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For one class of hyperbolic systems of second order, we consider multidimensional ver-
sions of the Darboux problem in conic domains. A priori estimates of solutions of these
problems are obtained. The existence of a solution of the Darboux problems is proved
under the supplementary conditions imposed on the coefficients of the system, when the
data support of the problem is of temporary type.

1. Statement of the problem

In the Euclidean space Rn+1 of the variables x = (x1, . . . ,xn) and t we consider a system of
linear differential equations of the kind

Lu= utt −
n∑

i, j=1
Aijuxixj +

n∑
i=1

Biuxi +Cu= F, (1.1)

where Aij (Aij = Aji), Bi, and C are given real (m×m)-matrices, F is a given and u is an
unknownm-dimensional real vector, n≥ 2,m> 1.

Below, the matrices Aij will be assumed to be symmetric and constant, and for any
m-dimensional real vectors ηi, i= 1, . . . ,n, we have the inequality

n∑
i, j=1

Aijηiηj ≥ c0

n∑
i=1

∣∣ηi∣∣2, c0 = const > 0. (1.2)

It can be easily verified that the system (1.1) by virtue of the condition (1.2) is hyper-
bolic.

LetD be the conic domain {(x, t)∈Rn+1 : |x|g(x/|x|) < t < +∞} lying in the half-space
t > 0, and bounded by the conic manifold S= {(x, t)∈Rn+1 : t = |x|g(x/|x|)}, where g is
an entirely definite, positive, continuous, piecewise smooth function given on the unit
sphere of the space Rn. For τ > 0, by Dτ := {(x, t)∈Rn+1 : |x|g(x/|x|) < t < τ} we denote
the domain lying in the half-space t > 0, bounded by the cone S and the hyperplane t = τ.
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Let S0 = ∂Dτ0 ∩ S be the conic portion of the boundary of Dτ0 for some τ0 > 0. Sup-
pose that S1, . . . ,Sk1 ,Sk1+1, . . . ,Sk1+k2 are nonintersecting smooth conic open hypersurfaces,
where S1, . . . ,Sk1 are the characteristic manifolds of the system (1.1), and S0 =

⋃k1+k2
i=1 Si,

where Si is the closure of Si.
Consider the following boundary value problem: find in the domain Dτ0 a solution

u(x, t) of the system (1.1) satisfying the conditions

u|S0 = f0, (1.3)

Γiut|Si = fi, i= 1, . . . ,k1 + k2, (1.4)

where fi, i = 0,1, . . . ,k1 + k2, are given real κi-dimensional vectors, Γi, i = 1, . . . ,k1 + k2,
are given constant (κi×m)-matrices with κ0 =m, 0≤ κi ≤m, i= 1, . . . ,k1 + k2. Here, the
number κi, 1≤ i≤m, shows to what extent the part Si of the boundary ∂Dτ0 is occupied;
in particular, κi = 0 denotes that the corresponding part Si in the boundary condition
(1.4) is completely free from the boundary conditions. Below we will see that for the
problem (1.1), (1.3), (1.4) to be correct, we must choose the number κi in a well-defined
way, depending on the geometric properties of the hypersurface Si.

It will be assumed that the elements of the matrices Bi and C in the system (1.1) are
bounded, measurable functions in the domainDτ0 , and the right-hand side of that system
F ∈ L2(Dτ0 ).

Note that a particular case of the problem (1.1), (1.3), (1.4) is the Cauchy charac-
teristic problem (or the Goursat problem with data support on a characteristic conoid)
[7, 9, 18, 24] and also multidimensional analogues of the first and the second Darboux
problems [1, 2, 5, 13, 14, 15, 21, 22, 23, 25]. In the case of a second-order hyperbolic sys-
tem with the same principal part the question on the unique solvability of Goursat prob-
lem with data on a characteristic conoid has been investigated in [6]. In [3, 4] we can find
general statement of characteristic problems for second-order hyperbolic systems, as well
as examples of systems for which the corresponding homogeneous characteristic problem
has nontrivial solutions (a finite set of linearly independent solutions in one cases and an
infinite set of these solutions in other cases). The works [11, 12] are worth noticing in
which the problem (1.1), (1.3) is considered for the case when the conic hypersurface S0
is of temporary type. The same problem in a dihedral angle of temporary type has been
considered in [16].

2. The methods of selecting the numbers κi andmatrices Γi in the boundary
conditions (1.4), depending on geometric properties of Si

By virtue of the condition (1.2), the symmetric matrix Q(ξ′)=∑n
i, j=1Aijξiξ j , ξ′ = (ξ1, . . . ,

ξn) ∈ Rn \ {(0, . . . ,0)} is positive definite. Therefore there exists an orthogonal matrix
T = T(ξ′) such that the matrix T−1(ξ′)Q(ξ′)T(ξ′) is diagonal, and its elements µ1, . . . ,µm
on the diagonal are positive, that is, µi = λ̃2i (ξ

′) > 0, λ̃i > 0, i = 1, . . . ,m. Note that with-

out restriction of generality we may assume that λ̃m(ξ′) ≥ ··· ≥ λ̃1(ξ′) > 0 ∀ξ′ ∈ Rn \
{(0, . . . ,0)}. Below it will be assumed that the multiplicities �1, . . . ,�s of these values do not
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depend on ξ′, and we put

λ1(ξ′)= λ̃1(ξ′)= ··· = λ̃�1 (ξ
′) < λ2(ξ′)= λ̃�1+1(ξ

′)= ··· = λ̃�1+�2 (ξ
′)

< λs(ξ′)= λ̃m−�s+1(ξ
′)= ··· = λ̃m(ξ′), ξ′ ∈Rn \ {(0, . . . ,0)}.

(2.1)

Note that according to (2.1) and owing to the continuous dependence of roots of the
characteristic polynomial of a symmetricmatrix on its elements, λ1(ξ′), . . . ,λs(ξ′) are con-
tinuous homogeneous functions of degree 1 [10, page 434].

It is easily seen that the roots with respect to ξn+1 of the characteristic polynomial
det(Eξ2n+1−Q(ξ′)) of the system (1.1) are the numbers ξn+1 =±λi(ξ1, . . . ,ξn), i = 1, . . . ,s,
with the multiplicities k1, . . . ,ks, where E is the unit (m×m)-matrix. Therefore the cone
of normals

K = {ξ = (ξ1, . . . ,ξn,ξn+1)∈Rn+1 : det
(
Eξ2n+1−Q(ξ′)

)= 0
}

(2.2)

of the system (1.1) consists of its separate connected components

K±i =
{
ξ ∈ (ξ′,ξn+1)∈Rn+1 : ξn+1∓ λi(ξ′)= 0

}
, i= 1, . . . ,s. (2.3)

Denote by D−i = {ξ = (ξ′,ξn+1) ∈ Rn+1 : ξn+1 + λi(ξ′) < 0} the conic domain whose
boundary is the conic hypersurface K−i , i = 1, . . . ,s. By (2.1) we have D−1 ⊃ D−2 ⊃ ··· ⊃
D−s . Let Gi = D−i−1 \D−i for 1 < i ≤ s, and G1 = Rn+1− \D−1 , Rn+1− = {ξ ∈ Rn+1 : ξn+1 < 0},
while Gs+1 =D−s .

Since for the unit vector of outer normal α= (α1, . . . ,αn,αn+1) at the points of the cone
S different from its vertex O(0, . . . ,0), we have

αi = ∂g0/∂xi√
1+

∣∣∇xg0
∣∣2 , i= 1, . . . ,n, αn+1 = −1√

1+
∣∣∇xg0

∣∣2 (2.4)

with∇x = (∂/∂x1, . . . ,∂/∂xn), g0(x)= |x|g(x/|x|), it holds

αn+1|S\O < 0. (2.5)

According to our supposition, the smooth conic hypersurface Si for 1 ≤ i ≤ k1 is a
characteristic one. Therefore, taking into account that Si ⊂ S0 ⊂ S and the inequality (2.5)
is fulfilled, for some indexmi, 1≤mi ≤ s, we have

α|Si ∈ K−mi
, i= 1, . . . ,k1. (2.6)
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Since the hypersurface Si for k1 + 1≤ i≤ k1 + k2 at none of its points is characteristic,
by virtue of Si ⊂ S0 ⊂ S and (2.5) as well as by definition of the domains Gj , there exists
an index ni, 1≤ ni ≤ s+1, such that

α|Si ∈Gni , i= k1 + 1, . . . ,k1 + k2. (2.7)

Without restriction of generality we assume that m1 ≤ ··· ≤mk1 and nk1+1 ≤ ··· ≤
nk1+k2 .

By Q0(ξ)= Eξ2n+1−Q(ξ′) we denote the characteristic matrix of the system (1.1) and
consider the problem on reduction of the quadratic form (Q0(ξ)η,η) to the canonic form,
when ξ = α is the unit vector of the normal to the hypersurface Si, i = 1 ≤ i ≤ k1 + k2,
outer with respect to the domain Dτ0 . Here η ∈Rm and (·,·) denotes the scalar product
in the Euclidean space Rm.

As far as

T−1(α′)Q(α)T(α′)

= diag

λ21(α′), . . . ,λ21(α′)︸ ︷︷ ︸
�1

, . . . ,λ2s (α
′), . . . ,λ2s (α

′)︸ ︷︷ ︸
�s

 , α′ = (α1, . . . ,αn), (2.8)

for η = Tζ , we have

(
Q0(α)η,η

)= ((T−1Q0T
)
(α)ζ ,ζ

)= ((Eα2n+1− (T−1QT)(α′))ζ ,ζ)
=
(
α2n+1− λ21(α

′)
)
ζ21 + ···+

(
α2n+1− λ21(α

′)
)
ζ2�1

+
(
α2n+1− λ22(α

′)
)
ζ2�1+1 + ···+

(
α2n+1− λ22(α

′)
)
ζ2�1+�2

+ ···+
(
α2n+1− λ2s (α

′)
)
ζ2m−�s+1 + ···+

(
α2n+1− λ2s (α

′)
)
ζ2m.

(2.9)

For 1≤ i≤ k1, that is, in (2.6), since α2n+1− λ2mi
(α′)= 0, by virtue of (2.1), we have

[
α2n+1− λ2j (α

′)
]∣∣

K−mi
> 0, j = 1, . . . ,mi− 1;

[
α2n+1− λ2mi

(α′)
]∣∣

K−mi
= 0,[

α2n+1− λ2j (α
′)
]∣∣

K−mi
< 0, j =mi +1, . . . ,s.

(2.10)

If k1 + 1 ≤ i ≤ k1 + k2, that is, in (2.7), by the definition of the domain Gni it follows
from (2.1) that for ni ≤ s

[
α2n+1− λ2j (α

′)
]∣∣

Gni
> 0, j = 1, . . . ,ni− 1,[

α2n+1− λ2j (α
′)
]∣∣

Gni
< 0, j = ni, . . . ,s, and for ni = s+1,[

α2n+1− λ2j (α
′)
]∣∣

Gni
> 0, j = 1, . . . ,s.

(2.11)
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Denote by κ
+
i and κ

−
i the positive and negative indices of inertia of the quadratic

form (Q0(α)η,η) for α∈ K−mi
when 1≤ i≤ k1, and for α∈ Gni when k1 + 1≤ i≤ k1 + k2.

For 1≤ i≤ k1, by (2.9) and (2.10), we have

κ
+
i = �1 + ···+ �mi−1, κ

−
i = �mi+1 + ···+ �s, (def)mi = �mi , (2.12)

where (def)mi is the defect of that form, and κ
+
i = 0 formi = 1. When k1 + 1≤ i≤ k1 + k2,

by virtue of (2.9) and (2.11), we have

κ
+
i = �1 + ···+ �ni−1, κ

−
i = �ni + ···+ �s, (2.13)

and κ
+
i = 0 for ni = 1.

If now ζ = Ciη is any nondegenerated linear transformation reducing the quadratic
form (Q0(α)η,η) in case (2.12) and (2.13) to the canonic form, then owing to the in-
variance of indices of inertia of a quadratic form with respect to nondegenerated linear
transformations, we have

(
Q0(α)η,η

)= κ
+
i∑

j=1

[
Λ+
i j(α,η)

]2− κ
−
i∑

j=1

[
Λ−i j(α,η)

]2
, 1≤ i≤ k1 + k2. (2.14)

Here

Λ+
i j(α,η)=

m∑
p=1

cij p(α)ηp, Λ−i j(α,η)=
m∑
p=1

ci
κ

+
i + j,p

(α)ηp,

Ci = Ci(α)= (cij p(α))mj,p=1, 1≤ i≤ k1 + k2.

(2.15)

According to (2.15), in the boundary conditions (1.4) we take as the matrix Γi the
matrix of the order (κi ×m), where κi = κ

+
i , 1 ≤ i ≤ k1 + k2, whose elements Γij p are

given by the equality

Γij p = cij p(α), j = 1, . . . ,κ+
i ; p = 1, . . . ,m, (2.16)

where α∈ K−mi
for 1≤ i≤ k1, and α∈Gni for k1 + 1≤ i≤ k1 + k2.

Below it will be assumed that in the boundary conditions (1.4) the elements Γij p of
matrices Γi on Si are the bounded measurable functions. It will also be assumed that the
domain Dτ0 is a Lipschitz one [19, page 68].
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3. Derivation of an a priori estimate for a solution of problem (1.1), (1.3), (1.4)

Below, if it will not cause misunderstanding, instead of u = (u1, . . . ,um) ∈ [Wk
2 (Dτ0 )]

m

we will write simply u ∈Wk
2 (Dτ0 ). The condition F = (F1, . . . ,Fm) ∈ L2(Dτ0 ) should be

understood analogously. Let u∈W2
2 (Dτ0 ) be a solution of the problem (1.1), (1.3), (1.4).

Multiplying both parts of the system of (1.1) scalarly by the vector 2ut and integrating the
obtained expression with respect to Dτ , 0 < τ ≤ τ0, we obtain

2
∫
Dτ

(
F −

n∑
i=1

Biuxi −Cu

)
ut dxdt

=
∫
Dτ

[
∂
(
ut,ut

)
∂t

+2
n∑

i, j=1
Aijuxj utxi

]
dxdt− 2

∫
S0∩{t≤τ}

n∑
i, j=1

Aijutuxj αi ds

=
∫
∂Dτ\S0

(
utut +

n∑
i, j=1

Aijuxiuxj

)
dx

+
∫
S0∩{t≤τ}

[(
utut +

n∑
i, j=1

Aijuxiuxj

)
αn+1− 2

n∑
i, j=1

Aijutuxj αi

]
ds

=
∫
∂Dτ\S0

(
utut +

n∑
i, j=1

Aijuxiuxj

)
dx

+
∫
S0∩{t≤τ}

α−1n+1

[ n∑
i, j=1

Aij
(
αn+1uxi −αiut

)(
αn+1uxj −αjut

)

+

(
Eα2n+1−

n∑
i, j=1

Aijαiαj

)
utut

]
ds

=
∫
∂Dτ\S0

(
utut +

n∑
i, j=1

Aijuxiuxj

)
dx

+
∫
S0∩{t≤τ}

α−1n+1

[ n∑
i, j=1

Aij
(
αn+1uxi −αiut

)(
αn+1uxj −αjut

)]
ds

+
∫
S0∩{t≤τ}

α−1n+1
(
Q0(α)ut,ut

)
ds.

(3.1)

Since (αn+1(∂/∂xi)−αi(∂/∂t)) is an inner differential operator on the conic hypersur-
face S0, according to (1.3) and the boundedness of |α−1n+1| on S0, we have∣∣∣∣∣

∫
S0∩{t≤τ}

α−1n+1

[ n∑
i, j=1

Aij
(
αn+1uxi −αiut

)(
αn+1uxj −αjut

)]
ds

∣∣∣∣∣
≤ c1

∥∥ f0∥∥2W1
0 (S0∩{t≤τ}), c1 = const > 0.

(3.2)
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On the other hand, by virtue of (2.14), (2.15), (2.16), and (1.4), (2.5), we get∫
S0∩{t≤τ}

α−1n+1
(
Q0(α)ut,ut

)
ds

=−
k1+k2∑
i=1

∫
Si∩{t≤τ}

{∣∣α−1n+1∣∣ κ
+
i∑

j=1

[
Λ+
i j

(
α,ut

)]2}
ds

+
k1+k2∑
i=1

∫
Si∩{t≤τ}

{∣∣α−1n+1∣∣ κ
−
i∑

j=1

[
Λ−i j
(
α,ut

)]2}
ds

≥−
k1+k2∑
i=1

∫
Si∩{t≤τ}

{∣∣α−1n+1∣∣ κ
+
i∑

j=1

[
Λ+
i j

(
α,ut

)]2}
ds

≥−c2
k1+k2∑
i=1

∫
Si∩{t≤τ}

{
κ

+
i∑

j=1

[
Λi j
(
α,ut

)]2}
ds=−c2

k1+k2∑
i=1

∥∥ fi∥∥L2(Si∩{t≤τ}),

(3.3)

where 0 < c2 = supS0 |α−1n+1| < +∞.
Suppose

w(τ)=
∫
∂Dτ\S0

(
utut +

n∑
i, j=1

Aijuxiuxj

)
dx, ũi = αn+1uxi −αiut. (3.4)

Then by the boundedness and measurability of elements of the matrices Bi and C in the
system (1.1), as well as by (3.1), (3.2), and (3.3), we obtain

w(τ)≤ c3

∫ τ

0
w(t)dt+ c4

∫
Dτ

uudxdt+ c5
∥∥ f0∥∥2W1

2 (S0∩{t≤τ})

+ c6

k1+k2∑
i=1

∥∥ fi∥∥2L2(Si∩{t≤τ}) + c7‖F‖2L2(Dτ ).

(3.5)

Here and in what follows, all the encountered values ci, i ≥ 1, are positive constants,
independent of u.

Let (x,τx) be the point of intersection of the conic hypersurface S and the line parallel
to the t-axis and passing through the point (x,0). We have

u(x,τ)= u
(
x,τx

)
+
∫ τ

τx
ut(x, t)dt, τ ≥ τx, (3.6)

whence with regard for (1.3) we find that∫
∂Dτ\S0

u(x,τ)u(x,τ)dx

≤ 2
∫
∂Dτ\S0

u
(
x,τx

)
u
(
x,τx

)
dx+2

∣∣τ − τx
∣∣∫

∂Dτ\S0
dx
∫ τ

τx
ut(x, t)ut(x, t)dt

≤ c8

∫
S0∩{t≤τ}

uuds+ c9

∫ τ

0
w(t)dt = c8

∥∥ f0∥∥2L2(S0∩{t≤τ}) + c9

∫ τ

0
w(t)dt.

(3.7)
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Introduce the notation

w0(τ)=
∫
∂Dτ\S0

(
uu+utut +

n∑
i, j=1

Aijuxiuxj

)
dx. (3.8)

Summing up the inequalities (3.5) and (3.7), we arrive at

w0(τ)≤ c10

[∫ τ

0
w0(t)dt+

∥∥ f0∥∥2W1
2 (S0∩{t≤τ}) +

k1+k2∑
i=1

∥∥ fi∥∥2L2(Si∩{t≤τ}) +‖F‖2L2(Dτ )

]
, (3.9)

from which by Gronwall’s lemma we find that

w0(τ)≤ c11

(∥∥ f0∥∥2W1
2 (S0∩{t≤τ}) +

k1+k2∑
i=1

∥∥ fi∥∥2L2(Si∩{t≤τ}) +‖F‖2L2(Dτ )

)
. (3.10)

Integrating both parts of the inequality (3.10) with respect to τ, we can easily get the
following a priori estimate for the solution u∈W2

2 (Dτ0 ) of the problem (1.1), (1.3), (1.4):

‖u‖W1
2 (Dτ0 )

≤ c

(∥∥ f0∥∥W1
2 (S0)

+
k1+k2∑
i=1

∥∥ fi∥∥L2(Si) +‖F‖L2(Dτ0 )

)
(3.11)

with a positive constant c independent of u.
Here we introduce the notion of a strong generalized solution of the problem (1.1),

(1.3), (1.4) of the classW1
2 .

Definition 3.1. Let f0 ∈W1
2 (S0), fi ∈ L2(Si), i= 1, . . . ,k1 + k2, and F ∈ L2(Dτ0 ). The vector

function u= (u1, . . . ,um) is said to be a strong generalized solution of the problem (1.1),
(1.3), (1.4) of the classW1

2 if u∈W1
2 (Dτ0 ) and there exists a sequence of vector functions

{uk}∞k=1 from the spaceW2
2 (Dτ0 ) such that

lim
k→∞

∥∥uk −u
∥∥
W1

2 (Dτ )
= 0, lim

k→∞
∥∥uk|S0 − f0

∥∥
W1

2 (S0)
= 0,

lim
k→∞

∥∥∥∥∥Γi ∂uk∂t

∣∣∣∣
Si

− fi

∥∥∥∥∥
L2(Si)

= 0, i= 1, . . . ,k1 + k2,

lim
k→∞

∥∥Luk −F
∥∥
L2(Dτ0 )

= 0.

(3.12)

Below we will prove the existence of a strong generalized solution of the problem (1.1),
(1.3), (1.4) of the classW1

2 in case the conic hypersurface S0 is of temporary type, that is,
when the characteristic matrix of the system (1.1) is negative definite on S0 \ 0. The latter
can be written as follows:([

Eα2n+1−
n∑

i, j=1
Aijαiαj

]
η,η

)
< 0 ∀η∈Rn \ {(0, . . . ,0)}, (3.13)

where the vector α= (α1, . . . ,αn,αn+1) is the outer unit normal to the cone S0 at the points
different from its vertex 0.
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In the case of the inequality (3.13), by virtue of (2.12), (2.13), (2.14), (2.15), and
(2.16) and by our choice of matrices Γi, i = 1, . . . ,k1 + k2, the numbers in (1.4) κi = 0,
i= 1, . . . ,k1 + k2, that is, the boundary conditions (1.4) in the problem (1.1), (1.3), (1.4)
are missing, and the a priori estimate (3.11) of the solution u∈W2

2 (Dτ) of the problem
(1.1), (1.3) takes the form

‖u‖W1
2 (Dτ0 )

≤ c
(∥∥ f0∥∥W1

2 (S0)
+‖F‖L2(Dτ0 )

)
. (3.14)

Note that in [11] we have elucidated the geometric meaning of the condition (3.13),
and for the solution u∈W2

2 (Dτ) of the problem (1.1), (1.3) in that case we have obtained
the a priori estimate (3.14), although in the above-mentioned work we have not proved
the existence of a strong generalized solution of the problem (1.1), (1.3) of the class W1

2

whose uniqueness follows directly from the estimate (3.14).

4. Proof of the existence of a strong generalized solution of
the problem (1.1), (1.3) of the classW1

2

Let us consider the problem on the solvability of the above-mentioned problem, when the
conic hypersurface S0 is of temporal type. For the sake of simplicity we restrict ourselves
to the case where the boundary condition (1.3) is homogeneous, that is,

u|S0 = 0. (4.1)

After the change of variables

y = x

t
, z = t or x = zy, t = z (4.2)

with respect to the unknown vector function v(y,z)= u(zy,z), the system (1.1) takes the
form

L1v = vzz − 1
z2

n∑
i, j=1

Ãi jvyi y j −
2
z

n∑
i=1

yivzyi +
1
z

n∑
i=1

B̃ivyi + C̃v = F̃. (4.3)

Here

Ãi j = Eyi y j +Aij , B̃i = Bi(zy,z), C̃ = C(zy,z), F̃ = F(zy,z). (4.4)

By G we denote an n-dimensional domain which is the intersection of the conic do-
main D : t > |x|g(x/|x|) and the hyperplane t = 1 in which the variable x is replaced by
y. Obviously, ∂G = {y ∈ Rn : 1 = |y|g(y/|y|)}. Under the transformation (x, t)→ (y,z)
in accordance with (4.2), the domain Dτ transforms into the cylindrical domain Ωτ =
G× (0,τ)= {(y,z)∈Rn+1 : y ∈G, z ∈ (0,τ)} in the space of the variables y, z. Denote by
Γτ = ∂G× [0,τ] the lateral surface of the cylinderΩτ . The boundary condition (4.1) with
respect to the vector function v takes the form

v|Γτ0 = 0. (4.5)
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We divide the exposition of the proof of existence a strong generalized solution of
problem (1.1), (1.3) of the classW1

2 into several items.
(10) In this item we will derive an a priori estimate for the solution v = (v1, . . . ,vm) of

the problem (4.3), (4.5) from the spaceW2
2 (Ωτ0 ), which is equal to zero in the domainΩδ .

Let v be a solution of the problem (4.3), (4.5) from the space W2
2 (Ωτ0 ), such that for

some positive δ

v|Ωδ = 0, 0 < δ < τ. (4.6)

Under the assumption that (0, . . . ,0)∈ G and diamG is sufficiently small, by virtue of
(1.2) and (4.4), for anym-dimensional real vectors ηi, i= 1, . . . ,n, the inequality

n∑
i, j=1

Ãi j(y)ηiηj ≥ c̃0

n∑
i=1

∣∣ηi∣∣2, c̃0 = const > 0, ∀y ∈G, (4.7)

is valid.
If ν = (ν1, . . . ,νn,νn+1) is the unit vector of the outer normal to the boundary ∂Ωτ0 of

the cylinderΩτ0 at the points (y,z), where it exists, then taking into account (4.6) we can
easily see that

νn+1|Γτ0 = 0, νi|∂Ωτ0∩{z=τ0} = 0, i= 1, . . . ,n, vz|Γτ0 = 0. (4.8)

Suppose Gτ =Ωτ0 ∩{z = τ}.
Multiplying both parts of the system (4.3) scalarly by the vector 2vz and integrating

the obtained expression with respect to Ωτ , δ < τ ≤ τ0, with regard for (4.4), (4.5), (4.6),
and (4.8) we obtain

2
∫
Ωτ

(
F̃ − 1

z

n∑
i=1

B̃ivyi − C̃v

)
vz dydz

=
∫
Ωτ

[
2vzzvz − 2

z2

n∑
i, j=1

Ãi j(y)vyi y j vz −
4
z

n∑
i=1

yivzyivz

]
dydz

=
∫
Ωτ

[
∂
(
vzvz

)
∂z

+
2
z2

n∑
i, j=1

Ãi j(y)vyivzyj +
2
z2

n∑
i, j=1

Ãi j(y)

∂yj
vyivz −

2
z

n∑
i=1

yi
∂
(
vzvz

)
∂yi

]
dydz

=
∫
Ωτ

[
∂
(
vzvz

)
∂z

+
1
z2

∂

∂z

( n∑
i, j=1

Ãi j(y)vyivyj

)
+

2
z2

n∑
i, j=1

Eyi vyivz +
2
z

n∑
i=1

∂yi
∂yi

vzvz

]
dydz

=
∫
Gτ

[
vzvz +

1
τ2

n∑
i, j=1

Ãi j(y)vyivyj

]
dy

+
∫
Ωτ\Ωδ

[
2
z3

n∑
i, j=1

Ãi j(y)vyivyj +
2
z2

n∑
i, j=1

Eyivyivz +
2n
z
vzvz

]
dydz.

(4.9)
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Since the domains of variation of the variables yi in G are bounded, that is, supG |yi| ≤
d, i= 1, . . . ,n, by virtue of (4.4) and (4.7) for some c̃1 = const > 0 the inequality

n∑
i, j=1

Ãi j(y)ηiηj ≤ c̃1

n∑
i=1

∣∣ηi∣∣2 ∀ηi ∈Rn, ∀y ∈G (4.10)

holds.
Denoting

w̃(τ)=
∫
Gτ

[
vzvz +

n∑
i=1

vyivyi

]
dy,

w̃0(τ)=
∫
Gτ

[
vv+ vzvz +

n∑
i=1

vyivyi

]
dy,

(4.11)

due to (4.7), (4.9), and (4.10) we have

min
(
1,
c̃0
τ2

)
w̃(τ)

≤
∫
Ωτ\Ωδ

[
2c̃1
z3

n∑
i=1

vyivyi +
dn

z2

n∑
i=1

(
vyivyi + vzvz

)
+
2n
z
vzvz

]
dydz

+
∫
Ωτ\Ωδ

[
F̃F̃ + vzvz +

1
z

n∑
i=1

∥∥B̃i

∥∥
L∞

(
vyivyi + vzvz

)
+‖C̃‖L∞

(
vv+ vzvz

)]
dydz

≤
(
2c̃1
δ3

+
dn

δ2
+
1
δ
max
1≤i≤n

∥∥B̃i

∥∥
L∞

)∫
Ωτ\Ωδ

( n∑
i=1

vyivyi

)
dydz

+
(
dn2

δ2
+
2n
δ

+1+‖C̃‖L∞
)∫

Ωτ\Ωδ

vzvz dy dz

+‖C̃‖L∞
∫
Ωτ\Ωδ

vvdydz+
∫
Ωτ\Ωδ

F̃F̃ dy dz

≤ c2(δ)
∫
Ωτ

[
vv+ vzz +

n∑
i=1

vyivyi

]
dydz+

∫
Ωτ

F̃F̃ dy dz

= c2(δ)
∫ τ

0
w̃0(σ)dσ +

∫
Ωτ

F̃F̃ dy dz,

(4.12)

where c2(δ) = const > 0, δ < τ ≤ τ0, while ‖B̃i‖L∞ and ‖C̃‖L∞ are the upper bounds of
norms of the matrices B̃i and C̃ in the domain Ωτ0 .

By (4.6) we have

v(y,τ)=
∫ τ

0
vz(y,σ)dσ , (4.13)
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whence∫
Gτ

v(y,τ)v(y,τ)dy ≤
∫
G

[∫ τ

0

∣∣vz(y,σ)∣∣dσ]2dy
≤
∫
G

[(∫ τ

0
12dσ

)1/2(∫ τ

0

∣∣vz(y,σ)∣∣2dσ)1/2
]2

dy

≤ τ
∫
G

∫ τ

0
v2z (y,σ)dσ dy = τ

∫
Ωτ

v2z dy dz.

(4.14)

Taking into account (4.14), from (4.12), we have

w̃0(τ)≤ c3(δ)
∫ τ

0
w̃0(σ)dσ + c4(δ)

∫
Ωτ

F̃F̃ dy dz, (4.15)

where ci(δ) = const > 0, i = 3,4. This, on the basis of Gronwall’s lemma, enables one to
conclude that

w̃0(τ)≤ c(δ)
∫
Ωτ

F̃F̃ dy dz, 0 < τ ≤ τ0, (4.16)

with the constant c(δ) > 0.
In its turn, from (4.16) it follows that

‖v‖W1
2 (Ωτ0 )

≤ c̃(δ)‖F̃‖L2(Ωτ0 ), c̃(δ)= const > 0. (4.17)

Remark 4.1. To construct a solution v of the problem (4.3), (4.5) from the spaceW2
2 (Ωτ0 )

for

F̃|Ωδ = 0, 0 < δ < τ0, (4.18)

satisfying automatically according to (4.16) and (4.18) the condition (4.6), we take ad-
vantage of Galerkin’s method (see [17, pages 213–220]). Note that unlike the equations
and systems of hyperbolic type considered in [17], in the system (4.3) we have terms
involving mixed derivatives vzyi .

(20) First we present the proof of the existence of a weak generalized solution of the
problem (4.3), (4.5), (4.6) of the class W1

2 . Let {ϕk(y)}∞k=1 be an orthogonal basis in

the separable Hilbert space [
◦
W 1

2(G)]
m. As elements of the basis {ϕk(y)}∞k=1 in the space

[
◦
W1

2(G)]
m we can take the proper vector functions of the Laplace operator: ∆ϕk = λkϕk,

ϕk|∂G = 0 (see [17, pages 110, 248]). Note that in the space [
◦
W1

2(G)]
m we can, as an equiv-

alent norm, take

‖v‖2◦
W1

2(G)
=
∫
G

( n∑
i=1

vyivyi

)
dy,

v = (v1, . . . ,vm), vi ∈
◦
W1

2(G), i= 1, . . . ,m.

(4.19)



S. Kharibegashvili 559

An approximate solution vN (y,z) of the problem (4.3), (4.5) will be sought in the form
of the sum

vN (y,z)=
N∑
k=1

CN
k (z)ϕk(y), (4.20)

in which the coefficients CN
k (z) are defined from the following relations:(

∂2vN

∂z2
,ϕ�

)
L2(G)

+
1
z2

∫
G

{ n∑
i, j=1

[
Ãi j(y)vNyi ϕ�yj +

∂Ãi j

∂y j
vNyi ϕ�

]}
dy

+
2
z

∫
G

{ n∑
i=1

[
yiv

N
z ϕ�yi + vNz ϕ�

]}
dy +

∫
G

[
1
z

n∑
i=1

B̃iv
N
yi ϕ� + C̃vNϕ�

]
dy

= (F̃,ϕ�
)
L2(G), δ ≤ z ≤ τ0, � = 1, . . . ,N ,

(4.21)

d

dz
CN
k (z)

∣∣∣∣
z=δ
= 0, CN

k (z)|z=δ = 0, k = 1, . . . ,N , (4.22)

CN
k (z)= 0, 0≤ z < δ, k = 1, . . . ,N. (4.23)

The equalities (4.21) make a system of linear ordinary differential equations of second
order with respect to z and to unknown functions CN

k , k = 1, . . . ,N , with constant ma-
trix elements, which in their turn are the coefficients of the derivatives of second order
d2CN

k (z)/dz
2, and with the different from zero determinant, since by itself it represents

Gram’s determinant with respect to the scalar product in L2(G) of the linearly indepen-
dent system of vector functions ϕ1(y), . . . ,ϕN (y). The coefficients of every equation of that
system are bounded measurable functions, and the right-hand sides g�(z)= (F̃,ϕ�)L2(G) ∈
L1((0,τ0)).

As is known (see [17, page 214]), the system (4.21) has a unique solution which
satisfies the initial conditions (4.22), as well as the condition (4.23) by (4.18), where
d2CN

k (z)/dz
2∈L1((0,τ0)).

Let us now show that for v = vN the estimates (4.16) and (4.17) are valid. Indeed, mul-
tiplying each of the inequalities (4.21) by the corresponding (d/dz)CN

� (z) and summing
up with respect to � from 1 to N , we obtain the equality(

∂2vN

∂z2
,
∂vN

∂z

)
L2(G)

+
1
z2

∫
G

{ n∑
i, j=1

[
Ãi j(y)vNyi v

N
zyj +

∂Ãi j

∂y j
vNyi v

N
z

]}
dy

+
1
z

∫
G

{ n∑
i=1

[
yiv

N
z v

N
zyi + vNz v

N
z

]}
dy

+
∫
G

[
1
z2

n∑
i=1

B̃iv
N
yi v

N
z + C̃vNvNz

]
dy = (F̃,vNz )L2(G),

(4.24)

which after integration with respect to z from 0 to τ0, with regard for (4.23) and further
transformations allow us to derive the inequalities (4.16) and (4.17). Note that by (4.23)
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it becomes obvious that

vN |Ωδ = 0, N = 1,2, . . . . (4.25)

Thus the estimate∫
Gτ0

[
vNvN + vNz v

N
z +

n∑
i=1

vNyi v
N
yi

]
dy ≤ c5(δ)‖F̃‖2L2(Ωτ ), 0 < τ ≤ τ0, N ≥ 1,

∥∥vN∥∥W1
2 (Ωτ0 )

≤ c6(δ)‖F̃‖L2(Ωτ0 ), N ≥ 1,

(4.26)

is valid, where the positive constants c5(δ) and c6(δ) do not depend on N .
Owing to (4.26) and to weak compactness of the closed ball in the Hilbert space

W1
2 (Ωτ0 ) we can choose from the sequence {vN} the subsequence (denoted as above),

converging weakly in W1
2 (Ωτ0 ) to some element v ∈W1

2 (Ωτ0 ). Note that by virtue of
(4.25), the equality (4.6) will be valid for that element v. It should be also noted that
since vN |Γτ0 = 0, N ≥ 1, by the compactness of taking the trace: v→ v|Γτ0 from the space
W1

2 (Ωτ0 ) into L2(Γτ0 ), the element v satisfies the homogeneous boundary condition (4.5)
(see [17, page 71]).

Let us now show that v is a weak generalized solution of the system (4.3), that is, the
identity∫

Ωτ0

[
− vzwz +

1
z2

n∑
i, j=1

vyi
(
Ãi jw

)
yj
+
2
z

n∑
i=1

vz
(
yiw

)
yi
+
1
z

n∑
i=1

B̃ivyiw+ C̃vw

]
dydz

=
∫
Ωτ0

F̃wdydz

(4.27)

holds for anyw ∈V , whereV is the closure with respect to the norm of the spaceW1
2 (Ωτ0 )

of vector functions ω = (ω1, . . . ,ωm) of the class C2(Ωτ0 ), satisfying the following homo-
geneous boundary conditions:

w|Γτ0 = 0, w|z=τ0 = 0. (4.28)

Towards this end, we first multiply each of the equalities (4.21) by its own function
d�(z)∈ C2[0,τ0], d�(τ0)= 0, then sum the obtained equality with respect to � from 1 to
N and integrate with respect to z from 0 to τ0. Next, integration by parts in the first term
results in the identity∫

Ωτ0

[
− vNz wz +

1
z2

n∑
i, j=1

vNyi
(
Ãi jw

)
yj
+
2
z

n∑
i=1

vNz
(
yiw

)
yi
+
1
z

n∑
i=1

B̃iv
N
yiw+ C̃vNw

]
dydz

=
∫
Ωτ0

F̃wdydz,

(4.29)

which is valid for any w of the type
∑N

�=1d�(z)ϕ�(y). The union of such v is denoted
by VN . If we pass in (4.29) to the limit by the above-chosen subsequence for fixed w
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of the class VN , then we will arrive at the identity (4.27) for the limiting function v ∈
W1

2 (Ωτ0 ), valid for any w ∈⋃∞N=1VN . Now we can show that
⋃∞

N=1VN is dense in V .
Indeed, let w ∈ C2(Ωτ0 ) and let the equalities (4.28) be fulfilled. Then there exists

an extension w0 of the vector function w to the greater cylinder Ω∗ = {(y,z) ∈ Rn+1 :
y ∈ G, z ∈ (−τ0,τ0)} of the class C2(Ω∗), such that w0|∂Ω∗ = 0, w0|Ωτ0

= w (see [8, page
591]). Consequently, w0 ∈W◦ 1

2(Ω∗), and since the system of functions

{
ϕ�(y)sin

πk
(
z+ τ0

)
2τ0

}∞
k,�=1

(4.30)

is fundamental in the spaceW◦ 1
2(Ω∗) (see [20, pages 112, 165]), for any ε > 0 there exists

a linear combination
∑k

i=1αiw̃i of vector functions from the system (4.30) such that

∥∥∥∥∥w0−
k∑
i=1

αiw̃i

∥∥∥∥∥
W1

2 (Ω∗)

< ε, (4.31)

because ‖w̃‖W◦ 1
2(Ω∗) = ‖w̃‖W1

2 (Ω∗). By virtue of (4.28) and the fact that w0|Ωτ0
= w, we

have

∥∥∥∥∥w−
k∑
i=1

αiw̃i

∥∥∥∥∥
V

=
∥∥∥∥∥w−

k∑
i=1

αiw̃i

∥∥∥∥∥
W1

2 (Ωτ0 )

≤
∥∥∥∥∥w0−

n∑
i=1

αiw̃i

∥∥∥∥∥
W1

2 (Ω∗)

< ε. (4.32)

But
∑k

i=1αiw̃i ∈
⋃∞

N=1VN . Therefore from (4.32) and the fact that the set
{
w ∈ C2(Ωτ0 ) :

w|Γτ0 = 0, w|z=τ0 = 0
}
is dense in the space V , we find that

⋃∞
N=1VN is dense in V . Since

v ∈W1
2 (Ωτ0 ), this in its turn implies that the identity (4.27), which is valid for any w ∈⋃∞

N=1VN , will be valid for anyw ∈V as well. Thus the limiting vector function v = v(y,z)
is a weak generalized solution of (4.3) satisfying the equalities (4.5) and (4.6).

(30) Let us show that if the following additional conditions

∂G∈ C2; Bixj ,Bit,Cxj ,Ct ∈ L∞
(
Dτ0

)
, i, j = 1, . . . ,n, (4.33)

F ∈W1
2

(
Dτ0

)
, F|Dδ = 0 (4.34)

are fulfilled, then the above-obtained limiting function v is a solution of the problem
(4.3), (4.5), (4.6) from the space W2

2 (Ωτ0 ), where L∞(Dτ0 ) is the space of measurable
bounded on Dτ0 functions.

We multiply by (d2/dz2)CN
� (z) the expression obtained after differentiation of the

equality (4.21) with respect to z and then sum with respect to � from 1 to N . As a result
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we obtain(
vNzzz,v

N
zz

)
L2(G)

− 2
z3

∫
G

{ n∑
i, j=1

[
Ãi j(y)vNyi v

N
zzyj +

∂Ãi j

∂y j
vNyi v

N
zz

]}
dy

+
1
z2

∫
G

{ n∑
i, j=1

[
Ãi j(y)vNzyiv

N
zzyj +

∂Ãi j

∂y j
vNzyiv

N
zz

]}
dy

− 2
z2

∫
G

{ n∑
i=1

[
yiv

N
z v

N
zzyj + vNz v

N
zz

]}
dy +

2
z

∫
G

{ n∑
i=1

[
yiv

N
zzv

N
zzyi + vNzzv

N
zz

]}
dy

+
∫
G

[
− 1
z2

n∑
i=1

B̃iv
N
yi v

N
zz +

1
z

n∑
i=1

∂B̃i

∂z
vNyi v

N
zz +

1
z

n∑
i=1

B̃iv
N
zyiv

N
zz +

∂C̃

∂z
vNvNzz + C̃vNz v

N
zz

]
dy

=
(
F̃z,vNzz

)
L2(G)

.

(4.35)

It can be easily verified that(
vNzzz,v

N
zz

)
L2(G)

= 1
2
d

dz

(
vNzzv

N
zz

)
L2(G)

, (4.36)

− 2
z3

∫
G

[ n∑
i, j=1

Ãi j(y)vNyi v
N
zzyj

]
dy

= d

dz

{
− 2
z3

∫
G

[ n∑
i, j=1

Ãi j(y)vNyi v
N
zyj

]
dy

}
− 6
z4

∫
G

[ n∑
i, j=1

Ãi j(y)vNyi v
N
zyj

]
dy

+
2
z3

∫
G

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zyj

]
dy,

(4.37)

1
z2

∫
G

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zzyj

]
dy

= 1
2
d

dz

{
1
z2

∫
G

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zyj

]
dy

}
+

1
z3

∫
G

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zyj

]
dy,

(4.38)

− 2
z2

∫
G

[ n∑
i=1

yiv
N
z v

N
zzyi

]
dy

= d

dz

{
− 2
z2

∫
G

[ n∑
i=1

yiv
N
z v

N
zyi

]
dy

}
− 4
z3

∫
G

[ n∑
i=1

yiv
N
z v

N
zyi

]
dy

+
2
z2

∫
G

[ n∑
i=1

yiv
N
zzv

N
zyi

]
dy,

(4.39)

2
z

∫
G

[ n∑
i=1

yiv
N
zzv

N
zzyi

]
dy

= 2
z

∫
G

[ n∑
i=1

{
1
2

∂

∂yi

(
yiv

N
zzv

N
zz

)− 1
2

(
vNzzv

N
zz

)}]
dy

= 2
z

∫
∂G

[ n∑
i=1

1
2
yiv

N
zzv

N
zz

]
νi ds− n

z

∫
G
vNzzv

N
zz dy =−

n

z

∫
G
vNzzv

N
zz dy,

(4.40)
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where ν= (ν1, . . . ,νn) is the unit vector of the outer normal to ∂G. In deriving (4.40), we
have taken into account that by the construction vNzz|∂G = 0.

Substituting (4.36), (4.37), (4.38), (4.39), and (4.40) into (4.35), integrating the latter
with respect to z from 0 to τ and taking into account that vN |Ωδ = 0, δ < τ by (4.25), we
have

1
2

(
vNzz,v

N
zz

)
L2(Gτ )

− 2
τ3

∫
Gτ

[ n∑
i, j=1

Ãi j(y)vNyi v
N
zyj

]
dy− 6

∫
Ωτ\Ωδ

1
z4

[ n∑
i, j=1

Ãi j(y)vNyi v
N
zyj

]
dydz

+2
∫
Ωτ\Ωδ

1
z3

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zyj

]
dydz

− 2
∫
Ωτ\Ωδ

1
z3

[ n∑
i, j=1

∂Ãi j

∂y j
vNyi v

N
zz

]
dydz+

1
2τ2

∫
Gτ

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zyj

]
dy

+
∫
Ωτ\Ωδ

1
z3

[ n∑
i, j=1

Ãi j(y)vNzyiv
N
zyj

]
dydz+

∫
Ωτ\Ωδ

1
z2

[ n∑
i, j=1

∂Ãi j

∂y j
vNzyiv

N
zz

]
dydz

− 2
τ2

∫
Gτ

[ n∑
i=1

yiv
N
z v

N
zyi

]
dy− 4

∫
Ωτ\Ωδ

1
z3

[ n∑
i=1

yiv
N
z v

N
zyi

]
dydz

+2
∫
Ωτ\Ωδ

1
z2

[ n∑
i=1

yiv
N
zzv

N
zyi

]
dydz− 2

∫
Ωτ\Ωδ

n

z2
vNz v

N
zz dy dz

−n
∫
Ωτ\Ωδ

1
z
vNzzv

N
zz dy dz+2

∫
Ωτ\Ωδ

n

z
vNzzv

N
zz dy dz

+
∫
Ωτ\Ωδ

[
− 1
z2

n∑
i=1

B̃iv
N
yi v

N
zz+

1
z

n∑
i=1

∂B̃i

∂z
vNyi v

N
zz+

1
z

n∑
i=1

B̃iv
N
zyiv

N
zz +

∂C̃

∂z
vNvNzz + C̃vNz v

N
zz

]
dydz

=
(
F̃z,vNzz

)
L2(Ωτ )

.

(4.41)

Owing to the well-known inequalities

∣∣∣∣∫
Gτ

ϕ(y)ψ(y)dy
∣∣∣∣≤ (∫

Gτ

ϕ2dy
)1/2(∫

Gτ

ψ2dy
)1/2

,

|ab| ≤ ε|a|2 + 1
4ε
|b|2, ε = const > 0,

(4.42)

the two summands

I1 =− 2
τ3

∫
Gτ

[ n∑
i, j=1

Ãi j(y)vNyi v
N
zyj

]
dy, I2 =− 2

τ2

∫
Gτ

[ n∑
i=1

yiv
N
z v

N
zyi

]
dy (4.43)
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from the left-hand side of (4.41) admit the following estimates:

∣∣I1∣∣≤ ε
c̃6
τ3

∫
Gτ

vNzyj v
N
zyj dy +

c7(ε)
τ3

∫
Gτ

vNyi v
N
yi dy,

∣∣I2∣∣≤ ε
c̃8
τ2

∫
Gτ

vNzyiv
N
zyi dy +

c9(ε)
τ2

∫
Gτ

vNz v
N
z dy,

(4.44)

in which the positive constants c̃6 and c̃8 depend only on the coefficients Aij of the system
(1.1) and on the finite domain G, while c7,c9 = const > 0 depend only on ε.

By (4.44) and (4.25), for a sufficiently small positive ε = ε(δ), reasoning just in the
same way as for the inequality (4.16) and using the estimate (4.16), from (4.41) we get

w̃0(τ)≤ c10(δ)
∫
Ωτ

(
F̃F̃ + F̃zF̃z

)
dydz, c10(δ)= const > 0, (4.45)

where w̃0(τ)=
∫
Gτ
[vNzzv

N
zz +

∑n
i=1 vNzyiv

N
zyi]dy, which in its turn results in

∥∥vNzz∥∥L2(Ωτ0 )
+

n∑
i=1

∥∥vNzyi∥∥L2(Ωτ0 )
≤ c11(δ)

[∥∥F̃∥∥L2(Ωτ0 )
+
∥∥F̃z∥∥L2(Ωτ0 )

]
, (4.46)

where c11(δ)= const > 0.
By the estimates (4.26) and (4.46), some subsequence {vNk} converges weakly in L2

together with the first-order derivatives vNk
z , vNk

yi , i= 1, . . . ,n, and the derivatives vNk
zz , v

Nk
zyi ,

i = 1, . . . ,n, to the above-constructed solution v and, respectively, to vz, vyi , vzz, vzyi , i =
1, . . . ,n. It should be noted that for v the inequality

∥∥vzz∥∥L2(Ωτ0 )
+

n∑
i=1

∥∥vzyi∥∥L2(Ωτ0 )
≤ c12(δ)

[∥∥F̃∥∥L2(Ωτ0 )
+
∥∥F̃z∥∥L2(Ωτ0 )

]
, (4.47)

where c12(δ)= const > 0, is valid.
By (4.17) and (4.47), the vector function v will belong to the space W2

2 (Ωτ0 ), if we
show that v has generalized derivatives vyi y j from L2(Ωτ0 ), i, j = 1, . . . ,n.

Denote by Ṽ the space of all vector functions w = (w1, . . . ,wm)∈ L2(Ωτ0 ) having gen-
eralized derivatives wyi yj , i, j = 1, . . . ,n, from L2(Ωτ0 ) and satisfying the homogeneous
boundary condition (4.5), that is, w|Γτ0 = 0.

Just in the same way as we obtained (4.27) from (4.21), it follows from (4.21) that the
above-constructed vector function v satisfies the integral identity

∫
Ωτ0

[
vzzw+

1
z2

n∑
i, j=1

vyi
(
Ãi jw

)
yj
− 2
z

n∑
i=1

vzyi yiw+
1
z

n∑
i=1

B̃ivyiw+ C̃vw

]
dydz

=
∫
Ωτ0

F̃wdydz ∀w ∈ Ṽ .

(4.48)
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If in (4.48) we take as w ∈ Ṽ the vector function w(y,z)= ψ(z)Ψ(y), where the scalar
function ψ(t) and the vector function Ψ(y) are arbitrary elements respectively from

L2((0,τ0)) and
◦
W 1

2(G), then the equality (4.48) by Fubini’s theorem can be rewritten
in the form∫ τ0

0
ψ(z)

{∫
Gz

[
vzzΨ+

1
z2

n∑
i, j=1

vyi
(
Ãi jΨ

)
yj
− 2
z

n∑
i=1

vzyi yiΨ+
1
z

n∑
i=1

B̃ivyiΨ+ C̃vΨ

]
dy

}
dz

=
∫ τ0

0
ψ(z)

[∫
Gz

F̃Ψdy
]
dz,

(4.49)

which, due to arbitrariness in choice of ψ(z)∈ L2((0,τ0)), for almost all z ∈ (0,τ0) yields∫
Gz

[ n∑
i, j=1

vyi
(
Ãi jΨ

)
yj
+ z

n∑
i=1

B̃ivyiΨ+ z2C̃vΨ

]
dy

=
∫
Gz

(
− z2vzz +2z

n∑
i=1

vzyi yi + z2F̃

)
Ψdy ∀Ψ∈ ◦

W 1
2(G).

(4.50)

Since for such z ∈ (0,τ0) the vector function

F̂ =
[
− z2vzz +2z

n∑
i=1

vzyi yi + z2F̃

]
∈ L2(G), (4.51)

the identity (4.50) implies that the vector function v = (v1, . . . ,vm) is the generalized so-

lution from the space
◦
W 1

2(G) for the following elliptic system of equations:

−
n∑

i, j=1
Ãi jvyi y j + z

n∑
i=1

B̃ivyi + z2C̃v = F̂. (4.52)

According to (4.7), the system (4.52) is strongly elliptic. Therefore under the assump-
tion that ∂G ∈ C2, that is, the appearing in the definition of conic domain D function
g ∈ C2, in the system (1.1) the coefficients Bi,C ∈ C1(Dτ0 ) and thus in the system (4.52)
the coefficients B̃i, C̃ ∈ C1(Ωτ0 ), the generalized solution v of the system (4.52) from the

space
◦
W 1

2(G) belongs also to the space W2
2 (G) for such z ∈ (0,τ0) (see [19, page 109]),

and

‖v‖W2
2 (Gz) ≤ c13

∥∥F̂∥∥L2(Gz)

≤ c14

[∥∥vzz∥∥L2(Gz)
+

n∑
i=1

∥∥vzyi∥∥L2(Gz)
+
∥∥F̃∥∥L2(Gz)

]
, c13,c14 = const > 0.

(4.53)

Thus for such z ∈ (0,τ0) the vector function v has generalized derivatives vyi y j , i, j =
1, . . . ,n, from L2(Gz), and by (4.47) and (4.53) we have g̃i j(z)= ‖vyi y j‖L2(Gτ ) ∈ L2((0,τ0)).
Hence it remains to notice that the function ĝ(y,z)∈ L2(Ωτ0 ) has the generalized deriv-
ative ĝyi(y,z) ∈ L2(Ωτ0 ), 1 ≤ i ≤ n, if and only if for almost all z ∈ (0,τ0) the function ĝ
has the generalized derivative ĝyi ∈ L2(Gz) and ϕ̂i(z)= ‖ĝyi‖L2(Gz) ∈ L2((0,τ0)).
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Getting back from y, z to the initial variables x, t, we see that by the equalities (4.2) the
vector function u(x, t)= v(x/t, t) is a solution of the system (1.1) from the spaceW2

2 (Dτ0 ),
satisfying the homogeneous boundary condition (4.1) and by virtue of (4.34) we have
u|Dδ = 0.

Thus we have proved the following.

Lemma 4.2. Let g ∈ C2, Bi,C ∈ C1(Dτ0 ), i = 1, . . . ,n, F ∈W1
2 (Dτ0 ), F|Dδ = 0, 0 < δ < τ0,

and let the condition (4.7) be fulfilled. Then the problem (1.1), (4.1) has a unique solution
from the spaceW2

2 (Dτ0 ), and u|Dδ = 0.

In the case where F ∈ L2(Dτ0 ), since the space of infinitely differentiable finite func-
tions C∞0 (D) is dense in L2(Dτ0 ), there exists a sequence of vector functions Fk ∈ C∞0 (Dτ0 )
such that Fk → F in L2(Dτ0 ). Since Fk ∈ C∞0 (Dτ0 ), we have Fk ∈W1

2 (Dτ0 ), and for suffi-
ciently small positive δk, δk < τ0, we have Fk|Dδk

= 0.
Therefore by Lemma 4.2, there exists the unique solution uk ∈W2

2 (Dτ0 ) of the prob-
lem (1.1), (4.1). By (4.1), from the inequality (3.14) we find that∥∥uk −up

∥∥
W1

2 (Dτ0 )
≤ c
∥∥Fk −Fp

∥∥
L2(Dτ0 )

, (4.54)

from which it follows that the sequence {uk}∞k=1 is fundamental inW1
2 (Dτ0 ), since Fk → F

in L2(Dτ0 ). Due to the fact that the spaceW
1
2 (Dτ0 ) is complete, there exists a vector func-

tion u ∈W1
2 (Dτ0 ) such that uk → u in W1

2 (Dτ0 ) and Luk = Fk → F in L2(Dτ0 ). Conse-
quently, u is a strong generalized solution of the problem (1.1), (4.1) of the class W1

2 for
which by (3.14) we have the estimate

‖u‖W1
2 (Dτ0 )

≤ c‖F‖L2(Dτ0 ). (4.55)

Thus the following theorem is valid.

Theorem 4.3. Let g ∈ C2, Bi,C ∈ C1(Dτ0 ), i = 1, . . . ,n, and let the condition (4.7) be ful-
filled. Then for any F ∈ L2(Dτ0 ) there exists a unique strong generalized solution of the prob-
lem (1.1), (4.1) of the classW1

2 for which the estimate (4.55) is valid.
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