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We develop the weak-type and strong-type inequalities for potential operators under two-weight
conditions to the versions of differential forms. We also obtain some estimates for potential
operators applied to the solutions of the nonhomogeneous A-harmonic equation.

1. Introduction

In recent years, differential forms as the extensions of functions have been rapidly developed.
Many important results have been obtained and been widely used in PDEs, potential theory,
nonlinear elasticity theory, and so forth; see [1–3]. In many cases, the process to solve a
partial differential equation involves various norm estimates for operators. In this paper, we
are devoted to develop some two-weight norm inequalities for potential operator P to the
versions of differential forms.

We first introduce some notations. Throughout this paper we always use E to denote
an open subset of Rn, n ≥ 2. Assume that B ⊂ R

n is a ball and σB is the ball with the same
center as B and with diam(σB) = σ diam(B). Let ∧k = ∧k(Rn), k = 0, 1, . . . , n, be the linear
space of all k-formsω(x) =

∑
I ωI(x)dxI =

∑
ωi1,i2,...,ik(x)dxi1∧dxi2∧· · ·∧dxik with summation

over all ordered k-tuples I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n. The Grassman algebra
∧ = ⊕n

k=0∧k is a graded algebra with respect to the exterior products eI = ei1 ∧ ei2 ∧ · · · ∧ eik .
Moreover, if the coefficient ωI(x) of k-form ω(x) is differential on E, then we call ω(x) a
differential k-form on E and use D′(E,∧k) to denote the space of all differential k-forms on
E. In fact, a differential k-form ω(x) is a Schwarz distribution on E with value in ∧k(Rn). For
any α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧, the inner product in ∧ is defined by (α, β) =

∑
αIβI

with summation over all k-tuples I and all k = 0, 1, . . . , n. As usual, we still use � to denote
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the Hodge star operator. Moreover, the norm of ω ∈ ∧ is given by |ω|2 = (ω,ω) = �(ω ∧ �ω) ∈
∧0 = R. Also, we use d : D′(E,∧k) → D′(E,∧k+1) to denote the differential operator and
use d� : D′(E,∧k+1) → D′(E,∧k) to denote the Hodge codifferential operator defined by
d� = (−1)nk+1 � d� on D′(E,∧k+1), k = 0, 1, . . . , n − 1.

A weight w(x) is a nonnegative locally integrable function on R
n. The Lebesgue

measure of a set E ⊂ R
n is denoted by |E|. Lp(E,∧k) is a Banach space with norm

‖ω‖p,E =
(∫

E

|ω(x)|pdx
)1/p

=

⎛

⎝
∫

E

(
∑

I

|ωI(x)|2
)p/2

dx

⎞

⎠

1/p

. (1.1)

Similarly, for a weight w(x), we use Lp(E,∧k,w) to denote the weighted Lp space with norm
‖ω‖p,E,w = (

∫
E|ω(x)|pw dx)1/p.

From [1], if ω is a differential form defined in a bounded, convex domain M, then
there is a decomposition

ω = d(Tω) + T(dω), (1.2)

where T is called a homotopy operator. Furthermore, we can define the k-form ωM ∈
D′(M,∧k) by

ωM = |M|−1
∫

M

ω
(
y
)
dy, k = 0, ωM = d(Tω), k = 1, 2, . . . , n (1.3)

for all ω ∈ Lp(M,∧k), 1 ≤ p < ∞.
For any differential k-form ω(x), we define the potential operator P by

Pω(x) =
∑

I

∫

E

K
(
x, y

)
ωI

(
y
)
dy dxI, (1.4)

where the kernel K(x, y) is a nonnegative measurable function defined for x /=y and the
summation is over all ordered k-tuples I. It is easy to find that the case k = 0 reduces to the
usual potential operator. That is,

Pf(x) =
∫

E

K
(
x, y

)
f
(
y
)
dy, (1.5)

where f(x) is a function defined on E ⊂ R
n. Associated with P , the functional ϕ is defined as

ϕ(B) = sup
x,y∈B, |x−y|≥Cr

K
(
x, y

)
, (1.6)

where C is some sufficiently small constant and B ⊂ E is a ball with radius r. Throughout this
paper, we always suppose that ϕ satisfies the following conditions: there exists Cϕ such that

ϕ(2B) ≤ Cϕϕ(B) for all balls B ⊂ E, (1.7)
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and there exists ε > 0 such that

ϕ(B1)μ(B1) ≤ Cϕ

(
r(B1)
r(B2)

)ε

ϕ(B2)μ(B2) for all balls B1 ⊂ B2. (1.8)

On the potential operator P and the functional ϕ, see [4] for details.
For any locally Lp-integrable form ω, the Hardy-Littlewood maximal operator Mp is

defined by

Mp(ω) = sup
r>0

(
1

|B(x, r)|
∫

B(x,r)

∣
∣ω

(
y
)∣
∣pdy

)1/p

, (1.9)

where B(x, r) is the ball of radius r, centered at x, 1 ≤ p < ∞.
Consider the nonhomogeneousA-harmonic equation for differential forms as follows:

d�A(x, dω) = B(x, dω), (1.10)

where A : E × ∧k(Rn) → ∧k(Rn) and B : E × ∧k(Rn) → ∧k−1(Rn) are two operators satisfying
the conditions

|A(x, ξ)| ≤ a|ξ|p−1, A(x, ξ) · ξ ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1 (1.11)

for almost every x ∈ E and all ξ ∈ ∧k(Rn). Here a, b > 0 are some constants and 1 < p < ∞ is a
fixed exponent associated with (1.10). A solution to (1.10) is an element of the Sobolev space
W

1,p
loc (E,∧k−1) such that

∫

E

A(x, dω) · dϕ + B(x, dω) · ϕ = 0 (1.12)

for all ϕ ∈ W
1,p
loc (E,∧k−1)with compact support. HereW1,p(E,∧k) are those differential k-forms

on E whose coefficients are inW1,p(E,Rn). The notation W
1,p
loc (E,∧k) is self-explanatory.

2. Weak Type (p, p) Inequalities for Potential Operators

In this section, we establish theweightedweaks type (p, p) inequalities for potential operators
applied to differential forms. To state our results, we need the following definitions and
lemmas.
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We first need the following generalized Hölder inequality.

Lemma 2.1. Let 0 < α < ∞, 0 < β < ∞, and 1/s = 1/α + 1/β. If f and g are two measurable
functions on R

n, then

∥
∥fg

∥
∥
s,E ≤ ∥

∥f
∥
∥
α,E · ∥∥g∥∥β,E (2.1)

for any E ⊂ R
n.

Definition 2.2. A pair of weights (w1(x), w2(x)) satisfies the Ar,λ(E)-condition in a set E ⊂ R
n;

write (w1(x), w2(x)) ∈ Ar,λ(E) for some λ ≥ 1 and 1 < r < ∞ with 1/r + 1/r ′ = 1 if

sup
B⊂E

(
1
|B|

∫

B

wλ
1dx

)1/λr
(

1
|B|

∫

B

(
1
w2

)λr ′/r

dx

)1/λr ′

< ∞. (2.2)

Proposition 2.3. If (w1(x), w2(x)) ∈ Ar,λ(E) for some λ ≥ 1 and 1 < r < ∞ with 1/r + 1/r ′ = 1,
then (w1(x), w2(x)) satisfies the following condition:

sup
B⊂E

(
1
|B|

∫

B

wλ
1dx

)1/λr
(

1
|B|

∫

B

(
1
w2

)1/(r−1)
dx

)(r−1)/r
< ∞. (2.3)

Proof. Choose r − 1 = (r − 1)/λ + 1/s and 1/r + 1/r ′ = 1. From the Hölder inequality, we have
the estimate

(
1
|B|

∫

B

wλ
1dx

)1/λr
(

1
|B|

∫

B

(
1
w2

)1/(r−1)
dx

)(r−1)/r

≤ |B|−1/λr−(r−1)/r+1/rs
(∫

B

wλ
1dx

)1/λr
(∫

B

(
1
w2

)λr ′/r

dx

)1/λr ′

=
(

1
|B|

∫

B

wλ
1dx

)1/λr
(

1
|B|

∫

B

(
1
w2

)λr ′/r

dx

)1/λr ′

.

(2.4)

Since

sup
B⊂E

(
1
|B|

∫

B

wλ
1dx

)1/λr
(

1
|B|

∫

B

(
1
w2

)λr ′/r

dx

)1/λr ′

< ∞, (2.5)

we obtain that (w1(x), w2(x)) satisfies (2.3) as required.
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In [4], Martell proved the following two-weight weak type norm inequality applied to
functions.

Lemma 2.4. Let 1 < p < ∞ and 1/p + 1/p′ = 1. Assume that P is the potential operator defined in
(1.5) and that ϕ is a functional satisfying (1.7) and (1.8). Let (w1(x), w2(x)) be a pair of weights for
which there exists r > 1 such that

sup
B⊂E

ϕ(B)|B|
(

1
|B|

∫

B

wr
1dx

)1/rp
(

1
|B|

∫

B

(
1
w2

)p′−1
dx

)1/p′

< ∞. (2.6)

Then the potential operator P verifies the following weak type (p, p) inequality:

sup
λ>0

λμ
({
x ∈ E :

∣
∣Pf(x)

∣
∣ > λ

})1/p ≤ C

(∫

E

∣
∣f(x)

∣
∣pdν

)1/p

, (2.7)

where μ(D) =
∫
Dw1dx for any set D ⊂ R

n and dν = w2dx.

The following definition is introduced in [5].

Definition 2.5. A kernel K on R
n × R

n satisfies the standard estimates if there exist δ, 0 < δ ≤ 1,
and constant C such that for all distinct points x and y in R

n, and all z with |x − z| < (1/2)|x − y|,
the kernel K satisfies (1) K(x, y) ≤ C|x − y|−n; (2) |K(x, y) − K(z, y)| ≤ C|x − z|δ|x − y|−n−δ;
(3) |K(y, x) −K(y, z)| ≤ C|x − z|δ|x − y|−n−δ.

Theorem 2.6. Let P be the potential operator defined in (1.4) with the kernel K(x, y) satisfying the
condition (1) of the standard estimates and let ω ∈ D′(E,∧k), k = 0, 1, . . . , n be a differential form in
a domain E. Assume that (w1(x), w2(x)) satisfies (2.3) for some r > 1 and 1 < p < ∞. Then, there
exists a constant C, independent of ω, such that the potential operator P satisfies the following weak
type (p, p) inequality:

sup
λ>0

λμ({x ∈ E : |Pω(x)| > λ})1/p ≤ C

(∫

E

|ω(x)|pdν
)1/p

, (2.8)

where μ(D) =
∫
Dw1dx for any set D ⊂ R

n and dν = w2dx.

Proof. Since K(x, y) satisfies condition (1) of the standard estimates, for any ball B ⊂ E of
radius r, we have

|B|ϕ(B) = |B| sup
x,y∈B, |x−y|≥C1r

K
(
x, y

) ≤ |B| sup
x,y∈B, |x−y|≥C1r

C2
∣
∣x − y

∣
∣−n ≤ C3|B|

rn
≤ C4. (2.9)
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Here C1 and C2 are two constants independent of B. Therefore, C3 and C4 are some constants
independent of B. Thus, from (w1(x), w2(x)) satisfying (2.3) for some r > 1 and 1 < p < ∞, it
follows that

sup
B⊂E

ϕ(B)|B|
(

1
|B|

∫

B

wr
1dx

)1/rp( 1
|B|

∫

B

w
1/(1−p)
2 dx

)(p−1)/p
< ∞. (2.10)

Set D = {x ∈ E : |Pω(x)| > λ} and DI = {x ∈ D : |PωI(x)| > λ/
√
m}, where I corresponds

to all ordered k-tuples and m = Ck
n. It is easy to find that there must exist some J such that

|PωJ(x)| > λ/
√
m whenever x ∈ D. Since the reverse is obvious, we immediately get D =

⋃
I DI . Thus, using Lemma 2.4 and the elementary inequality |a + b|s ≤ 2s(|a|s + |b|s), where

s > 0 is any constant, we have

μ({x ∈ E : |Pω(x)| > λ})1/p =

(∫

⋃
I DI

w1(x)dx

)1/p

≤
(
∑

I

∫

DI

w1(x)dx

)1/p

≤ C5

∑

I

(∫

DI

w1(x)dx

)1/p

.

(2.11)

Combining the above inequality (2.11), the elementary inequality and Lemma 2.4 yield

λpμ({x ∈ E : |Pω(x)| > λ}) ≤ C6

∑

I

λp
(∫

DI

w1(x)dx

)

≤ C7

∑

I

(
λ√
m

)p

μ

({

x ∈ E : |PωI(x)| > λ√
m

})

≤ C7

∑

I

(∫

E

|ωI(x)|pdν
)

≤ C7

∫

E

(
∑

I

|ωI(x)|2
)p/2

dν

= C7

∫

E

|ω(x)|pdν.

(2.12)

We complete the proof of Theorem 2.6.
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3. The Strong Type (p, p) Inequalities for Potential Operators

In this section, we give the strong type (p, p) inequalities for potential operators applied to
differential forms. The result in last section shows that Ar,λ-weights are stronger than those
of condition (2.3), which is sufficient for the weak (p, p) inequalities, while the following
conclusions show that Ar,λ-condition is sufficient for strong (p, p) inequalities.

The following weak reverse Hölder inequality appears in [6].

Lemma 3.1. Let ω ∈ D′(E,∧k), k = 0, 1, . . . , n be a solution of the nonhomogeneous A-harmonic
equation in E, ρ > 1 and 0 < s, t < ∞. Then there exists a constant C, independent of ω, such that

‖ω‖s,B ≤ C|B|(t−s)/st‖ω‖t,ρB (3.1)

for all balls B with ρB ⊂ E.

The following two-weight inequality appears in [7].

Lemma 3.2. Let 1 < p < ∞ and 1/p + 1/p′ = 1. Assume that P is the potential operator defined in
(1.5) and ϕ is a functional satisfying (1.7) and (1.8). Let (w1, w2) be a pair of weights for which there
exists r > 1 such that

sup
B⊂E

ϕ(B)|B|
(

1
|B|

∫

B

wr
1dx

)1/rp( 1
|B|

∫

B

w
(1−p′)r
2 dx

)1/rp′

< ∞. (3.2)

Then, there exists a constant C, independent of f , such that

∥
∥Pf(x)

∥
∥
p,E,w1

≤ ∥
∥f(x)

∥
∥
p,E,w2

. (3.3)

Lemma 3.3. Letω ∈ Lp(E,∧k), k = 0, 1, . . . , n, 1 < p < ∞, be a differential form defined in a domain
E and P be the potential operator defined in (1.4) with the kernel k(x, y) satisfying condition (1) of
standard estimates. Assume that (w1, w2) ∈ Ar,λ(E) for some λ ≥ 1 and 1 < r < ∞. Then, there
exists a constant C, independent of ω, such that

‖P(ω)‖p,E,w1
≤ C‖ω‖p,E,w2

. (3.4)

Proof. By the proof of Theorem 2.6, note that (3.2) still holds whenever (w1, w2) satisfies the
Ar,λ(E)-condition. Therefore, using Lemma 3.2, we have

‖P(ω)‖pp,E,w1
=
∫

E

|P(ω)|pw1dx

=
∫

E

(
∑

I

|PωI(x)|2
)p/2

w1dx
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≤ C1

∫

E

∑

I

|PωI(x)|pw1dx

= C1

∑

I

‖PωI(x)‖pp,E,w1
.

(3.5)

Also, Lemma 3.2 yields that

‖PωI(x)‖pp,E,w1
≤ CI‖ωI(x)‖pp,E,w2

(3.6)

for all ordered k-tuples I. From (3.5) and (3.6), it follows that

‖P(ω)‖pp,E,w1
≤ C2

∑

I

‖ωI(x)‖pp,E,w2

= C2

∫

E

∑

I

|ωI(x)|pw2dx

≤ C3

∫

E

(
∑

I

|ωI(x)|2
)p/2

w2dx

= C3‖ω‖pp,E,w2
.

(3.7)

We complete the proof of Lemma 3.3.

Lemma 3.3 shows that the two-weight strong (p, p) inequality still holds for
differential forms. Next, we develop the inequality to the parametric version.

Theorem 3.4. Let ω ∈ Lp(E,∧k), k = 0, 1, . . . , n, 1 < p < ∞, be the solution of the nonhomogeneous
A-harmonic equation in a domain E and let P be the potential operator defined in (1.4) with the kernel
k(x, y) satisfying condition (1) of standard estimates. Assume that (w1, w2) ∈ Ar,λ(E) for some
λ ≥ 1 and 1 < r < ∞. Then, there exists a constant C, independent of ω, such that

‖P(ω)‖p,B,wα
1
≤ ‖ω‖p,σB,wα

2
(3.8)

for all balls B ⊂ E with σB ⊂ E. Here σ > 1 and α are constants with 0 < α < λ.

Proof. Take t = pλ/α. By 1/p = 1/t + 1/k, where k = pt/(p − t) and the Hölder inequality, we
have

‖P(ω)‖p,B,wα
1
=
(∫

B

(
|P(ω)|wα/p

1

)p
dx

)1/p

≤
(∫

B

|P(ω)|kdx
)1/k(∫

B

wλ
1dx

)α/pλ

(3.9)
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for all balls B with B ⊂ E. Choosing E to be a ball and w1(x) = w2(x) = 1 in Lemma 3.3, then
there exists a constant C1, independent of ω, such that

‖P(ω)‖k,B ≤ C1‖ω‖k,B. (3.10)

Choosing s = λp/(λ + α(r − 1)) and using Lemma 3.1, we obtain

‖ω‖k,B ≤ C2|B|(s−k)/sk‖ω‖s,σB, (3.11)

where σ > 1. Combining (3.9), (3.10), and (3.11), it follows that

‖P(ω)‖p,B,wα
1
≤ C3|B|(s−k)/sk‖ω‖s,σB

(∫

B

wλ
1dx

)α/pλ

. (3.12)

Since s < p, using the Hölder inequality with 1/s = 1/p + (p − s)/sp, we obtain

‖ω‖s,σB =
(∫

σB

(
|ω|wα/p

2 w
−α/p
2

)s
dx

)1/s

≤
(∫

σB

|ω|pwα
2dx

)1/p(∫

σB

w
sα/(s−p)
2 dx

)(p−s)/sp
.

(3.13)

From the condition (w1(x), w2(x)) ∈ Ar,λ(E), we have

(∫

B

wλ
1dx

)α/pλ(∫

σB

w
sα/(s−p)
2 dx

)(p−s)/sp

≤
(∫

σB

wλ
1dx

)α/pλ
(∫

σB

(
1
w2

)λr ′/r

dx

)α(r−1)/λp

≤ C4|B|1/t+1/s−1/p
⎛

⎝
(

1
|σB|

∫

σB

wλ
1dx

)1/λr
(

1
|σB|

∫

σB

(
1
w2

)λr ′/r

dx

)1/λr ′
⎞

⎠

αr/p

≤ C5|B|1/t+1/s−1/p.

(3.14)

Combining (3.12), (3.13), and (3.14) yields

‖P(ω)‖p,B,wα
1
≤ C6‖ω‖p,σB,wα

2
(3.15)

for all balls B with σB ⊂ E. Thus, we complete the proof of Theorem 3.4.
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Next, we extend the weighted inequality to the global version, which needs the
following lemma about Whitney cover that appears in [6].

Lemma 3.5. Each open set E ⊂ R
n has a modified Whitney cover of cubes ϑ = {Qi} such that

⋃

i

Qi = E, (3.16)

∑

Q∈ϑ
χ√5/4Q(x) ≤ NχE(x), (3.17)

for all x ∈ R
n and someN > 1, where χD is the characteristic function for a set D.

Theorem 3.6. Let ω ∈ Lp(E,∧k), k = 0, 1, . . . , n, 1 < p < ∞, be the solution of the nonhomogeneous
A-harmonic equation in a domain E and let P be the potential operator defined in (1.4) with the kernel
k(x, y) satisfying condition (1) of standard estimates. Assume that (w1, w2) ∈ Ar,λ(E) for some
λ ≥ 1 and 1 < r < ∞. Then, there exists a constant C, independent of ω, such that

‖P(ω)‖p,E,wα
1
≤ C‖ω‖p,E,wα

2
, (3.18)

where α is some constant with 0 < α < λ.

Proof. From Lemma 3.5, we note that E has a modified Whitney cover ϑ = {Qi}. Hence, by
Theorem 3.4, we have that

‖P(ω)‖p,E,wα
1
≤

∑

Qi∈ϑ
‖P(ω)‖p,Qi,w

α
1

≤
∑

Qi∈ϑ

(
Ci‖ω‖p,σiQi,w

α
2

)

≤
∑

Qi∈ϑ

(
Ci‖ω‖p,σiQi,w

α
2

)
χ√5/4Qi

(x)

≤ C1‖ω‖p,E,wα
2

∑

Qi∈ϑ
χ√5/4Qi

(x)

≤ C2‖ω‖p,E,wα
2
.

(3.19)

This completes the proof of Theorem 3.6.

Remark 3.7. Note that if we choose the kernel k(x, y) = φ(x − y) to satisfy the standard
estimates, then the potential operators P reduce to the Calderón-Zygmund singular integral
operators. Hence, Theorems 3.4 and 3.6 as well as Theorem 2.6 in last section still hold for the
Calderón-Zygmund singular integral operators applied to differential forms.
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4. Applications

In this section, we apply our results to some special operators. We first give the estimate for
composite operators. The following lemma appears in [8].

Lemma 4.1. Let Ms be the Hardy-Littlewood maximal operator defined in (1.9) and let ω ∈
Lt(E,∧k), k = 1, 2, . . . , n, 1 ≤ s < t < ∞, be a differential form in a domain E. Then, Ms(ω) ∈ Lt(E)
and

‖Ms(ω)‖t,E ≤ C‖ω‖t,E (4.1)

for some constant C independent of ω.

Observing Lemmas 4.1 and 3.3, we immediately have the following estimate for the
composition of the Hardy-Littlewood maximal operator Ms and the potential operator P .

Theorem 4.2. Let ω ∈ Lp(E,∧k), k = 1, 2, . . . , n, 1 < p < ∞, be a differential form defined in a
domain E, Ms be the Hardy-Littlewood maximal operator defined in (1.9), 1 ≤ s < p < ∞, and let P
be the potential operator with the kernel k(x, y) satisfying condition (1) of standard estimates. Then,
there exists a constant C, independent of ω, such that

‖Ms(P(ω))‖p,E ≤ C‖ω‖p,E. (4.2)

Next, applying our results to some special kernels, we have the following estimates.
Consider that the function ϕ(x) is defined by

ϕ(x) =
1
c
exp

{
1

|x|2 − 1

}

if |x| < 1, ϕ(x) = 0 if |x| ≥ 1, (4.3)

where c =
∫
B(0,1)e

1/(|x|2−1)dx. For any ε > 0, we write ϕε(x) = (1/εn)ϕ(x/ε). It is easy to see
that ϕ(x) ∈ C∞

0 (Rn) and
∫
Rnϕε(x)dx = 1. Such functions are called mollifiers. Choosing the

kernel k(x, y) = ϕε(x − y) and setting each coefficient of ω ∈ D′(E,∧k) satisfing sup pωI ⊂ E,
we have the following estimate.

Theorem 4.3. Let ω ∈ D′(E,∧k), k = 0, 1, . . . , n − 1, be a differential form defined in a bounded,
convex domain E, and let ωI be coefficient of ω with suppωI ⊂ E for all ordered k-tuples I. Assume
that 1 < p < ∞ and P is the potential operator with k(x, y) = ϕε(x − y) for any ε > 0. Then, there
exists a constant C, independent of ω, such that

‖P(ω) − (P(ω))E‖p,E ≤ C|E|diam(E)‖ω‖p,E. (4.4)

Proof. By the decomposition for differential forms, we have

P(ω) − (P(ω))E = T(d(P(ω))), (4.5)
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where T is the homotopy operator. Also, from [1], we have

‖T(ω)‖p,E ≤ C1|E|diam(E)‖ω‖p,E (4.6)

for any differential form ω defined in E. Therefore,

‖P(ω) − (P(ω))E‖p,E = ‖T(d(P(ω)))‖p,E ≤ C1|E|diam(E)‖d(P(ω))‖p,E. (4.7)

Note that

dP(ω) = d

(
∑

I

∫

E

k
(
x − y

)
ωI

(
y
)
dy dxI

)

= d

(
∑

I

ϕε ∗ωI(x)dxI

)

=
∑

I

n∑

i=1

(
∂ϕε

∂xi
∗ωI

)

(x)dxi ∧ dxI,

(4.8)

where the notation ∗ denotes convolution. Hence, we have

‖d(P(ω))‖pp,E =
∫

E

∣
∣
∣
∣
∣

∑

I

n∑

i=1

(
∂ϕε

∂xi
∗ωI

)

(x)dxi ∧ dxI

∣
∣
∣
∣
∣

p

dx

≤ C2

∑

I

n∑

i=1

∫

E

∣
∣
∣
∣
∂ϕε

∂xi
∗ωI

∣
∣
∣
∣

p

dx

= C2

∑

I

n∑

i=1

∥
∥
∥
∥
∂ϕε

∂xi
∗ωI

∥
∥
∥
∥

p

p,E

≤ C3

∑

I

n∑

i=1

∥
∥
∥
∥
∂ϕε

∂xi

∥
∥
∥
∥

p

1,E
‖ωI‖pp,E

= C3

(
n∑

i=1

∥
∥
∥
∥
∂ϕε

∂xi

∥
∥
∥
∥

p

1,E

)(
∑

I

‖ωI‖pp,E
)

.

(4.9)

Since ϕε(x) ∈ C∞
0 (Rn), it is easy to find that

∑n
i=1 ‖∂ϕε/∂xi‖p1,E < ∞. Therefore, we have

‖dP(ω)‖pp,E ≤ C4

∑

I

‖ωI‖pp,E = C4

∑

I

∫

E

|ωI |pdx ≤ C5

∫

E

(
∑

I

|ωI |2
)p/2

dx = C5‖ω‖pp,E. (4.10)

From (4.7) and (4.10), we obtain

‖P(ω) − (P(ω))E‖p,E ≤ C|E|diam(E)‖ω‖p,E. (4.11)

This ends the proof of Theorem 4.3.
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