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By the notation andmonotone convergence theorem of Henstock-Kurzweil integral, we investigate
the existence of continuous solutions for the second order boundary value problems with integral
boundary conditions in which the nonlinearities f(t, x(t)) are allowed to have the singularities in
t and are not Lebesgue integrable.

1. Introduction

The singular boundary value problems

−x′′ = f(t, x), t ∈ (0, 1),

αx(0) − βx′(0) = 0,

γx(1) + δx′(1) = 0,

(1.1)

where f(t, x) may be singular at t = 0 and t = 1, have been studied extensively; see, for
example, [1–8], and the references contained therein.

In [7], Taliaferro showed that problem (1.1) has a C[0, 1]
⋂
C1(0, 1) solution, where

β = 0, δ = 0, and f(t, x) = q(t)x−λ, λ > 0, q ∈ C(0, 1) with q > 0 and
∫1
0 t(1 − t)q(t)dt < +∞.

Since then, there are many improvements of this result in literatures for more general
case.
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In [5] and other literatures, the authors studied (1.1) in the case where f(t, x) =
q(t)g(x), g : [0,∞) → [0,∞) is continuous, and q ∈ C(0, 1) with

∫1
0 t(1 − t)q(t)dt < +∞

or in the case where f(t, x) : (0, 1) × R → R is continuous and satisfies |f(t, x)| ≤ h(t) with
h ∈ C((0, 1), R+) and

∫1
0 t(1 − t)q(t)dt < +∞. We note that f(t, x) admit a time singularity at

t = 0 and/or t = 1 and space singularity at x = 0.
In [4], the authors considered (1.1) when β = 0, δ = 0, f(t, x) = q(t)g(x), g : [0,∞) →

[0,∞) is continuous, and q ∈ L1(0, 1), q(t) ≥ 0 a.e. (in particular, q is allowed to have a finite
number of singularities).

In [1], Agarwal and O’Regan studied (1.1) when β = 0, δ = 0, and f(t, x) satisfies the
following caratheodory conditions.

(C1) The map x �→ f(t, x) is continuous for a.e. t ∈ [0, 1].

(C2) The map t �→ f(t, x) is measurable for all x ∈ R.

(C3) There exists h ∈ L1
loc(0, 1) with

∫1
0 t(1 − t)h(t)dt < +∞ such that |f(t, x)| ≤ h(t) for

a.e. t ∈ [0, 1] and x ∈ R.

In [8], the authors studied (1.1)with β = 0 as well as δ = 0 and supposed that f(t, x) =
f1(t, x) + q(t), f1(t, x) : (0, 1) × R → R is continuous, and q ∈ L1(0, 1).

It is noticed that the case

f(t, x) = f1(t, x) + 2 sin
1
t
− 2

t
cos

1
t
− 1
t2

sin
1
t

(1.2)

with f1(t, x) : (0, 1) × R → R being continuous is not included in all those papers
abovementioned.

In this paper, motivated by this case, relying on theory of Henstock-Kurzweil integral,
we investigate the following second order boundary value problems with integral boundary
conditions

−x′′ = f(t, x), t ∈ (0, 1),

x(0) − k1x
′(0) =

∫1

0
h1(s, x(s))ds,

x(1) + k2x
′(1) =

∫1

0
h2(s, x(s))ds,

(1.3)

where k1, k2 are nonnegative constants and f(t, x), hi(t, x)(i = 1, 2) are not certainly L1-
integrable.

Henstock-Kurzweil integral encompasses the Newton, Riemann and Lebesgue
integrals. A particular feature of this integral is that integrals of highly oscillating function
which occur in quantum theory and nonlinear analysis such as F ′(t), where F(t) = t2 sin t−2

on (0, 1] and F(0) = 0, can be defined.
For the literatures in which the theory of Henstock-Kurzweil integral to study

differential equations is used we refer to [9–14] and so on.
This paper is organized as follows. In Section 2, we make some preliminaries in

Henstock-Kurzweil integral; in Section 3, we will prove the equivalence of problem (1.3) and
an integral equation as well as existence and uniqueness of solution for the linear problem
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which associate with (1.3); in Section 4, we are devoted to the existence results for the singular
problem (1.3). An example will be given in Section 5.

2. Preliminaries

In this section we introduce the basic facts on Henstock-Kurzweil integrability, a concept that
extends the classical Lebesgue integrability on the real line. All notations and properties can
be found in the references (see, e.g., [13, 14]).

Let [0, 1] be the real unit interval provided with the σ-algebra Σ of Lebesgue
measurable sets with the Lebesgue measure μ.

Definition 2.1 (see [13, 14]). One says that D = {(Ii, ti)} is a tagged partition of [0, 1] if {Ii}
is a finite family of closed subintervals Ii of [0, 1] which are nonoverlapping, that is, their
interiors are pairwise disjoint, and whose union is [0, 1], and if ti ∈ Ii. Given a function
δ : [0, 1] → (0,∞) (called a gauge of [0, 1]), one says that a tagged partition D = {(Ii, ti)} is
δ-fine if Ii ⊂ (ti − δ(ti), ti − δ(ti)) for every i.

Definition 2.2 (see [13, 14]). A function f : [0, 1] → R is said to be Henstock-Kurzweil
(shortly HK) integrable if there exists a real z satisfying that, for every ε > 0, there is a gauge
δε such that

∣
∣
∣
∣
∣

n∑

i=1

f(ti)μ(Ii) − z

∣
∣
∣
∣
∣
< ε (2.1)

for every δε-finite partition D = {(Ii, ti)}. One says that

z = (HK)
∫1

0
f(t)dt (2.2)

is a Henstock-Kurzweil (shortly HK) integral of f over [0, 1].

A function F is absolutely continuous (or AC∗) onE ⊂ [0, 1] if for each ε > 0 there exists
δ > 0 such that

∑
i ω(F; [ci, di]) < εwhenever {[ci, di]} is a finite collection of nonoverlapping

intervals that have endpoints in E and satisfy
∑

i(di − ci) < δ while ω(F; [ci, di]) denotes the
oscillation of f over [ci, di]; that is,

ω(F; [ci, di]) = sup
{∣
∣F(x) − F

(
y
)∣
∣ : x, y ∈ [ci, di]

}
. (2.3)

A function F is generalized absolutely continuous (or ACG∗) on E if F is continuous
on E and if E can be expressed as a countable union of sets on each of which F is absolutely
continuous (or AC∗).

For the Lebesgue integral of function f , we denote that
∫ t
0 f(s)ds.

Denote byC the continuous functions space on [0, 1], by AC the absolutely continuous
functions space on [0, 1], by ACG∗ the generalized absolutely continuous functions space on
[0, 1], and by H the space of HK-integrable functions from [0, 1] to R. Assume that the space
C is equipped with pointwise ordering and normed by the maximum norm, and that the
space H is equipped with a.e. pointwise ordering and normed by the Alexiewicz norm.
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The following Lemma 2.3–Lemma 2.7 are from [13, 14].

Lemma 2.3. The Henstock-Kurzweil integral is linear, and additive over nonoverlapping intervals of
[0, 1].

Lemma 2.4. Let f : [0, 1] → R be HK-integrable and let g : [0, 1] → R be bounded variation. Then
fg is HK-integrable, and for every t ∈ [0, 1]

(HK)
∫ t

0
f(s)g(s)ds = g(t)(HK)

∫ t

0
f(s)ds −

∫ t

0

(

g ′(s)(HK)
∫ s

0
f(τ)dτ

)

ds. (2.4)

Lemma 2.5. Let f± : [0, 1] → R be HK-integrable. If f−(s) ≤ f+(s) for almost every s ∈ [0, 1], and
if [a, b] ⊆ [0, 1], then

(HK)
∫b

a

f−(s)ds ≤ (HK)
∫b

a

f+(s)ds. (2.5)

Lemma 2.6. Let f : [0, 1] → R be HK-integrable. Then the relation

f̃(t) = c + (HK)
∫ t

0
f(s)ds, t ∈ [0, 1], (2.6)

defined a function f̃ : [0, 1] → R, which is continuous and belongs to ACG∗, a.e. derivable and
f̃ ′(t) = f(t) a.e. on [0, 1].

f̃ is called a primitive of f .

Lemma 2.7. Assume that functions fn : [0, 1] → R, n ∈ N and f± : [0, 1] → R are HK-integrable,
that the sequence {fn(s)} is increasing (respectively decreasing) for almost every s ∈ [0, 1], and that

f−(s) ≤ fn(s) ≤ f+(s) (2.7)

for all n ∈ N and a.e. s ∈ [0, 1]. Then there exists such an HK-integrable function f : [0, 1] → R,
that f(s) = limn→∞fn(s) for a.e. s ∈ [0, 1], and that

lim
n→∞

(HK)
∫1

0
fn(s)ds = (HK)

∫1

0
f(s)ds. (2.8)

3. Linear Problem

We know that the homogeneous problem

−x′′ = 0, t ∈ (0, 1),

x(0) − k1x
′(0) = 0,

x(1) + k2x
′(1) = 0,

(3.1)
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has only the trivial solution and Green’s function is

G(t, s) =
1

k1 + k2 + 1

⎧
⎪⎪⎨

⎪⎪⎩

(k1 + t)(k2 + 1 − s), 0 ≤ t ≤ s ≤ 1,

(k1 + s)(k2 + 1 − t), 0 ≤ s ≤ t ≤ 1.

(3.2)

It is easy to prove the following lemma.

Lemma 3.1. For every t ∈ [0, 1], functions s �→ G(t, s) and s �→ (∂G/∂t)(t, s) are derivable on [0, t)
and (t, 1] and their derivations are absolutely continuous.

Lemma 3.2. Let σ : [0, 1] → R be an HK-integrable function, then

(1) for every t ∈ [0, 1], G(t, s)σ(s) and (∂G/∂t)(t, s)σ(s) are HK-integrable in s;

(2) the function, where uσ : [0, 1] → R,

uσ(t) = (HK)
∫1

0
G(t, s)σ(s)ds, ∀t ∈ [0, 1] (3.3)

is derivable a.e. on [0, 1] and

u′
σ(t) = (HK)

∫1

0

∂G

∂t
(t, s)σ(s)ds, (3.4)

(3) uσ(t) satisfies the following conditions:

uσ(0) − k1u
′
σ(0) = 0,

uσ(1) + k2u
′
σ(1) = 0,

(3.5)

(4) u′
σ(t) is derivable a.e. on [0, 1] and

−u′′
σ(t) = σ(t), a.e. in [0, 1]. (3.6)

Proof. (1) From Lemma 3.1, since we know that G(t, s) and (∂G/∂t)(t, s) are absolutely
continuous respect to s, and σ(s) ∈ H, the conclusions are in as follows.
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(2) Since

uσ(t) = (HK)
∫1

0
G(t, s)σ(s)ds

=
k1 + t

k1 + k2 + 1
(HK)

∫1

t

(k2 + 1 − s)σ(s)ds

+
k2 + 1 − t

k1 + k2 + 1
(HK)

∫ t

0
(k1 + s)σ(s)ds,

(3.7)

it follows from Lemma 2.6 that, for a.e. t ∈ [0, 1],

u′
σ(t) =

1
k1 + k2 + 1

(HK)
∫1

t

(k2 + 1 − s)σ(s)ds − k1 + t

k1 + k2 + 1
(k2 + 1 − t)σ(t)

− 1
k1 + k2 + 1

(HK)
∫ t

0
(k1 + s)σ(s)ds +

k2 + 1 − t

k1 + k2 + 1
(k1 + t)σ(t)

= (HK)
∫1

0

∂G

∂t
(t, s)σ(s)ds.

(3.8)

(3) Since

uσ(0) =
k1

k1 + k2 + 1
(HK)

∫1

0
(k2 + 1 − s)σ(s)ds,

u′
σ(0) = lim

t→ 0+

uσ(t) − uσ(0)
t

= lim
t→ 0+

1
t

[
t

k1 + k2 + 1
(HK)

∫1

t

(k2 + 1 − s)σ(s)ds

+
k2 + 1 − t

k1 + k2 + 1
(HK)

∫ t

0
(k1 + s)σ(s)ds

− k1
k1 + k2 + 1

(HK)
∫1

0
(k2 + 1 − s)σ(s)ds

]

=
1

k1 + k2 + 1
(HK)

∫1

0
(k2 + 1 − s)σ(s)ds − lim

t→ 0+

1
t
(HK)

∫ t

0
sσ(s)ds,

(3.9)

we claim that

lim
t→ 0+

1
t
(HK)

∫ t

0
sσ(s)ds = 0. (3.10)
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In fact, by Lemma 2.4,

(HK)
∫ t

0
sσ(s)ds = t(HK)

∫ t

0
σ(s)ds −

∫ t

0

(

(HK)
∫s

0
σ(τ)dτ

)

ds. (3.11)

Denote that g(s) = (HK)
∫s
0 σ(τ)dτ ; then g(s) ∈ ACG∗ and lims→ 0g(s) = 0. There exists

t0 ∈ [0, t] such that

∫ t

0
g(s)ds = g(t0)t. (3.12)

Therefore,

lim
t→ 0+

1
t
(HK)

∫ t

0
sσ(s)ds = lim

t→ 0+
(HK)

∫ t

0
σ(s)ds − lim

t→ 0+
g(t0) = 0. (3.13)

Thus, we have

u′
σ(0) =

1
k1 + k2 + 1

(HK)
∫1

0
(k2 + 1 − s)σ(s)ds,

uσ(0) − k1u
′
σ(0) = 0.

(3.14)

The proof of another condition uσ(1) + k2u
′
σ(1) = 0 is similar.

(4) Since

u′
σ(t) =

1
k1 + k2 + 1

(

−(HK)
∫ t

0
(k1 + s)σ(s)ds + (HK)

∫1

t

(k2 + 1 − s)σ(s)ds

)

(3.15)

for a.e. t ∈ [0, 1], there exists a subset I of [0, 1] with μ([0, 1] \ I) = 0 such that u′
σ(t) ∈ ACG∗

on I. Relying on Lemma 2.6, u′
σ(t) is derivable a.e. on I and, therefore, a.e. on [0, 1], and

−u′′
σ(t) =

1
k1 + k2 + 1

((k1 + t)σ(t) + (k2 + 1 − t)σ(t))

= σ(t), a.e. in [0, 1].

(3.16)
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Theorem 3.3. Given functions σ(t), ρ1(t), ρ2(t) ∈ H. Then the following nonhomogeneous linear
problem

−x′′(t) = σ(t), t ∈ (0, 1),

x(0) − k1x
′(0) = (HK)

∫1

0
ρ1(s)ds,

x(1) + k2x
′(1) = (HK)

∫1

0
ρ2(s)ds,

(3.17)

has a unique solution x ∈ ACG∗ and

x(t) = p(t) + (HK)
∫1

0
G(t, s)σ(s)ds, (3.18)

where

p(t) =
k2 + 1 − t

k1 + k2 + 1
(HK)

∫1

0
ρ1(s)ds +

k1 + t

k1 + k2 + 1
(HK)

∫1

0
ρ2(s)ds. (3.19)

Proof. We notice that p(t) ∈ C2[0, 1] and

−p′′(t) = 0, t ∈ (0, 1),

p(0) − k1p
′(0) = (HK)

∫1

0
ρ1(s)ds,

p(1) + k2p
′(1) = (HK)

∫1

0
ρ2(s)ds.

(3.20)

The facts associated with Lemma 3.2 deduce that the function x(t) satisfies x(t) ∈ ACG∗, x′(t)
is derivable a.e. on [0, 1], and

−x′′(t) = σ(t), a.e. [0, 1], (3.21)

and x(t) verifies the boundary conditions. The uniqueness of solution of (3.17) follows from
Lemma 3.1.
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4. The Nonlinear Problems

In this section we consider the following nonlinear problems:

−x′′ = f(t, x), t ∈ (0, 1),

x(0) − k1x
′(0) =

∫1

0
h1(s, x(s))ds,

x(1) + k2x
′(1) =

∫1

0
h2(s, x(s))ds.

(4.1)

We impose the following hypotheses on the functions f and h1, h2.

(H1) f(t, x(t)) and hi(t, x(t))(i = 1, 2) are HK-integrable whenever x ∈ C.

(H2) f(t, x) and hi(t, x)(i = 1, 2) are increasing in x for almost every t ∈ [0, 1].

(H3) There exist HK-integrable functions f± and h±
i (i = 1, 2) such that

f−(t) ≤ f(t, x(t)) ≤ f+(t), h−
i (t) ≤ hi(t, x(t)) ≤ h+

i (t) (i = 1, 2) (4.2)

a.e. hold on [0, 1] for all x ∈ C.
To prove our results, we need the following fixed point theorem for mappings of C

which is proved in [10].

Lemma 4.1. LetG : C → C be an increasing mapping which maps every monotone sequence {un} of
C to a sequence {Gun} which converges pointwise to a function of C. If u± ∈ C, u− ≤ u+, u− ≤ Gu−,
and Gu+ ≤ u+, then G has in an order interval [u−, u+] of C least and greatest fixed points and they
are increasing in G.

We prove an existence result for solutions of (4.1).

Theorem 4.2. Assume that the hypotheses (H1)–(H3) are satisfied, then (4.1) has least and greatest
solutions in ACG∗.

Proof. We know from Theorem 3.3 that the solutions x ∈ ACG∗ of (4.1) are the solutions of
following operator equation:

x(t) = (Tx)(t) = (Bx)(t) + (Ax)(t), x ∈ C, (4.3)

where

(Bx)(t) =
k2 + 1 − t

k1 + k2 + 1
(HK)

∫1

0
h1(s, x(s))ds

+
k1 + t

k1 + k2 + 1
(HK)

∫1

0
h2(s, x(s))ds, t ∈ [0, 1],

(Ax)(t) = (HK)
∫1

0
G(t, s)f(s, x(s))ds, t ∈ [0, 1].

(4.4)
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The hypothesis (H2) and Lemma 2.5 imply that if u, v ∈ C and u ≤ v, then

Tu = Bu +Au ≤ Bv +Av = Tv. (4.5)

That is, T is increasing in C.
Let {un} be an increasing sequence in C, then the hypothess (H1)–(H3) imply that the

functions sequences {f(t, un(t))}, {hi(t, un(t))}(i = 1, 2) are increasing in n and belong to H,
and

f−(t) ≤ f(t, un(t)) ≤ f+(t), a.e. t ∈ [0, 1], n ∈ N,

h−
i (t) ≤ hi(t, un(t)) ≤ h+

i (t), (i = 1, 2), a.e. t ∈ [0, 1], n ∈ N,

(HK)
∫1

0
f−(s)ds ≤ (HK)

∫1

0
f(s, un(s))ds ≤ (HK)

∫1

0
f+(s)ds, n ∈ N,

(HK)
∫1

0
h−
i (s)ds ≤ (HK)

∫1

0
hi(s, un(s))ds ≤ (HK)

∫1

0
h+
i (s)ds, (i = 1, 2), n ∈ N.

(4.6)

Thus, by Lemma 2.7, there exist HK-integrable functions v,wi(i = 1, 2) such that

f(t, un(t)) ≤ v(t), f(t, un(t)) −→ v(t), a.e. t ∈ [0, 1],

hi(t, un(t)) ≤ wi(t), hi(t, un(t)) −→ wi(t), (i = 1, 2), a.e. t ∈ [0, 1],

(HK)
∫1

0
f(s, un(s))ds −→ (HK)

∫1

0
v(s)ds,

(HK)
∫1

0
hi(s, un(s))ds −→ (HK)

∫1

0
wi(s)ds, (i = 1, 2).

(4.7)

Denote that

qn(t) = (HK)
∫1

0
G(t, s)f(s, un(s))ds, t ∈ [0, 1],

q(t) = (HK)
∫1

0
G(t, s)v(s)ds, t ∈ [0, 1],

rn(t) =
k2 + 1 − t

k1 + k2 + 1
(HK)

∫1

0
h1(s, un(s))ds +

k1 + t

k1 + k2 + 1
(HK)

∫1

0
h2(s, un(s))ds,

r(t) =
k2 + 1 − t

k1 + k2 + 1
(HK)

∫1

0
w1(s)ds +

k1 + t

k1 + k2 + 1
(HK)

∫1

0
w2(s)ds.

(4.8)
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Then we can easily get that rn(t) → r(t) for every t ∈ [0, 1] and

0 ≤ q(t) − qn(t) = (HK)
∫1

0
G(t, s)

(
v(s) − f(s, un(s))

)
ds

≤ G0(HK)
∫1

0

(
v(s) − f(s, un(s))

)
ds −→ 0, ∀t ∈ [0, 1],

(4.9)

which implies also that qn(t) → q(t) for every t ∈ [0, 1]. Therefore we obtain

(Tun)(t) −→ r(t) + q(t) ∈ C, ∀t ∈ [0, 1]. (4.10)

Denoting that

x±(t) =
k2 + 1 − t

k1 + k2 + 1
(HK)

∫1

0
h±
1 (s)ds +

k1 + t

k1 + k2 + 1
(HK)

∫1

0
h±
2 (s)ds

+ (HK)
∫1

0
G(t, s)f±(s)ds,

(4.11)

then, by Lemma 2.6, x± ∈ ACG∗. In addition, the hypothesis (H3) implies that

x− ≤ x+,

x− ≤ Tx−, Tx+ ≤ x+.
(4.12)

Thus, by Lemma 4.1. We know that T has in the order interval [x−, x+] of C least fixed point
x∗ and greatest fixed point x∗. The functions x∗(t) and x∗(t) are least and greatest solutions
of (4.1) in [x−, x+]. The hypothesis (H3) implies also that if x ∈ C, then Tx ∈ [x−, x+]. Thus
all the solutions of (4.1) belong to the order interval [x−, x+], whence x∗(t) and x∗(t) are least
and greatest of all solutions in C of (4.1).

On the other hand, if x ∈ C is a solution of (4.1), then, from Lemma 2.6,

x(t) =
k2 + 1 − t

k1 + k2 + 1
(HK)

∫1

0
h1(s, x(s))ds +

k1 + t

k1 + k2 + 1
(HK)

∫1

0
h2(s, x(s))ds

+ (HK)
∫1

0
G(t, s)f(s, x(s))ds ∈ ACG∗.

(4.13)

The proof is completed.
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5. An Example

Consider the following problem:

−x′′ = g(t, x) + σ(t), t ∈ (0, 1),

x(0) = 0,

x(1) = 0,

(5.1)

where

σ(t) =
t2

(1 − t)2
sin

1
t
sin

1
1 − t

− (1 − t)2

t2
sin

1
t
sin

1
1 − t

, (5.2)

and g(t, x) satisfies the following caratheodory conditions:

(L1) the map x �→ g(t, x) is continuous for a.e. t ∈ [0, 1],

(L2) the map t �→ g(t, x) is measurable for all x ∈ R,

(L3) there exists h ∈ L1[0, 1] with
∫1
0 h(t)dt < +∞ such that |f(t, x)| ≤ h(t) for a.e. t ∈

[0, 1] and x ∈ R,

(L4) g(t, x) is increasing in x for a.e. t ∈ [0, 1].

Since function σ(t) is not Lebesgue integrable, the results in literature do not hold
for (5.1). Let f(t, x) = g(t, x) + σ(t), f±(t) = ±h(t) + σ(t), then f−(t) ≤ f(t, x) ≤ f+(t) and
f(t, x(t)) is HK-integrable for every continuous x since g(t, x(t)) is Lebesgue integrable for
every continuous x and σ(t) HK-integrable.

Hence, the existence of continuous solution of problem (5.1) is guaranteed by
Theorem 4.2.
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