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We introduce and study a class of η-generalized vector variational-like inequalities and a class of η-
generalized strong vector variational-like inequalities in the setting of Hausdorff topological vector
spaces. An equivalence result concerned with two classes of η-generalized vector variational-like
inequalities is proved under suitable conditions. By using FKKM theorem, some new existence
results of solutions for the η-generalized vector variational-like inequalities and η-generalized
strong vector variational-like inequalities are obtained under some suitable conditions.

1. Introduction

Vector variational inequality was first introduced and studied by Giannessi [1] in the setting
of finite-dimensional Euclidean spaces. Since then, the theory with applications for vector
variational inequalities, vector complementarity problems, vector equilibrium problems, and
vector optimization problems have been studied and generalized by many authors (see, e.g.,
[2–15] and the references therein).

Recently, Yu et al. [16] considered a more general form of weak vector variational
inequalities and proved some new results on the existence of solutions of the new class of
weak vector variational inequalities in the setting of Hausdorff topological vector spaces.

Very recently, Ahmad and Khan [17] introduced and considered weak vector
variational-like inequalities with η-generally convex mapping and gave some existence
results.

On the other hand, Fang and Huang [18] studied some existence results of solutions
for a class of strong vector variational inequalities in Banach spaces, which give a positive
answer to an open problem proposed by Chen and Hou [19].
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In 2008, Lee et al. [20] introduced a new class of strong vector variational-type
inequalities in Banach spaces. They obtained the existence theorems of solutions for the
inequalities without monotonicity in Banach spaces by using Brouwer fixed point theorem
and Browder fixed point theorem.

Motivated and inspired by the work mentioned above, in this paper we introduce and
study a class of η-generalized vector variational-like inequalities and a class of η-generalized
strong vector variational-like inequalities in the setting of Hausdorff topological vector
spaces. We first show an equivalence theorem concerned with two classes of η-generalized
vector variational-like inequalities under suitable conditions. By using FKKM theorem, we
prove some new existence results of solutions for the η-generalized vector variational-like
inequalities and η-generalized strong vector variational-like inequalities under some suitable
conditions. The results presented in this paper improve and generalize some known results
due to Ahmad and Khan [17], Lee et al. [20], and Yu et al. [16].

2. Preliminaries

Let X and Y be two real Hausdorff topological vector spaces,K ⊂ X a nonempty, closed, and
convex subset, and C ⊂ Y a closed, convex, and pointed cone with apex at the origin. Recall
that the Hausdorff topological vector space Y is said to an ordered Hausdorff topological
vector space denoted by (Y,C) if ordering relations are defined in Y as follows:

∀x, y ∈ Y, x ≤ y ⇐⇒ y − x ∈ C,

∀x, y ∈ Y, x/≤y ⇐⇒ y − x /∈C.
(2.1)

If the interior intC is nonempty, then the weak ordering relations in Y are defined as
follows:

∀x, y ∈ Y, x < y ⇐⇒ y − x ∈ intC,

∀x, y ∈ Y, x/<y ⇐⇒ y − x /∈ intC.
(2.2)

Let L(X,Y ) be the space of all continuous linear maps from X to Y and T : X →
L(X,Y ). We denote the value of l ∈ L(X,Y ) on x ∈ X by (l, x). Throughout this paper, we
assume that C(x) : x ∈ K is a family of closed, convex, and pointed cones of Y such that
intC(x)/= ∅ for all x ∈ K, η is a mapping from K ×K into X, and f is a mapping from K ×K
into Y .

In this paper, we consider the following two kinds of vector variational inequalities:

η-Generalized Vector Variational-Like Inequality (for short, η-GVVLI): for each z ∈ K
and λ ∈ (0, 1], find x ∈ K such that

〈
T(λx + (1 − λ)z), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x), ∀y ∈ K, (2.3)

η-Generalized Strong Vector Variational-Like Inequality (for short, η-GSVVLI): for each
z ∈ K and λ ∈ (0, 1], find x ∈ K such that

〈
T(λx + (1 − λ)z), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − C(x) \ {0}, ∀y ∈ K. (2.4)
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η-GVVLI and η-GSVVLI encompass many models of variational inequalities. For
example, the following problems are the special cases of η-GVVLI and η-GSVVLI.

(1) If f(y, x) = 0 andC(x) = C for all x, y ∈ K, then η-GVVLI reduces to finding x ∈ K,
such that for each z ∈ K, λ ∈ (0, 1],

〈
T(λx + (1 − λ)z), η

(
y, x

)〉
/∈ − intC, ∀y ∈ K, (2.5)

which is introduced and studied by Ahmad and Khan [17]. In addition, if η(y, x) = y − x for
each x, y ∈ K, then η-GVVLI reduces to the following model studied by Yu et al. [16].

Find x ∈ K such that for each z ∈ K, λ ∈ (0, 1],

〈
T(λx + (1 − λ)z), y − x

〉
/∈ − intC, ∀y ∈ K. (2.6)

(2) If λ = 1 and C(x) = C for all x ∈ K, then η-GSVVLI is equivalent to the following
vector variational inequality problem introduced and studied by Lee et al. [20].

Find x ∈ K satisfying

〈
T(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − C \ {0}, ∀y ∈ K. (2.7)

For our main results, we need the following definitions and lemmas.

Definition 2.1. Let T : K → L(X,Y ) and η : K × K → K be two mappings and C =⋂
x∈K C(x)/= ∅. T is said to be η-monotone in C if and only if

〈
T(x) − T

(
y
)
, η
(
x, y

)〉 ∈ C, ∀x, y ∈ K. (2.8)

Definition 2.2. Let T : K → L(X,Y ) and η : K ×K → K be two mappings. We say that T is
η-hemicontinuous if, for any given x, y, z ∈ K and λ ∈ (0, 1], the mapping t 
→ 〈T(λ(x + (1 −
t)(y − x)) + (1 − λ)z), η(y, x)〉 is continuous at 0+.

Definition 2.3. A multivalued mapping A : X → 2Y is said to be upper semicontinuous
on X if, for all x ∈ X and for each open set G in Y with A(x) ⊂ G, there exists an open
neighbourhood O(x) of x ∈ X such that A(x′) ⊂ G for all x′ ∈ O(x).

Lemma 2.4 (see [21]). Let (Y,C) be an ordered topological vector space with a closed, pointed, and
convex cone C with intC/= ∅. Then for any y, z ∈ Y , we have

(1) y − z ∈ intC and y /∈ intC imply z/∈ intC;

(2) y − z ∈ C and y /∈ intC imply z/∈ intC;

(3) y − z ∈ − intC and y /∈ − intC imply z/∈ − intC;

(4) y − z ∈ −C and y /∈ − intC imply z/∈ − intC.

Lemma 2.5 (see [22]). Let M be a nonempty, closed, and convex subset of a Hausdorff topological
space, and G : M → 2M a multivalued map. Suppose that for any finite set {x1, . . . , xn} ⊂ M, one
has conv{x1, . . . , xn} ⊂ ⋃n

i=1 G(xi) (i.e., F is a KKM mapping) and G(x) is closed for each x ∈ M
and compact for some x ∈ M, where conv denotes the convex hull operator. Then

⋂
x∈M G(x)/= ∅.
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Lemma 2.6 (see [23]). LetX be a Hausdorff topological space,A1, A2, . . . , An be nonempty compact
convex subsets of X. Then conv(

⋃n
i=1 Ai) is compact.

Lemma 2.7 (see [24]). Let X and Y be two topological spaces. If A : X → 2Y is upper
semicontinuous with closed values, then A is closed.

3. Main Results

Theorem 3.1. Let X be a Hausdorff topological linear space, K ⊂ X a nonempty, closed, and convex
subset, and (Y,C(x)) an ordered topological vector space with intC(x)/= ∅ for all x ∈ K. Let η :
K×K → X and f : K×K → X be affine mappings such that η(x, x) = f(x, x) = 0 for each x ∈ K.
Let T : K → L(X,Y ) be an η-hemicontinuous mapping. If C =

⋂
x∈K C(x)/= ∅ and T is η-monotone

in C, then for each z ∈ K, λ ∈ (0, 1], the following statements are equivalent

(i) find x0 ∈ K, such that 〈Tz(x0), η(y, x0)〉 + f(y, x0)/∈ − intC(x0), for all y ∈ K;

(ii) find x0 ∈ K, such that 〈Tz(y), η(y, x0)〉 + f(y, x0)/∈ − intC(x0), for all y ∈ K,

where Tz is defined by Tz(x) = T(λx + (1 − λ)z) for all x ∈ K.

Proof. Suppose that (i) holds. We can find x0 ∈ K, such that

〈
Tz(x0), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K. (3.1)

Since T is η-monotone, for each x, y ∈ K, we have

〈
T
(
λy + (1 − λ)z

) − T(λx + (1 − λ)z), η
(
λy + (1 − λ)z, λx + (1 − λ)z

)〉 ∈ C. (3.2)

On the other hand, we know η is affine and η(x, x) = 0. It follows that

〈
Tz
(
y
) − Tz(x), η

(
y, x

)〉

=
1
λ

〈
T
(
λy + (1 − λ)z

) − T(λx + (1 − λ)z), η
(
λy + (1 − λ)z, λx + (1 − λ)z

)〉 ∈ C.
(3.3)

Hence Tz is also η-monotone. That is

〈
Tz(x0), η

(
y, x0

)〉 − 〈
Tz
(
y
)
, η
(
y, x0

)〉 ∈ −C, ∀y ∈ K. (3.4)

Since C =
⋂

x∈K C(x), for all y ∈ K, we obtain

〈
Tz(x0), η

(
y, x0

)〉
+ f

(
y, x0

) − 〈
Tz
(
y
)
, η
(
y, x0

)〉 − f
(
y, x0

) ∈ −C ⊂ −C(x0). (3.5)

By Lemma 2.4,

〈
Tz
(
y
)
, η
(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K, (3.6)

and so x0 is a solution of (ii).
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Conversely, suppose that (ii) holds. Then there exists x0 ∈ K such that

〈
Tz
(
y
)
, η
(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K. (3.7)

For each y ∈ K, t ∈ (0, 1), we let yt = ty + (1 − t)x0. Obviously, yt ∈ K. It follows that

〈
Tz
(
yt

)
, η
(
yt, x0

)〉
+ f

(
yt, x0

)
/∈ − intC(x0). (3.8)

Since f and η are affine and η(x0, x0) = f(x0, x0) = 0, we have

〈
T
(
λ
(
ty + (1 − t)x0

)
+ (1 − λ)z

)
, tη

(
y, x0

)〉
+ tf

(
y, x0

)
/∈ − intC(x0). (3.9)

That is

〈
T
(
λ
(
x0 + t

(
y − x0

))
+ (1 − λ)z

)
, η
(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0). (3.10)

Considering the η-hemicontinuity of T and letting t → 0+, we have

〈
Tz(x0), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K. (3.11)

This completes the proof.

Remark 3.2. If C(x) = C and f(y, x) = 0 for all x, y ∈ K, then Theorem 3.1 is reduced to
Lemma 5 of [17].

Let K be a closed convex subset of a topological linear space X, and {C(x) : x ∈ K} a
family of closed, convex, and pointed cones of a topological space Y such that intC(x)/= ∅ for
all x ∈ K. Throughout this paper, we define a set-valued mapping C : K → 2Y as follows:

C(x) = Y \ {− intC(x)}, ∀x ∈ K. (3.12)

Theorem 3.3. Let X be a Hausdorff topological linear space, K ⊂ X a nonempty, closed, compact,
and convex subset, and (Y,C(x)) an ordered topological vector space with intC(x)/= ∅ for all x ∈ K.
Let η : K × K → X and f : K × K → X be affine mappings such that η(x, x) = f(x, x) = 0
for each x ∈ K. Let T : K → L(X,Y ) be an η-hemicontinuous mapping. Assume that the following
conditions are satisfied

(i) C =
⋂

x∈K C(x)/= ∅ and T is η-monotone in C;

(ii) C : K → 2Y is an upper semicontinuous set-valued mapping.

Then for each z ∈ K, λ ∈ (0, 1], there exist x0 ∈ K such that

〈
T(λx0 + (1 − λ)z), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K. (3.13)
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Proof. For each y ∈ K, we denote Tz(x) = T(λx + (1 − λ)z), and define

F1
(
y
)
=
{
x ∈ K :

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x)

}
,

F2
(
y
)
=
{
x ∈ K :

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x)

}
.

(3.14)

Then F1(y) and F2(y) are nonempty since y ∈ F1(y) and y ∈ F2(y). The proof is divided into
the following three steps.

(I) First, we prove the following conclusion: F1 is a KKM mapping. Indeed, assume
that F1 is not a KKM mapping; then there exist u1, u2, . . . , um ∈ K, t1 ≥ 0, t2 ≥ 0, . . . , tm ≥ 0
with

∑m
i=1 ti = 1 and w =

∑m
i=1 tiui such that

w/∈
m⋃

i=1

F1(ui), i = 1, 2, . . . , m. (3.15)

That is,

∀i = 1, 2, . . . , m,
〈
Tz(w), η(ui,w)

〉
+ f(ui,w) ∈ − intC(w). (3.16)

Since η and f are affine, we have

〈
Tz(w), η(w,w)

〉
+ f(w,w) =

〈

Tz(w), η

(
m∑

i=1

tiui,w

)〉

+ f

(
m∑

i=1

tiui,w

)

=
m∑

i=1

ti
(〈
Tz(w), η(ui,w)

〉
+ f(ui,w)

) ∈ − intC(w).

(3.17)

On the other hand, we know η(w,w) = f(w,w) = 0. Then we have 0 =
〈Tz(w), η(w,w)〉 + f(w,w) ∈ − intC(w). It is impossible and so F1 : K → 2K is a KKM
mapping.

(II) Further, we prove that

⋂

y∈K
F1

(
y
)
=

⋂

y∈K
F2

(
y
)
. (3.18)

In fact, if x ∈ F1(y), then 〈Tz(x), η(y, x)〉 + f(y, x)/∈ intC(x). From the proof of Theorem 3.1,
we know that Tz is η-monotone in C(z). It follows that

〈
Tz
(
y
) − Tz(x), η

(
y, x

)〉 ∈ C, (3.19)

and so

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

) − 〈
Tz
(
y
)
, η
(
y, x

)〉 − f
(
y, x

) ∈ −C ⊂ −C(x). (3.20)
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By Lemma 2.4, we have

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x), (3.21)

and so x ∈ F2(y) for each y ∈ K. That is, F1(y) ⊂ F2(y) and so

⋂

y∈K
F1

(
y
) ⊂

⋂

y∈K
F2

(
y
)
. (3.22)

Conversely, suppose that x ∈ ⋂
y∈K F2(y). Then

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x), ∀y ∈ K. (3.23)

It follows from Theorem 3.1 that

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x), ∀y ∈ K. (3.24)

That is, x ∈ ⋂
y∈K F1(y) and so

⋂

y∈K
F2

(
y
) ⊂

⋂

y∈K
F1

(
y
)
, (3.25)

which implies that

⋂

y∈K
F1

(
y
)
=

⋂

y∈K
F2

(
y
)
. (3.26)

(III) Last, we prove that
⋂

y∈K F2(y)/= ∅. Indeed, since F1 is a KKMmapping, we know
that, for any finite set {y1, y2, . . . , yn} ⊂ K, one has

conv
{
y1, y2, . . . , yn

} ⊂
n⋃

i=1

F1
(
yi

) ⊂
n⋃

i=1

F2
(
yi

)
. (3.27)

This shows that F2 is also a KKMmapping.
Now, we prove that F2(y) is closed for all y ∈ K. Assume that there exists a net {xα} ⊂

F2(y) with xα → x ∈ K. Then

〈
Tz
(
y
)
, η
(
y, xα

)〉
+ f

(
y, xα

)
/∈ − intC(xα). (3.28)

Using the definition of C, we have

〈
Tz
(
y
)
, η
(
y, xα

)〉
+ f

(
y, xα

) ∈ C(xα). (3.29)
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Since η and f are continuous, it follows that

〈
Tz
(
y
)
, η
(
y, xα

)〉
+ f

(
y, xα

) −→ 〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
. (3.30)

Since C is upper semicontinuous mapping with close values, by Lemma 2.7, we know that C
is closed, and so

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

) ∈ C(x). (3.31)

This implies that

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x), (3.32)

and so F2(y) is closed. Considering the compactness of K and closeness of F2(y) ⊂ K,
we know that F2(y) is compact. By Lemma 2.5, we have

⋂
y∈K F2(y)/= ∅, and it follows that⋂

y∈K F1(y)/= ∅, that is, for each z ∈ K and λ ∈ (0, 1], there exists x0 ∈ K such that

〈
T(λx0 + (1 − λ)z), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K. (3.33)

Thus, η-GVVLI is solvable. This completes the proof.

Remark 3.4. The condition (ii) in Theorem 3.3 can be found in several papers (see, e.g., [25,
26]).

Remark 3.5. If C(x) = C and f(y, x) = 0 for all x, y ∈ K in Theorem 3.3, then condition (ii)
holds and condition (i) is equivalent to the η-monotonicity of T . Thus, it is easy to see that
Theorem 3.3 is a generalization of [17, Theorem 6].

In the above theorem, K is compact. In the following theorem, under some
suitable conditions, we prove a new existence result of solutions for η-GVVLI without the
compactness of K.

Theorem 3.6. Let X be a Hausdorff topological linear space, K ⊂ X a nonempty, closed, and convex
subset, and (Y,C(x)) be an ordered topological vector space with intC(x)/= ∅ for all x ∈ K. Let
η : K × K → X and f : K × K → X be affine mappings such that η(x, x) = f(x, x) = 0 for
each x ∈ K. Let T : K → L(X,Y ) be an η-hemicontinuous mapping. Assume that the following
conditions are satisfied:

(i) C =⊂ ⋂
x∈K C(x)/= ∅ and T is η-monotone in C;

(ii) C : K → 2Y is an upper semicontinuous set-valued mapping;

(iii) there exists a nonempty compact and convex subset D of K and for each z ∈ K, λ ∈ (0, 1],
x ∈ K \D, there exist y0 ∈ D such that

〈
T
(
λy0 + (1 − λ)z

)
, η
(
y0, x

)〉
+ f

(
y0, x

) ∈ − intC
(
y0
)
. (3.34)
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Then for each z ∈ K, λ ∈ (0, 1], there exist x0 ∈ D such that

〈
T(λx0 + (1 − λ)z), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − intC(x0), ∀y ∈ K. (3.35)

Proof. By Theorem 3.1, we know that the solution set of the problem (ii) in Theorem 3.1 is
equivalent to the solution set of following variational inequality: find x ∈ K, such that

〈
T
(
λy + (1 − λ)z

)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x), ∀y ∈ K. (3.36)

For each z ∈ K and λ ∈ (0, 1],we denote Tz(x) = T(λx + (1− λ)z). Let G : K → 2D be defined
as follows:

G
(
y
)
=
{
x ∈ D :

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x)

}
, ∀y ∈ K. (3.37)

Obviously, for each y ∈ K,

G
(
y
)
=
{
x ∈ K :

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x)

} ∩D. (3.38)

Using the proof of Theorem 3.3, we obtain that G(y) is a closed subset of D. Considering the
compactness of D and closedness of G(y), we know that G(y) is compact.

Now we prove that for any finite set {y1, y2, . . . , yn} ⊂ K, one has
⋂n

i=1 G(yi)/= ∅.
Let Yn =

⋃n
i=1{yi}. Since Y is a real Hausdorff topological vector space, for each yi ∈

{y1, y2, . . . , yn}, {yi} is compact and convex. Let N = conv(D ∪ Yn). By Lemma 2.6, we know
that N is a compact and convex subset of K.

Let F1, F2 : N → 2N be defined as follows:

F1
(
y
)
=
{
x ∈ N :

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x)

}
, ∀y ∈ N;

F2
(
y
)
=
{
x ∈ N :

〈
Tz
(
y
)
, η
(
y, x

)〉
+ f

(
y, x

)
/∈ − intC(x)

}
, ∀y ∈ N.

(3.39)

Using the proof of Theorem 3.3, we obtain

⋂

y∈N
F1

(
y
)
=

⋂

y∈N
F2

(
y
)
/= ∅, (3.40)

and so there exists y0 ∈
⋂

y∈N F2(y).
Next we prove that y0 ∈ D. In fact, if y0 ∈ K \ D, then the assumption implies that

there exists u ∈ D such that

〈
T(λu + (1 − λ)z), η

(
u, y0

)〉
+ f

(
u, y0

) ∈ − intC(u), (3.41)

which contradicts y0 ∈ F2(u) and so y0 ∈ D.
Since {y1, y2, . . . , yn} ⊂ N andG(yi) = F2(yi)∩D for each yi ∈ {y1, y2, . . . , yn}, it follows

that y0 ∈ ⋂n
i=1 G(yi). Thus, for any finite set {y1, y2, . . . , yn} ⊂ K, we have

⋂n
i=1 G(yi)/= ∅.
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Considering the compactness of G(y) for each y ∈ K, we know that there exists x0 ∈ D such
that x0 ∈ ⋂

y∈K G(y)/= ∅. Therefore, the solution set of η-GVVLI is nonempty. This completes
the proof.

In the following, we prove the solvability of η-GSVVLI under some suitable conditions
by using FKKM theorem.

Theorem 3.7. Let X be a Hausdorff topological linear space, K ⊂ X a nonempty, closed, and convex
set, and (Y,C(x)) an ordered Hausdorff topological vector space with intC(x)/= ∅ for all x ∈ K.
Assume that for each y ∈ K,x → η(x, y) and x → f(x, y) are affine, η(x, y) + η(y, x) = 0, and
f(x, y) + f(y, x) = 0 for all x ∈ K. Let T : K → L(X,Y ) be a mapping such that

(i) for each z, y ∈ K, λ ∈ (0, 1], the set {x ∈ K : 〈T(λx + (1 − λ)z), η(y, x)〉 + f(y, x) ∈
−C(x) \ {0}} is open in K;

(ii) there exists a nonempty compact and convex subset D of K and for each z ∈ K, λ ∈ (0, 1],
x ∈ K \D, there exists u ∈ D such that

〈
T(λx + (1 − λ)z), η(u, x)

〉
+ f

(
y, x

) ∈ −C(x) \ {0}. (3.42)

Then for each z ∈ K, λ ∈ (0, 1], there exists x0 ∈ K such that

〈
T(λx0 + (1 − λ)z), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − C(x0) \ {0}, ∀y ∈ K. (3.43)

Proof. For each z ∈ K and λ ∈ (0, 1], we denote Tz(x) = T(λx + (1 − λ)z). Let G : K → 2D be
defined as follows:

G
(
y
)
=
{
x ∈ D :

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − C(x) \ {0}}, ∀y ∈ K. (3.44)

Obviously, for each y ∈ K,

G
(
y
)
=
{
x ∈ K :

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − C(x) \ {0}} ∩D. (3.45)

Since G(y) is a closed subset ofD, considering the compactness ofD and closedness of G(y),
we know that G(y) is compact.

Now we prove that for any finite set {y1, y2, . . . , yn} ⊂ K, one has
⋂n

i=1 G(yi)/= ∅.
Let Yn =

⋃n
i=1{yi}. Since Y is a real Hausdorff topological vector space, for each yi ∈

{y1, y2, . . . , yn}, {yi} is compact and convex. Let N = conv(D ∪ Yn). By Lemma 2.6, we know
that N is a compact and convex subset of K.

Let F : N → 2N be defined as follows:

F
(
y
)
=
{
x ∈ N :

〈
Tz(x), η

(
y, x

)〉
+ f

(
y, x

)
/∈ − C(x) \ {0}}, ∀y ∈ N. (3.46)
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We claim that F is a KKMmapping. Indeed, assume that F is not a KKMmapping. Then there
exist u1, u2, . . . , um ∈ K, t1 ≥ 0, t2 ≥ 0, . . . , tm ≥ 0 with

∑m
i=1 ti = 1 and w =

∑m
i=1 tiui such that

w/∈
m⋃

i=1

F(ui), i = 1, 2, . . . , m. (3.47)

That is,

∀i = 1, 2, . . . , m
〈
Tz(w), η(ui,w)

〉
+ f(ui,w) ∈ −C(w) \ {0}. (3.48)

Since η and f are affine, we have

〈
Tz(w), η(w,w)

〉
+ f(w,w) =

〈

Tz(w), η

(
m∑

i=1

tiui,w

)〉

+ f

(
m∑

i=1

tiui,w

)

=
m∑

i=1

ti
(〈
Tz(w), η(ui,w)

〉
+ f(ui,w)

) ∈ −C(w) \ {0}.
(3.49)

On the other hand, we know η(w,w) = f(w,w) = 0, and so

0 =
〈
Tz(w), η(w,w)

〉
+ f(w,w) ∈ −C(w) \ {0}, (3.50)

which is impossible. Therefore, F : N → 2N is a KKMmapping.
Since F(y) is a closed subset of N, it follows that F(y) is compact. By Lemma 2.5, we

have
⋂

y∈N
F
(
y
)
/= ∅. (3.51)

Thus, there exists y0 ∈
⋂

y∈N F(y).
Next we prove that y0 ∈ D. In fact, if y0 ∈ N \ D, then the condition (ii) implies that

there exists u ∈ D such that

〈
T
(
λy0 + (1 − λ)z

)
, η
(
u, y0

)〉
+ f

(
u, y0

) ∈ −C(y0
) \ {0}, (3.52)

which contradicts y0 ∈ F(u) and so y0 ∈ D.
Since {y1, y2, . . . , yn} ⊂ N andG(yi) = F(yi)∩D for each yi ∈ {y1, y2, . . . , yn}, it follows

that y0 ∈ ⋂n
i=1 G(yi). Thus, for any finite set {y1, y2, . . . , yn} ⊂ K, we have

⋂n
i=1 G(yi)/= ∅.

Considering the compactness of G(y) for each y ∈ K, it is easy to know that there exists
x0 ∈ D such that x0 ∈

⋂
y∈K G(y)/= ∅. Therefore, for each z ∈ K, λ ∈ (0, 1], there exists x0 ∈ K

such that

〈
T(λx0 + (1 − λ)z), η

(
y, x0

)〉
+ f

(
y, x0

)
/∈ − C(x0) \ {0}, ∀y ∈ K. (3.53)

Thus, η-GSVVI is solvable. This completes the proof.
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Remark 3.8. IfK is compact, C(x) = C, and λ = 1, then Theorem 3.7 is reduced to Theorem 2.1
in [20].
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