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Using exponential inequalities, Wu et al. (2009) and Wang et al. (2010) obtained asymptotic
approximations of inverse moments for nonnegative independent random variables and
nonnegative negatively orthant dependent random variables, respectively. In this paper, we
improve and extend their results to nonnegative random variables satisfying a Rosenthal-type
inequality.

1. Introduction

Let {Zn, n ≥ 1} be a sequence of nonnegative random variables with finite second moments.
Let us denote

Xn =
∑n

i=1 Zi

σn
, σ2

n =
n∑

i=1

Var(Zi). (1.1)

We will establish that, under suitable conditions, the inverse moment can be approximated
by the inverse of the moment. More precisely, we will prove that

E(a +Xn)−α ∼ (a + EXn)−α, (1.2)

where a > 0, α > 0, and cn ∼ dn means that cnd−1
n → 1 as n → ∞. The left-hand side of (1.2)

is the inverse moment and the right-hand side is the inverse of the moment. Generally, it is
not easy to compute the inverse moment, but it is much easier to compute the inverse of the
moment.
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The inverse moments can be applied in many practical applications. For example, they
appear in Stein estimation and Bayesian poststratification (see Wooff [1] and Pittenger [2]),
evaluating risks of estimators and powers of test statistics (see Marciniak and Wesołowski
[3] and Fujioka [4]), expected relaxation times of complex systems (see Jurlewicz and Weron
[5]), and insurance and financial mathematics (see Ramsay [6]).

For nonnegative asymptotically normal random variables Xn, (1.2) was established
in Theorem 2.1 of Garcia and Palacios [7]. Unfortunately, that theorem is not true under
the suggested assumptions, as pointed out by Kaluszka and Okolewski [8]. Kaluszka and
Okolewski [8] also proved (1.2) for 0 < α < 3 (0 < α < 4 in the i.i.d. case) when {Zn, n ≥ 1}
is a sequence of nonnegative independent random variables satisfying EXn → ∞ and L3

(Lyapunov’s condition of order 3), that is,
∑n

i=1 E|Zi − EZi|c/σc
n → 0 with c = 3. Hu et al. [9]

generalized the result of Kaluszka and Okolewski [8] by considering Lc for some 2 < c ≤ 3
instead of L3.

Recently, Wu et al. [10] obtained the following result by using the truncation method
and Bernstein’s inequality.

Theorem 1.1. Let {Zn, n ≥ 1} be a sequence of nonnegative independent random variables such that
EZ2

n < ∞ and EXn → ∞, where Xn is defined by (1.1). Furthermore, assume that

max
1≤i≤n

EZi

σn
= O(1), (1.3)

σ−2
n

n∑

i=1

EZ2
i I
(
Zi > ησn

) −→ 0 for some η > 0. (1.4)

Then (1.2) holds for all real numbers a > 0 and α > 0.

For a sequence {Zn, n ≥ 1} of nonnegative independent random variables with only
rth moments for some 1 ≤ r < 2, Wu et al. [10] also obtained the following asymptotic
approximation of the inverse moment:

E
(
a +X′

n

)−α ∼ (
a + EX′

n

)−α (1.5)

for all real numbers a > 0 and α > 0. Here X′
n is defined as

X′
n =

∑n
i=1 Zi

σ̃n
, σ̃2

n =
n∑

i=1

Var(ZiI(Zi ≤ Mn)), (1.6)

where {Mn, n ≥ 1} is a sequence of positive constants satisfying

Mn → ∞, Mn = O
(
n(2−δ)/(4−r)

)
for some 0 < δ <

r

2
. (1.7)

Specifically, Wu et al. [10] proved the following result.

Theorem 1.2. Let {Zn, n ≥ 1} be a sequence of nonnegative independent random variables. Suppose
that, for some 1 ≤ r < 2,

(i) {Zn} is uniformly integrable,
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(ii) supn≥1EZ
r
n < ∞,

(iii) n−1 ∑n
i=1 EZi ≥ C for some positive constant C > 0,

(iv) n−1/2σ̃n ≥ D for some positive constant D > 0,

where σ̃n is the same as in (1.6) for some positive constants {Mn} satisfying (1.7). Then (1.5) holds
for all real numbers a > 0 and α > 0.

Wang et al. [11] obtained some exponential inequalities for negatively orthant
dependent (NOD) random variables. By using the exponential inequalities, they extended
Theorem 1.1 for independent random variables to NOD random variables without condition
(1.3).

The purpose of this work is to obtain asymptotic approximations of inverse moments
for nonnegative random variables satisfying a Rosenthal-type inequality. For a sequence
{Zn, n ≥ 1} of independent random variables with EZn = 0 and E|Zn|q < ∞ for some q > 2,
Rosenthal [12] proved that there exists a positive constant Cq depending only on q such that

E

∣
∣
∣
∣
∣

n∑

i=1

Zi

∣
∣
∣
∣
∣

q

≤ Cq

⎧
⎨

⎩

n∑

i=1

E|Zi|q +
(

n∑

i=1

E|Zi|2
)q/2

⎫
⎬

⎭
. (1.8)

Note that the Rosenthal inequality holds for NOD random variables (see Asadian et al. [13]).
In this paper, we improve and extend Theorem 1.2 for independent random variables

to random variables satisfying a Rosenthal type inequality. We also extend Wang et al. [11]
result for NOD random variables to the more general case.

Throughout this paper, the symbol C denotes a positive constant which is not
necessarily the same one in each appearance, and IA denotes the indicator function of the
event A.

2. Main Results

Throughout this section, we assume that {Zn, n ≥ 1} is a sequence of nonnegative random
variables satisfying a Rosenthal type inequality (see (2.1)).

The following theorem gives sufficient conditions under which the inverse moment is
asymptotically approximated by the inverse of the moment.

Theorem 2.1. Let {Zn, n ≥ 1} be a sequence of nonnegative random variables. Let μ′
n = EX′

n and
μ̃n = σ̃−1

n

∑n
i=1 EZiI(Zi ≤ Mn), where X′

n and σ̃n are defined by (1.6), and {Mn, n ≥ 1} is a sequence
of positive real numbers. Suppose that the following conditions hold:

(i) for any q > 2, there exists a positive constant Cq depending only on q such that

E

∣
∣
∣
∣
∣

n∑

i=1

(
Z′

ni − EZ′
ni

)
∣
∣
∣
∣
∣

q

≤ Cq

⎧
⎨

⎩

n∑

i=1

E
∣
∣Z′

ni − EZ′
ni

∣
∣q +

(
n∑

i=1

Var
(
Z′

ni

)
)q/2

⎫
⎬

⎭
, (2.1)

where Z′
ni = ZiI(Zi ≤ Mn) +MnI(Zi > Mn),

(ii) μ′
n → ∞ as n → ∞,
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(iii) μ̃n/μ
′
n → 1 as n → ∞,

(iv) Mn/(σ̃nμ̃
s
n) = O(1) for some 0 < s < 1.

Then (1.5) holds for all real numbers a > 0 and α > 0.

Proof. Let us decompose X′
n as

X′
n = U′

n + V ′
n, (2.2)

where U′
n = σ̃−1

n

∑n
i=1 Z

′
ni and V ′

n = σ̃−1
n

∑n
i=1(Zi − Mn)I(Zi > Mn). Denote u′

n = EU′
n. Since

ZiI(Zi ≤ Mn) ≤ Z′
ni ≤ Zi, we have that μ̃n ≤ u′

n ≤ μ′
n. It follows by (ii) and (iii) that

u′
n

μ′
n
−→ 1,

u′
n

μ̃n
−→ 1, u′

n −→ ∞. (2.3)

Now, applying Jensen’s inequality to the convex function f(x) = (a + x)−α yields
E(a +X′

n)
−α ≥ (a + EX′

n)
−α
. Therefore

lim inf
n→∞

(
a + EX′

n

)α
E
(
a +X′

n

)−α ≥ 1. (2.4)

Hence it is enough to show that

lim sup
n→∞

(
a + EX′

n

)α
E
(
a +X′

n

)−α ≤ 1. (2.5)

Since 0 < s < 1,we can take t such that 0 < s < t < 1 and 2t > s+1.Namely, s < (s+1)/2 < t < 1.
Let us write

E
(
a +X′

n

)−α = Q′
1 +Q′

2, (2.6)

where Q′
1 = E(a +X′

n)
−αI(U′

n ≤ u′
n − (u′

n)
t) and Q′

2 = E(a +X′
n)

−αI(U′
n > u′

n − (u′
n)

t). Since
X′

n ≥ U′
n,we get that

Q′
2 ≤ E

(
a +X′

n

)−α
I
(
X′

n > u′
n −

(
u′
n

)t
)
≤
(
a + u′

n −
(
u′
n

)t
)−α

, (2.7)

which implies by (ii) and (2.3) that

lim sup
n→∞

(
a + EX′

n

)α
Q′

2 ≤ lim sup
n→∞

(
a + EX′

n

)α
(
a + u′

n −
(
u′
n

)t
)−α

= lim sup
n→∞

(
a/μ′

n + 1

a/μ′
n + u′

n/μ
′
n − (u′

n)
t/μ′

n

)α

= 1.

(2.8)
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It remains to show that

lim
n→∞

(
a + EX′

n

)α
Q′

1 = 0. (2.9)

Observe by Markov’s inequality and (i) that, for any q > 2,

Q′
1 ≤ a−αP

(
U′

n ≤ u′
n −

(
u′
n

)t
)

≤ a−αP
(∣
∣U′

n − u′
n

∣
∣ ≥ (

u′
n

)t
)

≤ a−ασ̃−q
n

(
u′
n

)−tq
E

∣
∣
∣
∣
∣

n∑

i=1

(
Z′

ni − EZ′
ni

)
∣
∣
∣
∣
∣

q

≤ Cqa
−ασ̃−q

n

(
u′
n

)−tq
⎧
⎨

⎩

n∑

i=1

E
∣
∣Z′

ni − EZ′
ni

∣
∣q +

(
n∑

i=1

Var
(
Z′

ni

)
)q/2

⎫
⎬

⎭
.

(2.10)

By the definition of Z′
ni, we have that

∣
∣Z′

ni − EZ′
ni

∣
∣ ≤ max

{
Z′

ni, EZ
′
ni

} ≤ Mn,

Var
(
Z′

ni

)
= Var(ZiI(Zi ≤ Mn)) + Var(MnI(Zi > Mn))

+ 2Cov(ZiI(Zi ≤ Mn),MnI(Zi > Mn))

= Var(ZiI(Zi ≤ Mn)) + Var(MnI(Zi > Mn))

− 2EZiI(Zi ≤ Mn)MnP(Zi > Mn)

≤ Var(ZiI(Zi ≤ Mn)) +M2
nP(Zi > Mn)

≤ Var(ZiI(Zi ≤ Mn)) +MnEZiI(Zi > Mn).

(2.11)

Substituting (2.11) into (2.10), we have that

Q′
1 ≤ Cqa

−ασ̃−q
n

(
u′
n

)−tq
{

M
q−2
n

n∑

i=1

(Var(ZiI(Zi ≤ Mn)) +MnEZiI(Zi > Mn))

+

(
n∑

i=1

Var(ZiI(Zi ≤ Mn)) +MnEZiI(Zi > Mn)

)q/2
⎫
⎬

⎭

≤ Cqa
−ασ̃−q

n

(
u′
n

)−tq
{

M
q−2
n σ̃2

n +M
q−1
n

n∑

i=1

EZiI(Zi > Mn)

+2q/2−1
(

n∑

i=1

Var(ZiI(Zi ≤ Mn))

)q/2

+ 2q/2−1
(

Mn

n∑

i=1

EZiI(Zi > Mn)

)q/2
⎫
⎬

⎭

=: I1 + I2 + I3 + I4.

(2.12)



6 Journal of Inequalities and Applications

For I1, we have by (iv) that

I1 = Cqa
−α(u′

n

)−tq
(

Mn

σ̃nμ̃
s
n

)q−2
μ̃
s(q−2)
n ≤ Ca−α(u′

n

)−tq
μ̃
s(q−2)
n . (2.13)

For I2, we first note that

μ̃n

μ′
n
= 1 − σ̃−1

n

∑n
i=1 EZiI(Zi > Mn)

μ′
n

, (2.14)

which entails by (iii) that

(
μ′
n

)−1
σ̃−1
n

n∑

i=1

EZiI(Zi > Mn) −→ 0. (2.15)

It follows by (iv) that

I2 = Cqa
−ασ̃−q+1

n

(
u′
n

)−tq
M

q−1
n μ′

n

(
μ′
n

)−1
σ̃−1
n

n∑

i=1

EZiI(Zi > Mn)

≤ Ca−ασ̃−q+1
n

(
u′
n

)−tq
M

q−1
n μ′

n

= Ca−α(u′
n

)−tq
(

Mn

σ̃nμ̃
s
n

)q−1
μ̃
s(q−1)
n μ′

n

≤ Ca−α(u′
n

)−tq
μ̃
s(q−1)
n μ′

n.

(2.16)

For I3, we have by the definition of σ̃n that

I3 = Cq2q/2−1a−α(u′
n

)−tq
. (2.17)

For I4, we have by (2.15) and (iv) that

I4 = Cq2q/2−1a−ασ̃−q/2
n

(
u′
n

)−tq
M

q/2
n

(
μ′
n

)q/2
(
(
μ′
n

)−1
σ̃−1
n

n∑

i=1

EZiI(Zi > Mn)

)q/2

≤ Ca−ασ̃−q/2
n

(
u′
n

)−tq
M

q/2
n

(
μ′
n

)q/2

= Ca−α(u′
n

)−tq(
μ′
n

)q/2
(

Mn

σ̃nμ̃
s
n

)q/2

μ̃
sq/2
n

≤ Ca−α(u′
n

)−tq(
μ′
n

)q/2
μ̃
sq/2
n .

(2.18)
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Substituting (2.13) and (2.16)–(2.18) into (2.12), we get that

lim sup
n→∞

(
a + EX′

n

)α
Q′

1

≤ lim sup
n→∞

(
a + EX′

n

)α
{
Ca−α(u′

n

)−tq
μ̃
s(q−2)
n + Ca−α(u′

n

)−tq
μ̃
s(q−1)
n μ′

n

+Cq2q/2−1a−α(u′
n

)−tq + Ca−α(u′
n

)−tq(
μ′
n

)q/2
μ̃
sq/2
n

}

= lim sup
n→∞

(
a + μ′

n

μ̃n

)α{
Ca−α(u′

n

)−tq
μ̃
s(q−2)+α
n + Ca−α(u′

n

)−tq
μ̃
s(q−1)+α
n μ′

n

+Cq2q/2−1a−α(u′
n

)−tq
μ̃α
n + Ca−α(u′

n

)−tq(
μ′
n

)q/2
μ̃
sq/2+α
n

}
.

(2.19)

Since 0 < s < (s + 1)/2 < t < 1, we can take q > 2 large enough such that tq > max{s(q − 1) +
α + 1, sq/2 + q/2 + α}. Then we have by (2.3) that

(
u′
n

)−tq
μ̃
s(q−2)+α
n =

(
u′
n

)−s(q−2)−α
μ̃
s(q−2)+α
n

(
u′
n

)−tq+s(q−2)+α −→ 0,

(
u′
n

)−tq
μ̃
s(q−1)+α
n μ′

n =
(
u′
n

)−s(q−1)−α
μ̃
s(q−1)+α
n μ′

n

(
u′
n

)−1(
u′
n

)−tq+s(q−1)+α+1 −→ 0,

(
u′
n

)−tq
μ̃α
n =

(
u′
n

)−α
μ̃α
n

(
u′
n

)−tq+α −→ 0,

(
u′
n

)−tq(
μ′
n

)q/2
μ̃
sq/2+α
n =

(
u′
n

)−sq/2−α
μ̃
sq/2+α
n

(
μ′
n

)q/2(
u′
n

)−q/2(
u′
n

)−tq+sq/2+q/2+α −→ 0.

(2.20)

Hence all the terms in the second brace of (2.19) converge to 0 as n → ∞.Moreover, we have
by (ii) and (iii) that

(
a + μ′

n

μ̃n

)α

=
(
(a/μ′

n) + 1
μ̃n/μ

′
n

)α

−→ 1. (2.21)

Therefore lim supn→∞(a + EX′
n)

αQ′
1 = 0 and so (2.9) is proved.

Remark 2.2. In (2.1), {Z′
ni, 1 ≤ i ≤ n} are monotone transformations of {Zi, 1 ≤ i ≤ n}. If

{Zn, n ≥ 1} is a sequence of independent random variables, then (2.1) is clearly satisfied from
the Rosenthal inequality (1.8). There are many sequences of dependent random variables
satisfying (2.1) for all q > 2. Examples include sequences of NOD random variables
(see Asadian et al. [13]), φ-mixing identically distributed random variables satisfying
∑∞

n=1 φ
1/2(2n) < ∞ (see Shao [14]), ρ-mixing identically distributed random variables

satisfying
∑∞

n=1 ρ
2/q(2n) < ∞ (see Shao [15]), negatively associated random variables (see

Shao [16]), and ρ∗-mixing random variables (see Utev and Peligrad [17]).

We can extend Theorem 1.1 for independent random variables to the more general
random variables by using Theorem 2.1. To do this, the following lemma is needed.
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Lemma 2.3. Let {Yn, n ≥ 1} be a sequence of nonnegative random variables with EYn → ∞. Let
{bn, n ≥ 1} be a sequence of positive real numbers satisfying bn → b, where b > 0. Assume that

E(a + Yn)−α ∼ (a + EYn)−α ∀a > 0, α > 0. (2.22)

Then E(bn + Yn)
−α ∼ (b + EYn)

−α.

Proof. Take ε > 0 such that 0 < ε < b. Since bn → b, there exists a positive integerN such that
0 < b − ε < bn < b + ε if n > N.We have by (2.22) that, for n > N,

E(bn + Yn)
−α ≤ E(b − ε + Yn)

−α ∼ (b − ε + EYn)
−α. (2.23)

It follows that

lim sup
n→∞

(b + EYn)
αE(bn + Yn)

−α

≤ lim sup
n→∞

(b + EYn)
αE(b − ε + Yn)

−α

= lim sup
n→∞

(b + EYn)
α

(b − ε + EYn)
α (b − ε + EYn)

αE(b − ε + Yn)
−α

= lim sup
n→∞

(
b/EYn + 1

(b − ε)/EYn + 1

)α

(b − ε + EYn)
αE(b − ε + Yn)

−α = 1.

(2.24)

Similar to the above case, we get that, for n > N,

E(bn + Yn)
−α ≥ E(b + ε + Yn)

−α ∼ (b + ε + EYn)
−α, (2.25)

lim inf
n→∞

(b + EYn)
αE(bn + Yn)

−α

≥ lim inf
n→∞

(b + EYn)
αE(b + ε + Yn)

−α

= lim inf
n→∞

(
b/EYn + 1

(b + ε)/EYn + 1

)α

(b + ε + EYn)
αE(b + ε + Yn)

−α = 1.

(2.26)

Hence the result is proved by (2.24) and (2.26).

By using Theorem 2.1, we can obtain the following theorem which improves and
extends Theorem 1.1 for independent random variables to themore general random variables
satisfying the Rosenthal-type inequality (2.1).

Theorem 2.4. Let {Zn, n ≥ 1} be a sequence of nonnegative random variables with EZ2
n < ∞. Let

Xn and σn be defined by (1.1). Assume that the Rosenthal-type inequality (2.1) withMn = ησn holds
for all q > 2, where η > 0 is the same as in (ii). Furthermore, assume that

(i) EXn → ∞ as n → ∞,

(ii) σ−2
n

∑n
i=1 EZ

2
i I(Zi > ησn) → 0 for some η > 0.

Then (1.2) holds for all real numbers a > 0 and α > 0.



Journal of Inequalities and Applications 9

Proof. Let μ′
n = EX′

n and μ̃n = σ̃−1
n

∑n
i=1 EZiI(Zi ≤ Mn),where X′

n and σ̃n are defined by (1.6).
Note that

σ2
n =

n∑

i=1

Var(ZiI(Zi ≤ Mn) + ZiI(Zi > Mn))

=
n∑

i=1

Var(ZiI(Zi ≤ Mn)) + Var(ZiI(Zi > Mn)) + 2Cov(ZiI(Zi ≤ Mn), ZiI(Zi > Mn))

= σ̃2
n +

n∑

i=1

Var(ZiI(Zi > Mn)) − 2
n∑

i=1

EZiI(Zi ≤ Mn)EZiI(Zi > Mn),

(2.27)

which implies that

1 =
σ̃2
n

σ2
n

+
∑n

i=1 Var(ZiI(Zi > Mn))

σ2
n

− 2
∑n

i=1 EZiI(Zi ≤ Mn)EZiI(Zi > Mn)

σ2
n

. (2.28)

But, we have by (ii) that

σ−2
n

n∑

i=1

Var(ZiI(Zi > Mn)) ≤ σ−2
n

n∑

i=1

EZ2
i I(Zi > Mn) −→ 0,

σ−2
n

n∑

i=1

EZiI(Zi ≤ Mn)EZiI(Zi > Mn) ≤ σ−2
n Mn

n∑

i=1

EZiI(Zi > Mn)

≤ σ−2
n

n∑

i=1

EZ2
i I(Zi > Mn) −→ 0.

(2.29)

Substituting (2.29) into (2.28), we have that

σ−1
n σ̃n −→ 1 asn −→ ∞. (2.30)

Now we will apply Theorem 2.1 to the random variable X′
n. By (2.30) and (i), we get that

μ′
n = σ̃−1

n

n∑

i=1

EZi = σ̃−1
n σnEXn −→ ∞. (2.31)
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We also get that

μ̃n

(
μ′
n

)−1 =
σ̃−1
n

∑n
i=1 EZiI(Zi ≤ Mn)

σ̃−1
n

∑n
i=1 EZi

=
σ−1
n

∑n
i=1 EZiI(Zi ≤ Mn)

σ−1
n

∑n
i=1 EZi

= 1 − σ−1
n

∑n
i=1 EZiI(Zi > Mn)

EXn
−→ 1,

(2.32)

since EXn → ∞ by (i) and σ−1
n

∑n
i=1 EZiI(Zi > Mn) ≤ σ−1

n M−1
n

∑n
i=1 EZ

2
i I(Zi > Mn) =

η−1σ−2
n

∑n
i=1 EZ

2
i I(Zi > Mn) → 0 by (ii). From (2.31) and (2.32), μ̃n → ∞ and so we have by

(2.30) that, for any s > 0,

Mn

σ̃nμ̃
s
n
=

ησn

σ̃nμ̃
s
n
−→ 0. (2.33)

Hence all conditions of Theorem 2.1 are satisfied. By Theorem 2.1,

E

(

a + σ̃−1
n

n∑

i=1

Zi

)−α
∼
(

a + σ̃−1
n

n∑

i=1

EZi

)−α
∀a > 0, α > 0. (2.34)

Note that the norming constants in (2.34) are different from those in Xn.
To complete the proof, we will use Lemma 2.3. Since σ−1

n σ̃n → 1, we have by
Lemma 2.3 that

E

(

aσnσ̃
−1
n + σ̃−1

n

n∑

i=1

Zi

)−α
∼
(

a + σ̃−1
n

n∑

i=1

EZi

)−α
. (2.35)

Namely,

E

(

a + σ−1
n

n∑

i=1

Zi

)−α
∼
(

aσ̃nσ
−1
n + σ−1

n

n∑

i=1

EZi

)−α
. (2.36)

By (i) and (2.30),

(

aσ̃nσ
−1
n + σ−1

n

n∑

i=1

EZi

)−α
∼
(

a + σ−1
n

n∑

i=1

EZi

)−α
. (2.37)

Combining (2.36) with (2.37) gives the desired result.

Remark 2.5. Wang et al. [11] extended Wu et al. [10] result (see Theorem 1.1) to NOD
random variables without condition (1.3). As observed in Remark 2.2, (2.1) holds for not



Journal of Inequalities and Applications 11

only independent random variables but also NOD random variables. Hence Theorem 2.4
improves and extends the results of Wu et al. [10] and Wang et al. [11] to the more general
random variables.

Theorem 2.6. Let {Zn, n ≥ 1} be a sequence of nonnegative random variables. Let μ′
n = EX′

n and
μ̃n = σ̃−1

n

∑n
i=1 EZiI(Zi ≤ Mn), where X′

n and σ̃n are defined by (1.6), and {Mn, n ≥ 1} is a sequence
of positive real numbers satisfying

Mn −→ ∞, Mn = O
(
nt) for some 0 < t < 1. (2.38)

Assume that the Rosenthal-type inequality (2.1) holds for all q > 2. Furthermore, assume that

(i) {Zn} is uniformly integrable,

(ii) n−1 ∑n
i=1 EZi ≥ C for some positive constant C > 0,

(iii) n−1/2σ̃n ≥ D for some positive constant D > 0.

Then (1.5) holds for all real numbers a > 0 and α > 0.

Proof. We first note by (i) and (ii) that

Cn ≤
n∑

i=1

EZi ≤ n sup
i≥1

EZi = O(n),

n−1
n∑

i=1

EZiI(Zi > Mn) ≤ sup
i≥1

EZiI(Zi > Mn) = o(1).

(2.39)

We next estimate σ̃n. By (2.39),

σ̃2
n ≤

n∑

i=1

EZ2
i I(Zi ≤ Mn) ≤ Mn

n∑

i=1

EZi = MnO(n). (2.40)

Combining (2.40) with (iii) gives

D2n ≤ σ̃2
n ≤ C1nMn for some constant C1 > 0. (2.41)

Now we will apply Theorem 2.1 to the random variable X′
n. By (ii), (2.41), and (2.38), we get

that

μ′
n =

∑n
i=1 EZi

σ̃n
≥ Cn

σ̃n
≥ Cn

√
C1nMn

=
Cn1/2

√
C1O

(
nt/2

) −→ ∞. (2.42)
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We also get by (ii) and (2.39) that

μ̃n

μ′
n
=

σ̃−1
n

∑n
i=1 EZiI(Zi ≤ Mn)

σ̃−1
n

∑n
i=1 EZi

=
n−1 ∑n

i=1 EZiI(Zi ≤ Mn)
n−1 ∑n

i=1 EZi

= 1 − n−1 ∑n
i=1 EZiI(Zi > Mn)
n−1 ∑n

i=1 EZi
−→ 1.

(2.43)

Since 0 < t < 1, we can take s such that max{2t − 1, 0} < s < 1. Then we have by (ii), (iii),
(2.38), and (2.43) that

Mn

σ̃nμ̃
s
n
=

Mn

σ̃n

(
μ′
n

)s(
μ′
n

)−s
μ̃s
n

≤ Mn

σ̃n

(
Cnσ̃−1

n

)s(
μ′
n

)−s
μ̃s
n

(
by(ii)

)

≤ O
(
nt
)

CsD1−sns+(1−s)/2(μ′
n

)−s
μ̃s
n

−→ 0,

(2.44)

since s + (1 − s)/2 > t and (μ′
n)

−1μ̃n → 1. Hence all conditions of Theorem 2.1 are satisfied.
The result follows from Theorem 2.1.

Remark 2.7. The conditions of Theorem 2.6 are much weaker than those of Theorem 1.2 in the
following three directions.

(i) If {Zn, n ≥ 1} is a sequence of independent random variables, then (2.1) is satisfied
from the Rosenthal inequality. Hence (2.1) is weaker than independence condition.

(ii) If {Mn, n ≥ 1} satisfies (1.7), then it also satisfies (2.38) by the fact that (2 − δ)/(4 −
r) < (2 − δ)/2 < 1. Hence (2.38) is weaker than (1.7).

(iii) The condition supn≥1EZ
r
n < ∞ in Theorem 1.2 is not needed in Theorem 2.6.

Therefore Theorem 2.6 improves and extendsWu et al. [10] result (see Theorem 1.2)
to the more general random variables.
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