CONVEX SETS AND INEQUALITIES

SIN-EI TAKAHASI, YASUJI TAKAHASHI, SHIZUO MIYAJIMA, AND HIROYUKI TAKAGI

Received 31 May 2002 and in revised form 26 December 2004

We consider a natural correspondence between a family of inequalities and a closed convex set. As an application, we give new types of power mean inequalities and the Höldertype inequalities.

1. Concept and fundamental result

Given a natural correspondence between a family of inequalities and a closed convex set in a topological linear space, one might expect that an inequality corresponding to a special point (e.g., an extreme point) would be of special interest in view of the convex analysis theory. In this paper, we realize this concept.

Let X be an arbitrary set and $\left\{\varphi_{0}, \varphi_{1}, \varphi\right\}$ a triple of nonnegative real-valued functions on X. Set

$$
\begin{equation*}
m=\inf _{\varphi_{0}(x) \neq 0} \frac{\varphi(x)}{\varphi_{0}(x)}, \quad M=\sup _{\varphi_{1}(x) \neq 0} \frac{\varphi(x)}{\varphi_{1}(x)} . \tag{1.1}
\end{equation*}
$$

Suppose that $0<m, M<\infty$. Then we have

$$
\begin{equation*}
m \varphi_{0}(x) \leq \varphi(x) \leq M \varphi_{1}(x) \quad \forall x \in X . \tag{1.2}
\end{equation*}
$$

For each $x \in X$, put

$$
\begin{equation*}
D_{\varphi}(x)=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \varphi(x) \leq \alpha \varphi_{1}(x)+\beta \varphi_{0}(x)\right\} . \tag{1.3}
\end{equation*}
$$

We consider the intersection $D_{\varphi}=\cap_{x \in X} D_{\varphi}(x)$ of all such sets. Note that D_{φ} is a nonempty closed convex domain in \mathbb{R}^{2} and that each point $(\alpha, \beta) \in D_{\varphi}$ corresponds to the inequality $\varphi \leq \alpha \varphi_{1}+\beta \varphi_{0}$ on X. We want to investigate the closed convex domain D_{φ}. To do this, we define the constant α_{φ} by

$$
\begin{equation*}
\alpha_{\varphi}=\sup _{M \varphi_{1}(x) \neq m \varphi_{0}(x)} \frac{M \varphi(x)-m M \varphi_{0}(x)}{M \varphi_{1}(x)-m \varphi_{0}(x)} . \tag{1.4}
\end{equation*}
$$

Clearly, $0 \leq \alpha_{\varphi} \leq M$. Also, we have the following three fundamental facts:
(A) if $(\alpha, \beta) \in D_{\varphi}$ and $\alpha / M+\beta / m=1$, then $\alpha \geq \alpha_{\varphi}$,
(B) $\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha / M+\beta / m \geq 1, \alpha \geq \alpha_{\varphi}\right\} \subset D_{\varphi}$,
(C) $D_{\varphi} \subset\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha / M+\beta(m \lambda) \geq 1\right\}$ for some $1 \leq \lambda \leq \infty$. In particular, if $\alpha_{\varphi}<$ M, then $D_{\varphi} \subset\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha / M+\beta / m \geq 1\right\}$.
These facts will be used in the later sections to realize our concept.
Proof of (A). Suppose $(\alpha, \beta) \in D_{\varphi}$ and $\alpha / M+\beta / m=1$. Then

$$
\begin{equation*}
\varphi(x) \leq \alpha \varphi_{1}(x)+m\left(1-\frac{\alpha}{M}\right) \varphi_{0}(x), \tag{1.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{M \varphi(x)-m M \varphi_{0}(x)}{M \varphi_{1}(x)-m \varphi_{0}(x)} \leq \alpha \tag{1.6}
\end{equation*}
$$

for all $x \in X$ with $M \varphi_{1}(x) \neq m \varphi_{0}(x)$. This implies that $\alpha_{\varphi} \leq \alpha$.
Proof of (B). If $t \geq \alpha_{\varphi} / M$, then $\varphi(x)-m \varphi_{0}(x) \leq t\left(M \varphi_{1}(x)-m \varphi_{0}(x)\right)$ and so $\varphi(x) \leq$ $t M \varphi_{1}(x)+m(1-t) \varphi_{0}(x)$ for all $x \in X$. Hence, we have

$$
\begin{align*}
D_{\varphi} & \supset\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha \geq t M, \beta \geq m(1-t), t \geq \frac{\alpha_{\varphi}}{M} \text { for some } t \in \mathbb{R}\right\} \\
& =\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \frac{\alpha}{M}+\frac{\beta}{m} \geq 1, \alpha \geq \alpha_{\varphi}\right\} . \tag{1.7}
\end{align*}
$$

Proof of (C). By the definition of M, we find a sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{equation*}
\varphi_{1}\left(x_{n}\right) \neq 0,(n=1,2, \ldots), \quad M=\lim _{n \rightarrow \infty} \frac{\varphi\left(x_{n}\right)}{\varphi_{1}\left(x_{n}\right)} . \tag{1.8}
\end{equation*}
$$

Of course, we can assume that $\varphi\left(x_{n}\right) \neq 0$ for all $n=1,2, \ldots$. Since $\left\{\varphi_{0}\left(x_{n}\right) / \varphi\left(x_{n}\right)\right\}$ is a bounded sequence with bound $1 / m$, we can take a subsequence $\left\{\varphi_{0}\left(x_{n^{\prime}}\right) / \varphi\left(x_{n^{\prime}}\right)\right\}$ converging to some real number t with $0 \leq t \leq 1 / m$. Set $\lambda=1 /(t m)$ so that $1 \leq \lambda \leq \infty$. We have

$$
\begin{align*}
D_{\varphi} & \subset \bigcap_{n^{\prime}}\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha \frac{\varphi_{1}\left(x_{n^{\prime}}\right)}{\varphi\left(x_{n^{\prime}}\right)}+\beta \frac{\varphi_{0}\left(x_{n^{\prime}}\right)}{\varphi\left(x_{n^{\prime}}\right)} \geq 1\right\} \tag{1.9}\\
& \subset\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \frac{\alpha}{M}+\frac{\beta}{m \lambda} \geq 1\right\} .
\end{align*}
$$

In particular, if $\alpha_{\varphi}<M$, then λ must be 1 by an easy geometrical consideration on the $\alpha \beta$-plane \mathbb{R}^{2}.

2. Application: Djokovic's inequality

Let H be a Hlawka space, that is, a Banach space in which the Hlawka inequality holds. If n and k are natural numbers with $2 \leq k \leq n-1$, then

$$
\begin{equation*}
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left\|x_{i_{1}}+\cdots+x_{i_{k}}\right\| \leq\binom{ n-2}{k-1} \sum_{i=1}^{n}\left\|x_{i}\right\|+\binom{n-2}{k-2}\left\|\sum_{i=1}^{n} x_{i}\right\| \tag{2.1}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in H$. This is well known as Djokovic's inequality (cf. [1, 2]).
Let X be the linear space $H \oplus \cdots \oplus H=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in H\right\}$. For $1 \leq k \leq n$, set

$$
\begin{equation*}
\delta_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left\|x_{i_{1}}+\cdots+x_{i_{k}}\right\| \tag{2.2}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in X$. Then $\left\{\delta_{k}: 1 \leq k \leq n\right\}$ constitutes a system of seminorms on X and satisfies

$$
\begin{equation*}
\binom{n-1}{k-1} \delta_{n} \leq \delta_{k} \leq\binom{ n-1}{k-1} \delta_{1} \quad(1 \leq k \leq n) \tag{2.3}
\end{equation*}
$$

Fix k and set $\varphi_{0}=\delta_{n}, \varphi_{1}=\delta_{1}, \varphi=\delta_{k}$. Then the above Djokovic inequality can be rewritten as

$$
\begin{equation*}
\varphi \leq\binom{ n-2}{k-1} \varphi_{1}+\binom{n-2}{k-2} \varphi_{0} \quad \text { on } X . \tag{2.4}
\end{equation*}
$$

Also, we can see that $m=M=\binom{n-1}{k-1}$ and $\alpha_{\varphi}=\binom{n-2}{k-1}$ because $\binom{n-1}{k-1}=\binom{n-2}{k-1}+\binom{n-2}{k-2}$. Then we have

$$
\begin{equation*}
\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha+\beta \geq\binom{ n-1}{k-1}, \alpha \geq\binom{ n-2}{k-1}\right\} \subset D_{\varphi} \subset\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha+\beta \geq\binom{ n-1}{k-1}\right\} \tag{2.5}
\end{equation*}
$$

by the fundamental facts (B), (C). However, we have from [3, Theorem 1 (vi)] that

$$
\begin{equation*}
D_{\varphi} \subset\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha+\beta \geq\binom{ n-1}{k-1}, \alpha \geq\binom{ n-2}{k-1}\right\} . \tag{2.6}
\end{equation*}
$$

It follows that D_{φ} coincides with the minimum domain

$$
\begin{equation*}
\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \frac{\alpha}{M}+\frac{\beta}{m} \geq 1, \alpha \geq \alpha_{\varphi}\right\} . \tag{2.7}
\end{equation*}
$$

Hence ($\alpha_{\varphi}, M-\alpha_{\varphi}$) is the only extreme point of D_{φ} and the corresponding inequality, that is Djokovic's inequality, is of special interest. The above argument is nearly a restatement of [3, Theorem 1].

110 Convex sets and inequalities

3. Application: the power mean inequality

Let $X=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}, \ldots, x_{n}>0\right\}$ and take $t \in \mathbb{R}$. We define $\varphi_{0}, \varphi_{1}, \varphi$ by

$$
\begin{gather*}
\varphi_{0}\left(x_{1}, \ldots, x_{n}\right)=\min \left\{x_{1}, \ldots, x_{n}\right\} \\
\varphi_{1}\left(x_{1}, \ldots, x_{n}\right)=\max \left\{x_{1}, \ldots, x_{n}\right\} \\
\varphi\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} & \text { if } t \neq 0 \\
\sqrt[n]{x_{1} \cdots x_{n}} & \text { if } t=0\end{cases} \tag{3.1}
\end{gather*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in X$. Then $m=M=1$. We determine the domain D_{φ}. For $(\alpha, \beta) \in \mathbb{R}^{2}$, $(\alpha, \beta) \in D_{\varphi}$ if and only if

$$
\begin{equation*}
\varphi\left(x_{1}, \ldots, x_{n}\right) \leq \alpha \max \left\{x_{1}, \ldots, x_{n}\right\}+\beta \min \left\{x_{1}, \ldots, x_{n}\right\} \quad \forall\left(x_{1}, \ldots, x_{n}\right) \in X . \tag{3.2}
\end{equation*}
$$

Dividing (3.2) by $\max \left\{x_{1}, \ldots, x_{n}\right\}$, we see that (3.2) is equivalent to the following condition:

$$
\alpha+\beta u \geq \sup \left\{\varphi\left(x_{1}, \ldots, x_{n}\right): \begin{array}{c}
\min \left\{x_{1}, \ldots, x_{n}\right\}=u \tag{3.3}\\
\max \left\{x_{1}, \ldots, x_{n}\right\}=1
\end{array}\right\} \quad \text { for } 0<u \leq 1 \text {. }
$$

Denote by $f(u)$ the right side of (3.3). Then (3.3) becomes

$$
\begin{equation*}
\alpha+\beta u \geq f(u) \quad \text { for } 0<u \leq 1 . \tag{3.4}
\end{equation*}
$$

Also, we can easily see that

$$
f(u)=\left\{\begin{array}{ll}
\left(\frac{n-1}{n}+\frac{u^{t}}{n}\right)^{1 / t} & \text { if } t \neq 0 \tag{3.5}\\
\sqrt[n]{u} & \text { if } t=0
\end{array} \quad(0<u \leq 1) .\right.
$$

If $t \neq 0$, then we have

$$
\begin{align*}
f^{\prime}(u) & =\frac{1}{n} u^{t-1}\left(\frac{n-1}{n}+\frac{u^{t}}{n}\right)^{1 / t-1} \\
f^{\prime \prime}(u) & =\frac{n-1}{n^{2}}(t-1) u^{t-2}\left(\frac{n-1}{n}+\frac{u^{t}}{n}\right)^{1 / t-2} \tag{3.6}
\end{align*}
$$

(i) The case of $t<1$ and $t \neq 0$. In this case, (3.6) implies that f is a concave function on $(0,1]$. Hence (3.4) is equivalent to the following condition:

$$
\begin{gather*}
\beta \geq f^{\prime}(u(\alpha)) \text { for } \lim _{u \downarrow 0} f(u) \leq \alpha \leq f(1)-f^{\prime}(1), \tag{3.7}\\
\alpha+\beta \geq f(1) \text { for } \alpha>f(1)-f^{\prime}(1),
\end{gather*}
$$

where $u(\alpha)$ is the unique solution of the equation $\alpha+f^{\prime}(u) u=f(u)$. Note that $f(1)=1$, $f(1)-f^{\prime}(1)=(n-1) / n$, and

$$
\lim _{u \downarrow 0} f(u)= \begin{cases}\left(\frac{n-1}{n}\right)^{1 / t} & \text { if } t>0 \tag{3.8}\\ 0 & \text { if } t<0\end{cases}
$$

To investigate $f^{\prime}(u(\alpha))$, set $v=u(\alpha)$ and $\gamma=f^{\prime}(v)$. Then

$$
\begin{equation*}
\left(\frac{n-1}{n}+\frac{v^{t}}{n}\right)^{1 / t-1}=n \gamma v^{1-t}, \quad \alpha+\gamma v=f(v) \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f(v)=n \gamma v^{1-t}\left(\frac{n-1}{n}+\frac{v^{t}}{n}\right)=(n-1) \gamma v^{1-t}+\gamma v \tag{3.10}
\end{equation*}
$$

so that $\alpha=(n-1) \gamma v^{1-t}$. Therefore by a simple computation, we obtain the equation $(n-1)^{1 /(1-t)} \alpha^{t /(t-1)}+\gamma^{t /(t-1)}=n^{1 /(1-t)}$. Consequently, if $t>0$, then

$$
D_{\varphi}=\left\{\begin{align*}
&(\alpha, \beta) \in \mathbb{R}^{2}: \beta \geq\left(n^{1 /(1-t)}-(n-1)^{1 /(1-t)} \alpha^{t /(t-1)}\right)^{(t-1) / t} \tag{3.11}\\
& \text { for }\left(\frac{n-1}{n}\right)^{1 / t} \alpha \leq \frac{n-1}{n} \\
& \alpha+\beta \geq 1 \text { for } \alpha>\frac{n-1}{n}
\end{align*}\right\}
$$

and if $t<0$, then

$$
D_{\varphi}=\left\{\begin{array}{l}
(\alpha, \beta) \in \mathbb{R}^{2}: \quad \beta \geq\left(n^{1 /(1-t)}-(n-1)^{1 /(1-t)} \alpha^{t /(t-1)}\right)^{(t-1) / t} \text { for } 0 \leq \alpha \leq \frac{n-1}{n} \tag{3.12}\\
\alpha+\beta \geq 1 \text { for } \alpha>\frac{n-1}{n}
\end{array}\right\}
$$

Also, $\alpha_{\varphi}=(n-1) / n$ from the fundamental facts (A), (B).
(ii) The case of $t=0$. Note that f is a concave function on $(0,1]$ and $\lim _{u \downarrow 0} f(u)=0$, $f(1)=1$, and $f(1)-f^{\prime}(1)=(n-1) / n$. By executing the argument of (i), we obtain that

$$
D_{\varphi}=\left\{\begin{array}{c}
(\alpha, \beta) \in \mathbb{R}^{2}: \quad \beta \geq \frac{(n-1)^{n-1}}{n^{n}} \alpha^{1-n} \text { for } 0<\alpha \leq \frac{n-1}{n} \tag{3.13}\\
\alpha+\beta \geq 1 \text { for } \alpha>\frac{n-1}{n}
\end{array}\right\}
$$

and $\alpha_{\varphi}=(n-1) / n$.
(iii) The case of $t \geq 1$. By (3.6), f is a convex function on (0,1]. Therefore, (3.4) holds precisely when

$$
\begin{equation*}
\lim _{u \backslash 0} f(u) \leq \alpha, \quad f(1) \leq \alpha+\beta \tag{3.14}
\end{equation*}
$$

112 Convex sets and inequalities
Since $\lim _{u \downarrow 0} f(u)=((n-1) / n)^{1 / t}$ and $f(1)=1$, it follows that

$$
\begin{equation*}
D_{\varphi}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha \geq\left(\frac{n-1}{n}\right)^{1 / t}, \alpha+\beta \geq 1\right\}, \tag{3.15}
\end{equation*}
$$

and $\alpha_{\varphi}=((n-1) / n)^{1 / t}$.
We are now in a position to give the inequalities of special interest. We describe the corresponding inequality in each case.
(i) Let $0<t<1$. Then

$$
\begin{equation*}
\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} \leq \alpha x_{n}+\left(n^{1 /(1-t)}-(n-1)^{1 /(1-t)} \alpha^{t /(t-1)}\right)^{(t-1) / t} x_{1} \tag{3.16}
\end{equation*}
$$

for $0<x_{1} \leq \cdots \leq x_{n}$ and $((n-1) / n)^{1 / t}<\alpha \leq(n-1) / n$. In particular,

$$
\begin{equation*}
\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} \leq \frac{(n-1) x_{n}+x_{1}}{n} \tag{3.17}
\end{equation*}
$$

for $0<x_{1} \leq \cdots \leq x_{n}$.
Let $t<0$. Then

$$
\begin{equation*}
\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} \leq \alpha x_{n}+\left(n^{1 /(1-t)}-(n-1)^{1 /(1-t)} \alpha^{t /(t-1)}\right)^{(t-1) / t} x_{1} \tag{3.18}
\end{equation*}
$$

for $0<x_{1} \leq \cdots \leq x_{n}$ and $0<\alpha \leq(n-1) / n$. In particular,

$$
\begin{equation*}
\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} \leq \frac{(n-1) x_{n}+x_{1}}{n} \tag{3.19}
\end{equation*}
$$

for $0<x_{1} \leq \cdots \leq x_{n}$.
(ii) The inequality

$$
\begin{equation*}
\sqrt[n]{x_{1} \cdots x_{n}} \leq \alpha x_{n}+\frac{(n-1)^{n-1}}{n^{n}} \alpha^{1-n} x_{1} \tag{3.20}
\end{equation*}
$$

holds for $0<x_{1} \leq \cdots \leq x_{n}$ and $0<\alpha \leq(n-1) / n$. In particular,

$$
\begin{equation*}
\sqrt[n]{x_{1} \cdots x_{n}} \leq \frac{x_{n}+(n-1)^{n-1} x_{1}}{n} \tag{3.21}
\end{equation*}
$$

holds for $0<x_{1} \leq \cdots \leq x_{n}$.
(iii) Let $t \geq 1$. Then

$$
\begin{equation*}
\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} \leq \alpha x_{n}+(1-\alpha) x_{1} \tag{3.22}
\end{equation*}
$$

for $0<x_{1} \leq \cdots \leq x_{n}$ and $((n-1) / n)^{1 / t} \leq \alpha$. In particular,

$$
\begin{equation*}
\left(\frac{x_{1}^{t}+\cdots+x_{n}^{t}}{n}\right)^{1 / t} \leq\left(\frac{n-1}{n}\right)^{1 / t} x_{n}+\left(1-\left(\frac{n-1}{n}\right)^{1 / t}\right) x_{1} \tag{3.23}
\end{equation*}
$$

for $0<x_{1} \leq \cdots \leq x_{n}$.

4. Application: the Hölder inequality

Let (Ω, μ) be a finite measure space and $0<p<q<r \leq \infty$. Let $X=L^{r}(\Omega, \mu)$ and set

$$
\begin{equation*}
\varphi_{0}(f)=\|f\|_{p}, \quad \varphi_{1}(f)=\|f\|_{r}, \quad \varphi(f)=\|f\|_{q} \tag{4.1}
\end{equation*}
$$

for all $f \in X$. Then

$$
\begin{equation*}
m=\mu(\Omega)^{1 / q-1 / p}, \quad M=\mu(\Omega)^{1 / q-1 / r} \tag{4.2}
\end{equation*}
$$

because the map $t \mapsto \mu(\Omega)^{-1 / t}\|f\|_{t}$ is a monotone increasing function. If $\operatorname{dim} X=1$, then we have

$$
\begin{align*}
D_{\varphi} & =\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \mu(\Omega)^{1 / q} \leq \alpha \mu(\Omega)^{1 / r}+\beta \mu(\Omega)^{1 / p}\right\} \\
& =\left\{(\alpha, \beta) \in \mathbb{R}^{2}: 1 \leq \frac{\alpha}{M}+\frac{\beta}{m}\right\} . \tag{4.3}
\end{align*}
$$

In general, it is hard to determine the domain D_{φ}. We consider the following two special cases:
(I) $\Omega=\{1,2\}, \mu(\{1\})=a>0, \mu(\{2\})=b>0, p=1$, and $r=\infty$,
(II) $1 \leq p<q<r$ and μ is nonatomic.
(I) We first consider the case (I). In this case, $m=(a+b)^{-1+1 / q}$ and $M=(a+b)^{1 / q}$. Let $(\alpha, \beta) \in \mathbb{R}^{2}$. Then $(\alpha, \beta) \in D_{\varphi}$ if and only if

$$
\begin{equation*}
\left(a x^{q}+b y^{q}\right)^{1 / q} \leq \alpha \max \{x, y\}+\beta(a x+b y) \quad \forall x, y \geq 0 . \tag{4.4}
\end{equation*}
$$

This is equivalent to the following condition:

$$
\alpha+\beta t \geq \sup \left\{\left(a x^{q}+b y^{q}\right)^{1 / q}: \begin{array}{l}
a x+b y=t, 0 \leq x, y \leq 1 \tag{4.5}\\
\max \{x, y\}=1
\end{array}\right\} \quad \text { for } \min \{a, b\} \leq t \leq a+b
$$

namely,

$$
\begin{array}{ll}
\alpha+\beta t \geq\left(a^{1-q}(t-b)^{q}+b\right)^{1 / q} & \text { for } b \leq t \leq a+b, \\
\alpha+\beta t \geq\left(b^{1-q}(t-a)^{q}+a\right)^{1 / q} & \text { for } a \leq t \leq a+b \tag{4.6}
\end{array}
$$

Set $f(t)=\left(a^{1-q}(t-b)^{q}+b\right)^{1 / q}$ for $b \leq t \leq a+b$. Since $1<q<\infty, f$ is a convex function on $[b, a+b]$. Hence $\alpha+\beta t \geq f(t)$ for $b \leq t \leq a+b$ if and only if $\alpha+\beta b \geq f(b)=b^{1 / q}$ and $\alpha+\beta(a+b) \geq f(a+b)=(a+b)^{1 / q}$. Also, set $g(t)=\left(b^{1-q}(t-a)^{q}+a\right)^{1 / q}$ for $a \leq t \leq a+b$. The same argument shows that $\alpha+\beta t \geq g(t)$ for $a \leq t \leq a+b$ if and only if $\alpha+\beta a \geq a^{1 / q}$ and $\alpha+\beta(a+b) \geq(a+b)^{1 / q}$. Therefore, in view of the condition (4.6), we have

$$
D_{\varphi}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \begin{array}{c}
\alpha+\beta b \geq b^{1 / q}, \alpha+\beta a \geq a^{1 / q} \tag{4.7}\\
\alpha+\beta(a+b) \geq(a+b)^{1 / q}
\end{array}\right\}
$$

Moreover, since $\alpha+\beta(a+b) \geq(a+b)^{1 / q}$ means $\alpha / M+\beta / m \geq 1$, it follows from the fundamental facts (A), (B) that

$$
\begin{equation*}
\alpha_{\varphi}=\frac{\max \{a, b\}^{1 / q}(a+b)-(a+b)^{1 / q} \max \{a, b\}}{\min \{a, b\}} . \tag{4.8}
\end{equation*}
$$

Also, D_{φ} has two extreme points:

$$
\begin{gather*}
\left(\frac{\max \{a, b\}^{1 / q}(a+b)-(a+b)^{1 / q} \max \{a, b\}}{\min \{a, b\}}, \frac{(a+b)^{1 / q}-\max \{a, b\}^{1 / q}}{\min \{a, b\}}\right), \\
\left(\frac{a^{1 / q} b-a b^{1 / q}}{b-a}, \frac{b^{1 / q}-a^{1 / q}}{b-a}\right) . \tag{4.9}
\end{gather*}
$$

The first extreme point corresponds to the following inequality:

$$
\begin{align*}
\left(a x^{q}+b y^{q}\right)^{1 / q} \leq & \frac{\max \{x, y\}}{\min \{a, b\}}\left(\max \{a, b\}^{1 / q}(a+b)-(a+b)^{1 / q} \max \{a, b\}\right) \\
& +\frac{a x+b y}{\min \{a, b\}}\left((a+b)^{1 / q}-\max \{a, b\}^{1 / q}\right) \tag{4.10}
\end{align*}
$$

for all $a, b, x, y>0$ and $q>1$. In particular, if $a=b$, then we have

$$
\begin{equation*}
\left(x^{q}+y^{q}\right)^{1 / q} \leq \max \{x, y\}\left(2-2^{1 / q}\right)+(x+y)\left(2^{1 / q}-1\right) \tag{4.11}
\end{equation*}
$$

for all $x, y>0$ and $q>1$. Since $x+y=\max \{x, y\}+\min \{x, y\}$, it follows that

$$
\begin{equation*}
\left(x^{q}+y^{q}\right)^{1 / q} \leq \max \{x, y\}+\left(2^{1 / q}-1\right) \min \{x, y\} \tag{4.12}
\end{equation*}
$$

for all $x, y>0$ and $q>1$. This is just equal to (3.23) in case of $n=2$. The second extreme point corresponds to the following inequality:

$$
\begin{equation*}
\left(a x^{q}+b y^{q}\right)^{1 / q} \leq \frac{a^{1 / q} b-a b^{1 / q}}{b-a} \max \{x, y\}+\frac{b^{1 / q}-a^{1 / q}}{b-a}(a x+b y) \tag{4.13}
\end{equation*}
$$

for all $a, b, x, y>0$ and $q>1$.
(II) We consider the case (II). Take $f \in X$. Set $t=(r-p) /(q-p)$ and $s=(r-p) /(r-$ q). Then $r / t+p / s=q$ and $1 / t+1 / s=1$. Also, we have

$$
\begin{equation*}
\frac{p}{s q}=\frac{r p-p q}{r q-p q}=\frac{1 / q-1 / r}{1 / p-1 / r}, \quad \frac{r}{t q}=1-\frac{p}{s q} . \tag{4.14}
\end{equation*}
$$

Now put $\gamma=(1 / q-1 / r) /(1 / p-1 / r)$. Then $0<\gamma<1, p /(s q)=\gamma$, and $r /(t q)=1-\gamma$. We use the Hölder inequality to see that

$$
\begin{align*}
\|f\|_{q} & =\left(\int|f|^{q} d x\right)^{1 / q}=\left(\int|f|^{r / t}|f|^{p / s} d x\right)^{1 / q} \\
& \leq\left(\int|f|^{r} d x\right)^{1 / t q}\left(\int|f|^{p} d x\right)^{1 / s q}=\|f\|_{r}^{r / t q}\|f\|_{p}^{p / s q}=\|f\|_{r}^{1-\gamma}\|f\|_{p}^{\gamma} . \tag{4.15}
\end{align*}
$$

Take $\varepsilon>0$ arbitrarily and put $\alpha=(1-\gamma) \varepsilon$. If $u=1 /(1-\gamma)$ and $v=1 / \gamma$, then the Young inequality yields

$$
\begin{align*}
\|f\|_{r}^{1-\gamma}\|f\|_{p}^{\gamma} & =\left(\varepsilon\|f\|_{r}\right)^{1-\gamma}\left(\varepsilon^{(\gamma-1) / \gamma}\|f\|_{p}\right)^{\gamma} \\
& \leq \frac{\left(\varepsilon\|f\|_{r}\right)^{(1-\gamma) u}}{u}+\frac{\left(\varepsilon^{(\gamma-1) / \gamma}\|f\|_{p}\right)^{\gamma \nu}}{v} \\
& =(1-\gamma) \varepsilon\|f\|_{r}+\gamma \varepsilon^{(\gamma-1) / \gamma}\|f\|_{p} \tag{4.16}\\
& =\alpha\|f\|_{r}+\gamma\left(\frac{\alpha}{1-\gamma}\right)^{(\gamma-1) / \gamma}\|f\|_{p} .
\end{align*}
$$

Combining (4.15) and (4.16), we obtain

$$
\begin{equation*}
\|f\|_{q} \leq \alpha\|f\|_{r}+\gamma\left(\frac{\alpha}{1-\gamma}\right)^{(\gamma-1) / \gamma}\|f\|_{p} \tag{4.17}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, so is $\alpha>0$. Hence we have

$$
\begin{equation*}
\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha>0, \beta \geq h(\alpha)\right\} \subset D_{\varphi}, \tag{4.18}
\end{equation*}
$$

where $h(\alpha)=\gamma(\alpha /(1-\gamma))^{(\gamma-1) / \gamma}$. Now, set

$$
\begin{equation*}
\alpha_{0}=(1-\gamma) \mu(\Omega)^{\gamma / p-\gamma / r} . \tag{4.19}
\end{equation*}
$$

We observe that

$$
\begin{equation*}
\left\{(\alpha, \beta) \in \mathbb{R}^{2}: 0<\alpha \leq \alpha_{0}, \beta \geq h(\alpha)\right\}=D_{\varphi} \cap\left\{(\alpha, \beta) \in \mathbb{R}^{2}: 0<\alpha \leq \alpha_{0}\right\} . \tag{4.20}
\end{equation*}
$$

Actually, the equality holds in (4.17) if and only if the equalities hold in both (4.15) and (4.16). Hence the equality condition in (4.17) is that

$$
\begin{equation*}
\{|f(\omega)|: \omega \in \Omega\} \subset\{0, c\} \quad \text { for some } c \in \mathbb{R}, \quad\left(\frac{\alpha}{1-\gamma}\right)^{1 / \gamma}\|f\|_{r}=\|f\|_{p} \tag{4.21}
\end{equation*}
$$

Define

$$
\begin{equation*}
a(\alpha)=\left(\frac{\alpha}{1-\gamma}\right)^{p r /(r-p) \gamma} \tag{4.22}
\end{equation*}
$$

for all $\alpha>0$. Let $0<\alpha \leq \alpha_{0}$. Then $0<a(\alpha) \leq a\left(\alpha_{0}\right)=\mu(\Omega)$, and hence we can take a measurable set A such that $\mu(A)=a(\alpha)$, because μ is nonatomic. Since the characteristic function χ_{A} on A satisfies the condition (4.21), the equality in (4.17) holds for $f=\chi_{A}$. Consequently, we easily see that (4.20) is valid. Notice that

$$
\begin{align*}
h^{\prime}(\alpha) & =\frac{\gamma}{1-\gamma} \frac{\gamma-1}{\gamma}\left(\frac{\alpha}{1-\gamma}\right)^{(\gamma-1) / \gamma-1}=-\left(\frac{\alpha}{1-\gamma}\right)^{-1 / \gamma}<0 \quad(\alpha>0) \\
h^{\prime \prime}(\alpha) & =\frac{1}{1-\gamma} \frac{1}{\gamma}\left(\frac{\alpha}{1-\gamma}\right)^{-1 / \gamma-1}=\frac{1}{\gamma(1-\gamma)}\left(\frac{\alpha}{1-\gamma}\right)^{-(1+\gamma) / \gamma}>0 \quad(\alpha>0) . \tag{4.23}
\end{align*}
$$

Hence $h(\alpha)$ is a strictly monotone decreasing concave function on $(0, \infty)$. Note also that $h^{\prime}\left(\alpha_{0}\right)=-m / M$, since $m / M=\mu(\Omega)^{-1 / p+1 / r}$. Next we assert that the point $\left(\alpha_{0}, h\left(\alpha_{0}\right)\right)$ is on the line $\alpha / M+\beta / m=1$. Indeed,

$$
\begin{equation*}
\frac{\gamma-1}{p}+\frac{1-\gamma}{r}=(\gamma-1)\left(\frac{1}{p}-\frac{1}{r}\right)=-\frac{r}{q} \frac{q-p}{r-p} \frac{r-p}{p r}=\frac{p-q}{p q}=\frac{1}{q}-\frac{1}{p}, \tag{4.24}
\end{equation*}
$$

and so

$$
\begin{align*}
m\left(1-\frac{\alpha_{0}}{M}\right) & =\mu(\Omega)^{1 / q-1 / p}-\mu(\Omega)^{1 / r-1 / p}(1-\gamma) \mu(\Omega)^{\gamma / p-\gamma / r} \\
& =\mu(\Omega)^{1 / q-1 / p}-\mu(\Omega)^{(\gamma-1) / p+(1-\gamma) / r}+\gamma \mu(\Omega)^{(\gamma-1) / p+(1-\gamma) / r} \tag{4.25}\\
& =\gamma \mu(\Omega)^{(\gamma-1) / p+(1-\gamma) / r}=h\left(\alpha_{0}\right) .
\end{align*}
$$

This implies the assertion. Therefore α_{φ} is just equal to α_{0} by the fundamental facts (A), (B). Hence the above observations imply that

$$
\begin{gather*}
\alpha_{\varphi}=(1-\gamma) \mu(\Omega)^{\gamma / p-\gamma / r}, \\
D_{\varphi}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: 0<\alpha \leq \alpha_{\varphi}, \beta \geq h(\alpha)\right\} \cup\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \alpha \geq \alpha_{\varphi}, \frac{\alpha}{M}+\frac{\beta}{m} \geq 1\right\} . \tag{4.26}
\end{gather*}
$$

Thus the corresponding inequality is

$$
\begin{equation*}
\|f\|_{q} \leq \alpha\|f\|_{r}+\gamma\left(\frac{\alpha}{1-\gamma}\right)^{(\gamma-1) / \gamma}\|f\|_{p} \tag{4.27}
\end{equation*}
$$

for all $f \in L^{r}(\Omega, \mu), 1 \leq p<q<r, 0<\alpha \leq(1-\gamma) \mu(\Omega)^{\gamma / p-\gamma / r}$, and $\gamma=(1 / q-1 / r) /(1 / p-$ $1 / r)$. In particular, we have

$$
\begin{equation*}
\|f\|_{q} \leq(1-\gamma) \mu(\Omega)^{\gamma / p-\gamma / r}\|f\|_{r}+\gamma \mu(\Omega)^{(\gamma-1) / p-(1-\gamma) / r}\|f\|_{p} \tag{4.28}
\end{equation*}
$$

for all $f \in L^{r}(\Omega, \mu), 1 \leq p<q<r$, and $\gamma=(1 / q-1 / r) /(1 / p-1 / r)$. Moreover, as $r \rightarrow \infty$, we have

$$
\begin{equation*}
\mu(\Omega)^{-1 / q}\|f\|_{q} \leq\left(1-\frac{p}{q}\right)\|f\|_{\infty}+\frac{p}{q} \mu(\Omega)^{-1 / p}\|f\|_{p} \tag{4.29}
\end{equation*}
$$

for all $f \in L^{\infty}(\Omega, \mu)$ and $1 \leq p<q<\infty$.

Acknowledgment

The first and second authors are partially supported by the Grant-in-Aid for Scientific Research via the Japan Society for the Promotion of Science.

References

[1] D. Ž. Doković, Generalizations of Hlawka's inequality, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 18 (1963), 169-175.
[2] D. M. Smiley and M. F. Smiley, The polygonal inequalities, Amer. Math. Monthly 71 (1964), 755-760.
[3] S.-E. Takahasi, Y. Takahashi, and A. Honda, A new interpretation of Djoković's inequality, J. Nonlinear Convex Anal. 1 (2000), no. 3, 343-350.

Sin-Ei Takahasi: Department of Basic Technology, Yamagata University, Yonezawa 992-8510, Japan E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp

Yasuji Takahashi: Department of Systems Engineering, Okayama Prefectural University, Soja, Okayama 719-1197, Japan

E-mail address: takahasi@cse.oka-pu.ac.jp
Shizuo Miyajima: Department of Mathematics, Tokyo University of Science, Shinjuku-ku, Wakamiya 26, Tokyo 162-8601, Japan

E-mail address: miyajima@rs.kagu.sut.ac.jp
Hiroyuki Takagi: Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

E-mail address: takagi@math.shinshu-u.ac.jp

