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We investigate the superstability of the functional equation f(xy) = xf(y) + g(x)y, where f and
g are the mappings on Banach algebra A. We have also proved the superstability of generalized
derivations associated to the linear functional equation f(γx+βy) = γf(x)+βf(y), where γ, β ∈ C.

1. Introduction

The well-known problem of stability of functional equations started with a question of Ulam
[1] in 1940. In 1941, Ulam’s problem was solved by Hyers [2] for Banach spaces. Aoki
[3] provided a generalization of Hyers’ theorem for approximately additive mappings. In
1978, Rassias [4] generalized Hyers’ theorem by obtaining a unique linear mapping near an
approximate additive mapping.

Assume that E1 and E2 are real normed spaces with E2 complete, f : E1 → E2 is a
mapping such that for each fixed x ∈ E1 the mapping t �→ f(tx) is continuous on R, and there
exist ε ≥ 0 and p ∈ [0, 1) such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε

(‖x‖p + ∥
∥y

∥
∥
p) (1.1)

for all x, y ∈ E1. Then there exists a unique linear mapping T : E1 → E2 such that

∥
∥f(x) − T(x)

∥
∥ ≤ 2ε

|2 − 2p| ‖x‖
p (1.2)

for all x ∈ E1.
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In 1994, Gǎvruţa [5] provided a generalization of Rassias’ theorem in which he
replaced the bound ε(‖x‖p + ‖y‖p) in (1.1) by a general control function φ(x, y).

Since then several stability problems for various functional equations have been
investigated by many mathematicians (see [6–8]).

The various problems of the stability of derivations and generalized derivations have
been studied during the last few years (see, e.g., [9–18]). The purpose of this paper is to prove
the superstability of generalized (ring) derivations on Banach algebras.

The following result which is called the superstability of ring homomorphisms was
proved by Bourgin [19] in 1949.

Suppose thatA and B are Banach algebras and B is with unit. If f : A → B is surjective
mapping and there exist ε > 0 and δ > 0 such that

∥
∥f(a + b) − f(a) − f(b)

∥
∥ ≤ ε,

∥
∥f(ab) − f(a)f(b)

∥
∥ ≤ δ (1.3)

for all a, b ∈ A, then f is a ring homomorphism, that is,

f(a + b) = f(a) + f(b), f(ab) = f(a)f(b). (1.4)

The first superstability result concerning derivations between operator algebras was obtained
by Šemrl in [20]. In [10], Badora proved the superstability of functional equation f(xy) =
xf(y) + f(x)y, where f is a mapping on normed algebra A with unit. In Section 2, we
generalize Badora’s result [10, Theorem 5] for functional equations

f
(

xy
)

= xf
(

y
)

+ g(x)y, (1.5)

f
(

xy
)

= xf
(

y
)

+ yg(x) (1.6)

where f and g are mappings on algebra A with an approximate identity.
In [21, 22], the superstability of generalized derivations on Banach algebras associated

to the following Jensen type functional equation:

f

(
x + y

k

)

=
f(x)
k

+
f
(

y
)

k
, (1.7)

where k > 1 is an integer is considered. Several authors have studied the stability of the
general linear functional equation

f
(

γx + βy
)

= Af(x) + Bf
(

y
)

, (1.8)

where γ , β,A, and B are constants in the field and f is a mapping between two Banach spaces
(see [23, 24]). In Section 3, we investigate the superstability of generalized (ring) derivations
associated to the linear functional equation

f
(

γx + βy
)

= γf(x) + βf
(

y
)

, (1.9)
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where γ, β ∈ C. Our results in this section generalize some results of Moslehian’s paper [14].
It has been shown by Moslehian [14, Corollary 2.4] that for an approximate generalized
derivation f on a Banach algebra A, there exists a unique generalized derivation μ near
f . We show that the approximate generalized derivation f is a generalized derivation (see
Corollary 3.6).

Let A be an algebra. An additive map δ : A → A is said to be ring derivation on
A if δ(xy) = xδ(y) + δ(x)y for all x, y ∈ A. Moreover, if δ(λx) = λδ(x) for all λ ∈ C,
then δ is a derivation. An additive mapping (resp., linear mapping) μ : A → A is called
a generalized ring derivation (resp., generalized derivation) if there exists a ring derivation
(resp., derivation) δ : A → A such that μ(xy) = xμ(y) + δ(x)y for all a, b ∈ A.

2. Superstability of (1.5) and (1.6)

Here we show the superstability of the functional equations (1.5) and (1.6). We prove the
superstability of (1.6)without any additional conditions on the mapping g.

Theorem 2.1. LetA be a normed algebra with a central approximate identity (eλ)λ∈Λ and α ∈ C\{0}.
Suppose that f : A → A and g : A → A are mappings for which there exists φ : A ×A → [0,∞)
such that

lim
n→∞

α−nφ(αna, b) = lim
n→∞

α−nφ(a, αnb) = 0, (2.1)
∥
∥f(ab) − af(b) − bg(a)

∥
∥ ≤ φ(a, b) (2.2)

for all a, b ∈ A. Then f(ab) = af(b) + bg(a) for all a, b ∈ A.

Proof. Replacing a by αna in (2.2), we get

∥
∥f(αnab) − αnaf(b) − bg(αna)

∥
∥ ≤ φ(αna, b), (2.3)

and so

∥
∥
∥
∥

f(αnab)
αn

− af(b) − bg(αna)
αn

∥
∥
∥
∥
≤ 1

|α|n φ(α
na, b) (2.4)

for all a, b ∈ A and n ∈ N. By taking the limit as n → ∞, we have

lim
n→∞

(
f(αnab)

αn
− bg(αna)

αn

)

= af(b) (2.5)

for all a, b ∈ A. Similarly, we have

lim
n→∞

(
f(αnab)

αn
− af(αnb)

αn

)

= bg(a) (2.6)

for all a, b ∈ A.
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Let a, b ∈ A and λ ∈ Λ. Then we have

∥
∥f(ab) − af(b) − bg(a)

∥
∥

≤
∥
∥
∥
∥
f(ab) − f(αneλab)

αn
+ ab

g(αneλ)
αn

∥
∥
∥
∥

+
∥
∥
∥
∥

f(αneλab)
αn

− ab
g(αneλ)

αn
− af(b) − bg(a)

∥
∥
∥
∥

≤
∥
∥
∥
∥
f(ab) − f(αneλab)

αn
+ ab

g(αneλ)
αn

∥
∥
∥
∥

+
∥
∥
∥
∥

f(αneλab)
αn

+ a
f(αneλb)

αn
− ab

g(αneλ)
αn

− a
f(αneλb)

αn
− af(b) − bg(a)

∥
∥
∥
∥

≤
∥
∥
∥
∥
f(ab) − f(αneλab)

αn
+ ab

g(αneλ)
αn

∥
∥
∥
∥

+
∥
∥
∥
∥
a

(
f(αneλb)

αn
− b

g(αneλ)
αn

)

− af(b)
∥
∥
∥
∥

+
∥
∥
∥
∥

f(αneλab)
αn

− a
f(αneλb)

αn
− bg(a)

∥
∥
∥
∥
.

(2.7)

Since eλ ∈ Z(A), we get

∥
∥f(ab) − af(b) − bg(a)

∥
∥ ≤

∥
∥
∥
∥
f(ab) − f(2neλab)

αn
+ ab

g(αneλ)
αn

∥
∥
∥
∥

+
∥
∥
∥
∥
a

(
f(αneλb)

αn
− b

g(αneλ)
αn

)

− af(b)
∥
∥
∥
∥

+
∥
∥
∥
∥

f(αnaeλb)
αn

− a
f(αneλb)

αn
− bg(a)

∥
∥
∥
∥
.

(2.8)

By taking the limit as n → ∞, we get

∥
∥f(ab) − af(b) − bg(a)

∥
∥ ≤ ∥

∥f(ab) − eλf(ab)
∥
∥ +

∥
∥aeλf(b) − af(b)

∥
∥ +

∥
∥eλbg(a) − bg(a)

∥
∥.
(2.9)

Therefore, f(ab) = af(b) + bg(a) for all a, b ∈ A.

Theorem 2.2. Let A be a normed algebra with a left approximate identity and α ∈ C \ {0}. Let
f : A → A and g : A → A be the mappings satisfying

∥
∥f(ab) − af(b) − g(a)b

∥
∥ ≤ φ(a, b),

∥
∥g(ab) − ag(b) − g(a)b

∥
∥ ≤ φ(a, b)

(2.10)
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for all a, b ∈ A, where φ : A ×A → [0,∞) is a mapping such that

lim
n→∞

|α|−nφ(αnz,w) = lim
n→∞

|α|−nφ(z, αnw) = 0 (2.11)

for all z,w ∈ A. Then f(ab) = af(b) + g(a)b for all a, b ∈ A.

Proof. Let x, y, z ∈ A. We have

∥
∥zf

(

xy
) − zxf

(

y
) − zg(x)y

∥
∥

≤ ∥
∥zf

(

xy
)

+ g(z)xy − f
(

zxy
)∥
∥ +

∥
∥f

(

zxy
) − g(z)xy − zxf

(

y
) − zg(x)y

∥
∥

≤ φ
(

z, xy
)

+
∥
∥f

(

zxy
) − zxf

(

y
) − g(zx)y

∥
∥ +

∥
∥g(zx)y − g(z)xy − zg(x)y

∥
∥

≤ φ
(

z, xy
)

+ φ
(

zx, y
)

+ φ(z, x)
∥
∥y

∥
∥.

(2.12)

Replacing αnz by z, we get

∥
∥αnzf

(

xy
) − αnzxf

(

y
) − αnzg(x)y

∥
∥ ≤ φ

(

αnz, xy
)

+ φ
(

αnzx, y
)

+ φ(αnz, x)
∥
∥y

∥
∥, (2.13)

and so

∥
∥zf

(

xy
) − zxf

(

y
) − zg(x)y

∥
∥ ≤ |α|−nφ(αnz, xy

)

+ |α|−nφ(αnzx, y
)

+ |α|−nφ(αnz, x)
∥
∥y

∥
∥.
(2.14)

By taking the limit as n → ∞, we have zf(xy) = zxf(y) + zg(x)y. Since A has a left
approximate identity, we have f(xy) = xf(y) + g(x)y.

In the next theorem, we prove the superstability of (1.5)with no additional functional
inequality on the mapping g.

Theorem 2.3. LetA be a Banach algebra with a two-sided approximate identity and α ∈ C \ {0}. Let
f : A → A and g : A → A be mappings such that F(x) := limn→∞(f(αnx)/αn) exists for all
x ∈ A and

∥
∥f(zw) − zf(w) − g(z)w

∥
∥ ≤ φ(z,w) (2.15)

for all z,w ∈ A, where φ : A ×A → [0,∞) is a function such that

lim
n→∞

|α|−nφ(αnz,w) = lim
n→∞

|α|−nφ(z, αnw) = 0, (2.16)

for all z,w ∈ A. Then F = f , f(zw) = zf(w) + g(z)w, and g(zw) = zg(w) + g(z)w.
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Proof. Replacing αnz by z in (2.15), we get

∥
∥f(αnzw) − αnzf(w) − g(αnz)w

∥
∥ ≤ φ(αnz,w), (2.17)

and so

∥
∥
∥
∥

f(αnzw)
αn

− zf(w) − g(αnz)
αn

w

∥
∥
∥
∥
≤ 1

|α|n φ(α
nz,w) (2.18)

for all z,w ∈ A and n ∈ N. By taking the limit as n → ∞, we have

F(zw) = zf(w) + lim
n→∞

g(αnz)
αn

w (2.19)

for all z,w ∈ A.
Fix m ∈ N. By (2.19), we have

zf(αmw) = F(αmzw) − lim
n→∞

(
g(αnz)
αn

(αmw)
)

= αmzf(w) + lim
n→∞

(
g(αnαmz)

αn
w

)

− αm lim
n→∞

(
g(αnz)
αn

w

)

= αmzf(w) + αm lim
n→∞

(
g(αn+mz)
αn+m w

)

− αm lim
n→∞

(
g(αnz)
αn

w

)

= αmzf(w)

(2.20)

for all z,w ∈ A. Then zf(w) = z(f(αmw)/αm) for all z,w ∈ A and all m ∈ N, and so by
taking the limit as m → ∞, we have zf(w) = zF(w). Now we obtain F = f , since A has an
approximate identity.

Replacing αnw by w in (2.15), we obtain

∥
∥f(αnzw) − zf(αnw) − αng(z)w

∥
∥ ≤ φ(z, αnw), (2.21)

and hence

∥
∥
∥
∥

f(αnzw)
αn

− z
f(αnw)

αn
− g(z)w

∥
∥
∥
∥
≤ 1

|α|n φ(z, α
nw), (2.22)

for all z,w ∈ A and all n ∈ N. Sending n to infinity, we have

f(zw) = zf(w) + g(z)w. (2.23)
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By (2.23), we get

g(z1z2)w = f(z1z2w) − z1z2f(w)

= z1f(z2w) + g(z1)z2w − z1z2f(w)

=
(

z1g(z2) + g(z1)z2
)

w

(2.24)

for all z1, z2, w ∈ A. Therefore, we have g(z1z2) = z1g(z2) + g(z1)z2.

The following theorem states the conditions on the mapping f under which the
sequence {f(αnx)/αn} converges for all x ∈ A.

Theorem 2.4. Let A be a Banach space and α ∈ C \ {0}. Suppose that f : A → A is a mapping for
which there exists a function φ : A → [0,∞) such that

φ̃(x) :=
∞∑

n=0
|α|−nφ(αnx) < ∞,

∥
∥
∥α−1f(αx) − f(x)

∥
∥
∥ ≤ φ(x)

(2.25)

for all x ∈ A. Then F(x) := limn→∞(f(αnx)/αn) exists and F(αx) = αF(x) for all x ∈ A.

Proof. See [25, Theorem 1] or [26, Proposition 1].

3. Superstability of the Generalized Derivations

Our purpose is to prove the superstability of generalized ring derivations and generalized
derivations. Throughout this section, A is a Banach algebra with a two-sided approximate
identity.

Theorem 3.1. Let γ, β ∈ C \ {0} such that α := γ + β /= 0. Suppose that f : A → A is a mapping
with f(0) = 0 for which there exist a map g : A → A and a function φ : A4 → [0,∞) such that

lim
n→∞

α−nφ
(

αnx, αny, αnz,w
)

= lim
n→∞

α−nφ
(

αnx, αny, z, αnw
)

= 0, (3.1)

H(x) :=
∞∑

n=0
|α|−nφ(αnx, αnx, 0, 0) < ∞, (3.2)

∥
∥f

(

γx + βy + zw
) − γf(x) − βf

(

y
) − zf(w) − g(z)w

∥
∥ ≤ φ

(

x, y, z,w
)

(3.3)

for all x, y, z,w ∈ A. Then f is a generalized ring derivation and g is a ring derivation. Moreover,
f(αx) = αf(x) for all x ∈ A.

Proof. Put x = y and z = w = 0 in (3.3). We have ‖f(αx) − αf(x)‖ ≤ φ(x, x, 0, 0), and
so‖α−1f(αx) − f(x)‖ ≤ |α|−1φ(x, x, 0, 0) for all x ∈ A.

Then by (3.2) and applying Theorem 2.4, we have F(x) := limn→∞(f(αnx)/αn) and
F(αx) = αF(x) for all x ∈ A.
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Put x = y = 0 in (3.3). We get

∥
∥f(zw) − zf(w) − g(z)w

∥
∥ ≤ φ(0, 0, z,w) (3.4)

for all z,w ∈ A. It follows from (3.1) and Theorem 2.3 that F = f , f(zw) = zf(w) + g(z)w,
and g(zw) = zg(w) + g(z)w for all z,w ∈ A.

It suffices to show that f and g are additive.
Replacing x by αnx and y by αny and putting z = w = 0 in (3.3), we obtain

∥
∥f

(

αn(γx + βy
)) − γf(αnx) − βf

(

αny
)∥
∥ ≤ φ

(

αnx, αny, 0, 0
)

, (3.5)

and so

∥
∥
∥
∥
∥

f
(

αn
(

γx + βy
))

αn
− γ

f(αnx)
αn

− β
f
(

αny
)

αn

∥
∥
∥
∥
∥
≤ 1

|α|n φ
(

αnx, αny, 0, 0
)

(3.6)

for all x, y ∈ A and n ∈ N.
By taking the limit as n → ∞, we get F(γx + βy) = γF(x) + βF(y), and so

f
(

γx + βy
)

= γf(x) + βf
(

y
)

. (3.7)

Putting y = 0 and replacing x by γ−1x in (3.7), we have f(γ−1x) = γ−1f(x). Similarly, f(β−1x) =
β−1f(x).

Replacing x by γ−1x and y by β−1y in (3.7), we obtain f(x + y) = f(x) + f(y) for all
x, y ∈ A. Therefore f is an additive mapping.

Since f(zw) = zf(w) + g(z)w, f is additive, and A has an approximate identity, g is
additive.

Theorem 3.2. Let γ, β ∈ C \ {0} such that α := γ + β /= 0. Suppose that f : A → A is a mapping
with f(0) = 0 for which there exist a map g : A → A and a function φ : A4 → [0,∞) such that

lim
n→∞

αnφ
(

α−nx, α−ny, α−nz,w
)

= lim
n→∞

αnφ
(

α−nx, α−ny, z, α−nw
)

= 0, (3.8)

H(x) :=
∞∑

n=0
|α|nφ(α−nx, α−nx, 0, 0

)

< ∞, (3.9)

∥
∥f

(

γx + βy + zw
) − γf(x) − βf

(

y
) − zf(w) − g(z)w

∥
∥ ≤ φ

(

x, y, z,w
)

(3.10)

for all x, y, z,w ∈ A. Then f is a generalized ring derivation and g is a ring derivation. Moreover,
f(αx) = αf(x) for all x ∈ A.
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Proof. Replacing x, y by α−1x and putting z = w = 0 in (3.10), we get

∥
∥
∥f(x) − αf

(

α−1x
)∥
∥
∥ ≤ φ

(

α−1x, α−1x, 0, 0
)

(3.11)

for all x ∈ A. Since

∞∑

n=0

∣
∣
∣α−1

∣
∣
∣

−n
φ
(

α−1α−nx, α−1α−nx, 0, 0
)

=
∞∑

n=0
|α|nφ

(

α−n
(

α−1x
)

, α−n
(

α−1x
)

, 0, 0
)

= H
(

α−1x
)

< ∞,

(3.12)

it follows from Theorem 2.4 that F(x) := limn→∞αnf(α−nx) exists for all x ∈ A. By (3.8), we
have

lim
n→∞

∣
∣
∣α−1

∣
∣
∣

−n
φ
(

0, 0,
(

α−1
)n

z,w
)

= lim
n→∞

∣
∣
∣α−1

∣
∣
∣

−n
φ
(

0, 0, z,
(

α−1
)n

w
)

= 0, (3.13)

for all z,w ∈ A. Putting x = y = 0 in (3.10), it follows from Theorem 2.3 that f(zw) =
zf(w) + g(z)w and g(zw) = zg(w) + g(z)w for all z,w ∈ A and F(x) = f(x) for all x ∈ A.

Replacing x by α−nx and y by α−ny, putting z = w = 0 in (3.10), and multiplying both
sides of the inequality by |α|n, we obtain

∥
∥αnf

(

α−n(γx + βy
)) − αnγf

(

α−nx
) − αnβf

(

α−ny
)∥
∥ ≤ |α|nφ(α−nx, α−ny, 0, 0

)

(3.14)

for all x, y ∈ A and n ∈ N. By taking the limit as n → ∞, we get

f
(

γx + βy
)

= γf(x) + βf
(

y
)

(3.15)

for all x, y ∈ A. Hence, by the same reasoning as in the proof of Theorem 3.1, f and g are
additive mappings. Therefore, f is a generalized ring derivation and g is a ring derivation.

Remark 3.3. We note that Theorems 3.1 and 3.2 and all that following results are obtained with
no special conditions on the mapping g (see [21, Theorems 2.1 and 2.5]).

Corollary 3.4. Let p, q, s, t ∈ (−∞, 1) or p, q, s, t ∈ (1,∞), γ, β ∈ C \ {0}, and α = γ + β with
|α|/∈ {0, 1}. Suppose that f : A → A is a mapping with f(0) = 0 for which there exist a map
g : A → A and ε > 0 such that

∥
∥f

(

γx + βy + zw
) − γf(x) − βf

(

y
) − zf(w) − g(z)w

∥
∥ ≤ ε

(

‖x‖p + ∥
∥y

∥
∥
q + ‖z‖s‖w‖t

)

(3.16)

for all x, y, z,w ∈ A. Then f is a generalized ring derivation and g is a ring derivation.
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Proof. Let φ(x, y, z,w) = ε(‖x‖p + ‖y‖q + ‖z‖s‖w‖t). For 0 < |α| < 1, if p, q, s, t ∈ (1,∞), then
φ satisfies (3.1), (3.2), and we apply Theorem 3.1, and if p, q, s, t ∈ (−∞, 1), then we apply
Theorem 3.2 since φ has conditions (3.8), (3.9) in this case.

For |α| > 1, apply Theorem 3.2 if p, q, s, t ∈ (1,∞) and apply Theorem 3.1 if p, q, s, t ∈
(−∞, 1).

Theorem 3.5. Let α ∈ C \ {0} and let φ : A4 → [0,∞) be a function satisfying either (3.1), (3.2)
or (3.8), (3.9). Suppose that f : A → A is a mapping with f(0) = 0 for which there exists a map
g : A → A such that

∥
∥f

(

λx + λy + zw
) − λf(x) − λf

(

y
) − zf(w) − g(z)w

∥
∥ ≤ φ

(

x, y, z,w
)

(3.17)

for all x, y, z,w ∈ A and all λ ∈ S(0; |α|/2) = {λ ∈ C : |λ| = |α|/2}. Then f is a generalized
derivation and g is a derivation.

Proof. Let λ = α/2 in (3.17). We have
∥
∥
∥f

(α

2
x +

α

2
y + zw

)

− α

2
f(x) − α

2
f
(

y
) − zf(w) − g(z)w

∥
∥
∥ ≤ φ

(

x, y, z,w
)

(3.18)

for all x, y, z,w ∈ A.
Suppose that φ satisfies (3.1), (3.2). By Theorem 3.1, f is a generalized ring derivation

and g is a ring derivation. Moreover, f(αx) = αf(x) for all x ∈ A.
Replacing x by αnx and putting y = z = w = 0 in (3.17), we get

∥
∥f(λαnx) − λf(αnx)

∥
∥ ≤ φ(αnx, 0, 0, 0), (3.19)

for all x ∈ A, n ∈ N, and λ ∈ S(0; |α|/2). Since f(αx) = αf(x), we obtain

∥
∥f(λx) − λf(x)

∥
∥ ≤ |α|−nφ(αnx, 0, 0, 0). (3.20)

Hence, by taking the limit as n → ∞, we get f(λx) = λf(x) for all x ∈ A and λ ∈ S(0; |α|/2).
Let β ∈ Cwith |β| = 1. Then β(α/2) ∈ S(0; |α|/2), and so

f
(

βx
)

= f

(

β
α

2
2
α
x

)

= β
α

2
f

(
2
α
x

)

= β
α

2
f
(

α−1x + α−1x
)

= βf(x) (3.21)

for all x ∈ A. Now by [21, Lemma 2.4], f is a linear mapping and hence g is a linear mapping.

The following result generalizes Corollary 2.4 and Theorem 2.7 of [14].

Corollary 3.6. Let p, q, s, t ∈ (−∞, 1) and α ∈ C with |α|/∈ {0, 1}. Suppose that f : A → A is a
mapping with f(0) = 0 for which there exist a map g : A → A and ε > 0 such that

∥
∥f

(

λx + λy + zw
) − λf(x) − λf

(

y
) − zf(w) − g(z)w

∥
∥ ≤ ε

(

‖x‖p + ∥
∥y

∥
∥
q + ‖z‖s + ‖w‖t

)

(3.22)

for all x, y, z,w ∈ A and all λ ∈ S(0; |α|/2). Then f is a generalized derivation and g is a derivation.
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Proof. Define φ(x, y, z,w) = ε(‖x‖p + ‖y‖q + ‖z‖s + ‖w‖t) and apply Theorem 3.5.

Theorem 3.7. Let α ∈ C \ R and let φ : A4 → [0,∞) be a function satisfying either (3.1), (3.2)
or (3.8), (3.9). Suppose that f : A → A is a mapping with f(0) = 0 for which there exists a map
g : A → A such that

∥
∥
∥f

(α

2
x +

α

2
y + zw

)

− α

2
f(x) − α

2
f
(

y
) − zf(w) − g(z)w

∥
∥
∥ ≤ φ

(

x, y, z,w
)

(3.23)

for all x, y, z,w ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then f is a generalized
derivation and g is a derivation.

Proof. Suppose that φ satisfies (3.1), (3.2). By Theorem 3.1, f is a generalized ring derivation,
g is a ring derivation, and f(αx) = αf(x) for all x ∈ A.

Let x ∈ A. The mapping h : R → A, defined by h(t) = f(tx), is continuous in t ∈ R.
Also, the mapping h is additive, since f is additive. Hence h is R-linear, and so

f(tx) = h(t) = th(1) = tf(x) (3.24)

for all t ∈ R. Therefore, f is R-linear.
Now let λ ∈ C. Since α/∈R, there exist s, r ∈ R such that λ = s + rα. So

f(λx) = f(sx + rαx) = sf(x) + rf(αx) = sf(x) + rαf(x) = λf(x) (3.25)

for all x ∈ A. Therefore, the mapping f is linear and it follows that g is linear.

Corollary 3.8. Let p, q, s, t ∈ (1,∞) or p, q, s, t ∈ (−∞, 1). Suppose that f : A → A is a mapping
with f(0) = 0 for which there exists a map g : A → A such that

∥
∥f

(

ix + iy + zw
) − if(x) − if

(

y
) − zf(w) − g(z)w

∥
∥ ≤ ε

(

‖x‖p + ∥
∥y

∥
∥
q + ‖z‖s‖w‖t

)

(3.26)

for all x, y, z,w ∈ A. Suppose that f(tx) is continuous in t ∈ R for each fixed x ∈ A. Then f is a
generalized derivation and g is a derivation.

Proof. Let α = 2i, define φ(x, y, z,w) = ε(‖x‖p + ‖y‖q + ‖z‖s‖w‖t), and apply Theorem 3.7.

Theorem 3.9. Let f : A → A be a mapping with f(0) = 0 for which there exist a map g : A → A
and a function φ : A4 → [0,∞) such that

lim
n→∞

2−nφ
(

2nx, 2ny, 2nz,w
)

= lim
n→∞

2−nφ
(

2nx, 2ny, z, 2nw
)

= 0, (3.27)

∞∑

n=0

2−nφ(2nx, 2nx, 0, 0) < ∞, (3.28)

∥
∥f

(

λx + λy + zw
) − λf(x) − λf

(

y
) − zf(w) − g(z)w

∥
∥ ≤ φ

(

x, y, z,w
)

(3.29)
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for λ = i and all x, y, z,w ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then f is a
generalized derivation and g is a derivation.

Proof. Let α = 2i. By Theorem 3.7, it suffices to prove that φ satisfies (3.1), (3.2).
Let an = |2i|−nφ((2i)nx, (2i)ny, (2i)nz,w). We have

a4n−3 = 2−(4n−3)φ
(

24n−3(ix), 24n−3
(

iy
)

, 24n−3(iz), w
)

,

a4n−2 = 2−(4n−2)φ
(

24n−2(−x), 24n−2(−y), 24n−2(−z), w
)

,

a4n−1 = 2−(4n−1)φ
(

24n−1(−ix), 24n−1(−iy), 24n−1(−iz), w
)

,

a4n = 2−4nφ
(

24nx, 24ny, 24nz,w
)

.

(3.30)

Then limn→∞a4n−3 = limn→∞a4n−2 = limn→∞a4n−1 = limn→∞a4n = 0, and so limn→∞an = 0.
Hence φ satisfies (3.1).

Let bn = |2i|−nφ((2i)nx, (2i)nx, 0, 0). By (3.28), we get

∞∑

n=0

b4n+1 =
∞∑

n=0

2−(4n+1)φ
(

24n+1(ix), 24n+1(ix), 0, 0
)

< ∞,

∞∑

n=0

b4n+2 =
∞∑

n=0

2−(4n+2)φ
(

24n+2(−x), 24n+2(−x), 0, 0
)

< ∞,

∞∑

n=0

b4n+3 =
∞∑

n=0

2−(4n+3)φ
(

24n+3(−ix), 24n+3(−ix), 0, 0
)

< ∞,

∞∑

n=0

b4n =
∞∑

n=0

2−4nφ
(

24nx, 24nx, 0, 0
)

< ∞.

(3.31)

Hence

∞∑

n=0

bn =
∞∑

n=0
(b4n + b4n+1 + b4n+2 + b4n+3) < ∞, (3.32)

and so φ satisfies (3.2).

The theorems similar to Theorem 3.9 have been proved by the assumption that the
relations similar to (3.29) are true for λ = 1,i (see, e.g., [9, 14]). We proved Theorem 3.9, under
condition that inequality (3.29) is true for λ = i.
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