.5)

Similarly, one shows that

∣∣T2y(t)−T2x(t)
∣∣≤ C2‖y− x‖∞ 1

q+1
(t− a)1+1/q. (3.6)

Continuing in this manner, one can easily show that

∣∣Tny(t)−Tnx(t)
∣∣≤ Cn‖y− x‖∞

n−1∏
i=1

1
q+ i

(t− a)n−1+1/q. (3.7)

Hence

∥∥Tny−Tnx
∥∥∞ ≤ Cn‖y− x‖∞

[n−1∏
i=1

1
q+ i

]
(b− a)n−1+1/q. (3.8)

Since limn→+∞[
∏n−1

i=1 (1/(q + i))]Cn(b− a)n−1+1/q = 0, then there exists n0 ∈ N such that
Tn0 is a contraction over BM . Consequently, the fixed point of Tn0 is unique. Since a fixed
point of T is also a fixed point of Tn0 , then one concludes that the fixed point of T is also
unique and consequently, the solution of (3.1) is unique. �
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4. Approximate solution of Volterra integral equation

In this last paragraph, we are interested in finding an approximate solution of Volterra
integral equation of the type

x(t)= f (t) +
∫ t

a
g
(
t,s,x(s)

)
ds, −∞ < a≤ t ≤ b < +∞. (4.1)

Note that the natural approach for finding an approximate solution of (4.1) is to use a
quadrature scheme for the approximation of the integral term of (4.1), see [9, 14, 21].
In this section, we provide a new approach for approximating the solution of (4.1). It
is described as follows. We first assume that (4.1) has a solution in Cα([a,b]) for some
α ≥ 1, f ∈ C1([a,b]), the function g(t, t,x) is continuous with respect to t and Lips-
chitzian w.r.t. x. Moreover, if (tn)n is a sequence in [a,b], then we assume that the func-
tions (∂g/∂t)(tn,s,x) is equicontinuous w.r.t. s and Lipschitzian w.r.t. x. By using the above
conditions and the standard existence proof for ordinary differential equation (O.D.E.)
which is based on the successive approximations technique, one can easily check that the
solution of (4.1) coincides with the unique solution of the following initial value problem
obtained by differentiating (4.1):

x′(t)= f ′(t) +
∫ t

a

∂g

∂t

(
t,s,x(s)

)
ds+ g

(
t, t,x(t)

)
, a≤ t ≤ b, x(a)= f (a). (4.2)

Hence the problem of finding an approximate solution of (4.1) is converted to the ap-
proximation of the solution of the integro-differential equation (4.2). Note that find-
ing an approximate solution of the second problem is easier than for the first problem.
This is due to the possibility of adapting existent approximation schemes from O.D.E.
Our approximation scheme for solving (4.2) is described as follows. We first choose a
uniform subdivision of [a,b] denoted by a = t0 < t1 < ··· < tN = b and let h = tn+1 − tn,
0≤ n≤N − 1 be the stepsize of this subdivision. For tn ≤ t < tn +1, we define a quadra-
ture scheme Q(t,x) for the approximation of the integral

∫ t
a(∂g/∂t)(t,s,x(s))ds as follows:

Q(t,x)=Q1(t,x) +Q2(t,x), (4.3)

where Q1(t,x) is a qth order composite quadrature scheme for the approximation of∫ tn
a (∂g∂t)(t,s,x(s))ds constructed from a qth degree Lagrange interpolation polynomial
obtained by the use of the grid points ti, . . . , ti−q+1 at the integration subinterval [ti−1, ti]
for 1≤ i≤ n. Moreover, Q2(t,x) is a qth order quadrature scheme for the approximation
of
∫ t
tn(∂g/∂t)(t,s,x(s))ds constructed from a qth degree Lagrange extrapolation polyno-

mial obtained by the use of the grid points tn, . . . , tn−q+1. Then, we consider a stable p-step
method for solving the initial value problem y′(t)= F(t, y(t)), y(a)= ya given by

yn+1 = yn +h

[ p−1∑
i=0

αiF
(
tn−i, yn−i

)]
. (4.4)

If x̃(tn+1) denotes the solution at t = tn+1 of the following problem:

x̃(t)= f ′(t) +Q(t, x̃) + g
(
t, t, x̃(t)

)
, a≤ t ≤ b, x̃(a)= f ′(a), (4.5)
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then an approximation x̃n+1 of x̃(tn+1) is given by:

x̃n+1 = x̃n +h

[ p−1∑
i=0

αi f
′(tn−i)+Q

(
tn−i, x̃

)
+ g
(
tn−i, tn−i, x̃

)]
. (4.6)

In the sequel, we will denote by xn, the approximation obtained via (4.6) of x(tn), where
x(tn) denotes the exact value of the solution of (4.2) at t = tn. The aim of the remaining
of this paragraph is to find a global bound of the approximation error |x̃n − x(tn)|, n =
1, . . . ,N . To this end, we first look for a bound of the local approximation error at the
integration step [tn, tn+1] and under the assumption that x̃k = x(tk) for all k = 0, . . . ,n.
The order of this local error is given by the following proposition.

Proposition 4.1. Assume that the function g(t,s,x) is Lipschitzian w.r.t. x and the solution
x̃(t) of (4.5) belongs to Cp+1([tn, tn+1]) for some positive integer p. Moreover, assume that
the quadrature scheme Q(t,x) satisfies the following condition:

sup
t∈[a,b]

∣∣∣∣∫ t

a

∂g

∂t

(
t,s,x(s)

)
ds−Q(t,x,h)

∣∣∣∣≤ LQh
h. (4.7)

Under the above conditions, we have |x(tn+1)− x̃n+1| =O(hmin(p,q)+1).

Proof. We first note that |x(tn+1)− x̃n+1| ≤ |x(tn+1)− x̃(tn+1)|+ |x̃(tn+1)− x̃n+1|. Since by
hypothesis, x̃(·) ∈ Cp+1([tn, tn+1]) and x̃n+1 is an approximation of x̃(tn+1) obtained by
the use of the p-step method (4.4), then we have∣∣x̃(tn+1)− x̃n+1

∣∣≤ c
∣∣x̃(p+1)(µn+1)∣∣hp+1 ≤Mn+1h

p+1. (4.8)

Here µn+1∈]tn, tn+1[ andMn+1=c suptn≤t≤tn+1 |x̃(p+1)(µn+1)|. It remains to bound the quan-
tity |x(tn+1)− x̃(tn+1)|, this is done as follows. Since

x
(
tn+1

)− x
(
tn
)= ∫ tn+1

tn
f ′(t)dt+

∫ tn+1

tn

(∫ t

a

∂g

∂t

(
t,s,x(s)

)
ds
)
dt+

∫ tn+1

tn
g
(
t, t,x(t)

)
dt

x̃
(
tn+1

)− x̃
(
tn
)= ∫ tn+1

tn
f ′(t)dt+

∫ tn+1

tn
Q(t, x̃,h)dt+

∫ tn+1

tn
g
(
t, t,x(t)

)
dt,

(4.9)

then

∣∣x(tn+1)− x̃
(
tn+1

)∣∣≤ ∫ tn+1

tn

∣∣∣∣∫ t

a

∂g

∂t

(
t,s,x(s)

)
ds−Q(t, x̃,h)

∣∣∣∣dt
+
∫ tn+1

tn

∣∣g(t, t,x(t))− g
(
t, t, x̃(t)

)∣∣dt. (4.10)

Since for all t ∈ [tn, tn+1], Q(t, x̃,h) depends on the values of x̃(·) at the previous grid
points t0 = a, t1, . . . , tn, and since by assumption x̃(ti)= x(ti), i= 0, . . . ,n, then

Q(t, x̃,h)=Q(t,x,h), ∀t ∈ [tn, tn+1]. (4.11)
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Hence by using (4.7), one concludes that supt∈[a,b] |
∫ t
a(∂g/∂t)(t,s,x(s))ds−Q(t, x̃,h)| ≤

LQhq and consequently

∫ tn+1

tn

∣∣∣∣∫ t

a

∂g

∂t

(
t,s,x(s)

)
ds−Q(t, x̃,h)

∣∣∣∣dt ≤ LQh
q+1. (4.12)

Moreover, since g(t,s,x) is Lipschitzian w.r.t. x, then there exists a constant Lg > 0, such
that

∫ tn+1

tn

∣∣g(t, t,x(t))− g
(
t, t, x̃(t)

)∣∣dt ≤ Lg

∫ tn+1

tn

∣∣x(t)− x̃(t)
∣∣dt. (4.13)

By combining (4.12) and (4.13), one concludes that

∣∣x(tn+1)− x̃
(
tn+1

)∣∣≤ LQh
q+1 +Lg

∫ tn+1

tn

∣∣x(t)− x̃(t)
∣∣dt. (4.14)

If e(t)= |x(t)− x̃(t)|, then the previous inequality is written as follows:

e
(
tn+1

)≤ LQh
q+1 +

∫ tn+1

tn
Lge(t)dt. (4.15)

By applying Gronwall’s inequality to (4.15), one obtains

e
(
tn+1

)≤ LQh
q+1 exp

[∫ tn+1

tn
Lg dt

]
= LQh

q+1eLgh =M′hq+1. (4.16)

Finally, by lettingM′
n+1=max(Mn+1,M′) and by combining (4.12) and (4.16), one obtains

the following bound of the local approximation error |x(tn+1)− x̃n+1| ≤M′
n+1h

min(p,q)+1.
Hence the local approximation error of our proposed scheme is of order O(hmin(p,q)+1).

�

Finally, by removing the condition x(ti)= x̃(ti) for i= 0, . . . ,n, we obtain a global ap-
proximation error bound given by the following proposition.

Proposition 4.2. Assume that (∂g/∂t)(t,s,x) is Lipscitzian w.r.t. x and assume that the first
p starting values xi, i= 0, . . . , p− 1 satisfy maxi≤p−1 |x(ti)− xi| =O(hmin(p,q)). Then under
the hypotheses of the previous proposition, the global approximation error of our scheme is of
order O(hmin(p,q)).

Proof. We first note that since (∂g/∂t)(t,s,x) is Lipschitzian w.r.t. x, then the quatra-
ture scheme Q(t,x,h) for the approximation of

∫ t
a(∂g/∂t)(t,s,x(s))ds is also Lipschitzian

w.r.t. x. Hence, there exists a constant L′Q > 0 such supt∈[a,b] |Q(t,x,h) − Q(t, y,h)| ≤
L′Qmaxi≤n |xi− yi|. Next, let F(t,x)= f ′(t) +Q(t,x,h) + g(t, t,x) and note that

∣∣F(t,xn)−F
(
t, yn

)∣∣≤ L′Qmax
i≤n

∣∣xi− yi
∣∣+Lg

∣∣xn− yn
∣∣≤ LFmax

i≤n
∣∣xi− yi

∣∣. (4.17)
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A bound of the global approximation error is given as follows:

en+1 = x̃n+1− x
(
tn+1

)= x̃n +h

[ p−1∑
i=0

αiF
(
tn−i, x̃n−i

)]− x
(
tn+1

)

= x̃n− x
(
tn
)
+h

[ p−1∑
i=0

αi
(
F
(
tn−i, x̃n−i

)−F
(
tn−i,x

(
tn−i
)))]

+h

[ p−1∑
i=0

αiF
(
tn−i,x

(
tn−i
))]− [x(tn+1)− x

(
tn
)]
.

= en +h

[ p−1∑
i=0

αi
(
F
(
tn−i, x̃n−i

)−F
(
tn−i,x

(
tn−i
)))]

+En(h),

(4.18)

where En(h) = −[x(tn+1)− x(tn)− h
∑p−1

i=0 αiF(tn−i,x(tn−i))] = xn+1 − x(tn+1). The previ-
ous proposition shows that |En(h)| ≤M′

n+1h
min(p,q)+1≤Mhmin(p,q)+1, whereM=max{M′

n;
1≤ n≤N}. Moreover, by using (4.17), one concludes that

∣∣en+1∣∣≤ ∣∣en∣∣+h

[ p−1∑
i=0

max
∣∣αi∣∣LFmax

i≤n
∣∣x̃n−i− x

(
tn−i
)∣∣]+Mhmin(p,q)+1

≤ ∣∣en∣∣+ p ·hαmax
i≤n

∣∣x̃n−i− x
(
tn−i
)∣∣+Mhmin(p,q)+1,

α= max
0≤i≤p−1

∣∣αi∣∣≤ (1+hα)max
i≤n

∣∣ei∣∣+Mhmin(p,q)+1.

(4.19)

A simple induction on n shows that

∣∣en+1∣∣≤Mhmin(p,q)+1 (1+hα)n−p+1− 1
hα

+ (1+hα)n−p+1 max
i≤p−1

∣∣ei∣∣
≤Mhmin(p,q)+1 e

α(b−a)− 1
hα

+ eα(b−a) max
i≤p−1

∣∣ei∣∣≤ Chmin(p,q).

(4.20)

�

Remark 4.3. The proposed approximation scheme requires p starting values xi, i= 0, . . . ,
p− 1. A direct collocation method applied to (4.1) can be used to provide us with these
appropriate starting values.
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Novembre à Carthage, Jarzouna, 7021, Tunisia

E-mail address: abderrazek.karoui@fsb.rnu.tn

mailto:abderrazek.karoui@fsb.rnu.tn

	1. Introduction
	2. Existence of a solution of nonlinear integral equations
	3. Existence and uniqueness results for a nonlinear integral equation
	4. Approximate solution of Volterra integral equation
	References

