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After introducing the definition of Aβ

r,λ
-weights, we establish the Ar(Ω)-weighted decomposition

estimates andA
β

r,λ
(Ω)-weighted Caccioppoli-type estimates forA-harmonic tensors. Furthermore,

by Whitney covering lemma, we obtain the global results in domain Ω ⊂ R
n. These results can

be used to study the integrability of differential forms and to estimate the integrals for differential
forms.

1. Introduction

Let e1, e2, . . . , en denote the standard orthogonal basis of Rn. Suppose that Λl = Λl(Rn) is the
linear space of all l-vectors, spanned by the exterior product eI = ei1∧ei2∧· · ·∧eil corresponding
to all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ n. Throughout this paper, we
always assume that Ω is an open subset of Rn. We use D′(M,Λl) to denote the space of all
differential l-forms and Lp(M,Λl) to denote the l-formsω(x) =

∑
I ωIdxI =

∑
ωi1i2···il(x)dx1∧

dx2 ∧ · · · ∧ dxl on M with the coefficient ωI ∈ Lp(Ω,R) for all ordered l-tuples I, where M is
a manifold. Thus Lp(M,Λl) is a Banach space with the norm

‖ω‖p,M =
(∫

M

|ω(x)|pdx
)1/p

=

⎛

⎝
∫

M

(
∑

I

|ωI(x)|2
)p/2

dx

⎞

⎠

1/p

. (1.1)

For a differential l-form ω ∈ D′(Ω,∧l), its vector-valued differential form ∇ω =
(∂ω/∂x1, ∂ω/∂x2, . . . , ∂ω/∂xn) is composed of the differential l-form ∂ω/∂xi ∈ D′(Ω,∧l),
i = 1, 2, . . . , n, here the partial derivatives are with respect to the coefficients of ω. Usually,
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suppose that Lp

1(Ω,∧l) is the space consisting of all ∂ω/∂xi ∈ Lp(Ω,∧l), the ith one of ∇ω. We
denote the exterior differential operator of l-forms by d : D′(Ω,∧l) → D′(Ω,∧l+1) and define
the Hodge differential operator d� : D′(Ω,∧l+1) → D′(Ω,∧l) with d� = (−1)nl+1 � d�, where
l = 0, 1, . . . , n − 1, and � is the Hodge star operator. We denote a ball or cube by B and the ball
or cube with the same center as B and diam(ρB) = ρdiam(B) by ρB. The following nonlinear
elliptic equation:

d�A(x, dω) = B(x, dω) (1.2)

is called the nonhomogeneous A-harmonic equation of differential forms, where

A : Ω × ∧l(Rn) −→ ∧l(Rn), B : Ω × ∧l(Rn) −→ ∧l−1(Rn) (1.3)

are operators satisfying the following conditions for almost all x ∈ Ω and ξ ∈ ∧l(Rn):

|A(x, ξ)| � a|ξ|p−1,

|B(x, ξ)| � b|ξ|p−1,
〈A(x, ξ), ξ〉 ≥ |ξ|p,

(1.4)

where a > 0 and b > 0 are two constants, and 1 < p < ∞ is a fixed exponent dependent on
(1.2).

If the operator B = 0 in (1.2), it degenerates into the homogeneous A-harmonic
equation

d�A(x, dω) = 0. (1.5)

The solutions to (1.5) are called A-harmonic tensors. See [1] for the recent research on A-
harmonic equation.

2. Aβ

r,λ-Weighted Caccioppoli-Type Inequalities

Caccioppoli-type estimates have been widely studied and frequently used in analysis and
related fields, including partial differential equations and the theory of elasticity. These
inequalities provide upper bounds for the Lp-norm of ∇u if u is a function or du if u is a
form with the Lp-norm of the differential form u. Different versions of the Caccioppoli-type
inequality have been established in [2, 3].

We first introduce the following definition of A
β

r,λ
-weights (or the two-weight),

and then establish the local Aβ

r,λ-weighted Caccioppoli-type inequality for solutions to the
homogeneous A-harmonic equation.
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Definition 2.1. Assume that 1 ≤ r ≤ λ < ∞ and 0 ≤ β < n. One says a pair of weights
(ω1(x), ω2(x)) satisfies the A

β

r,λ
-condition, writes (ω1(x), ω2(x)) ∈ A

β

r,λ
(Ω), if for all balls B ⊂

Ω, one has that

1

|B|1−β/n
(∫

B

ω1(x)dx
)1/λ(∫

B

ω2(x)
1−r ′dx

)1/r ′

� C, for 1 < r < ∞,
1
r
+

1
r ′

= 1,

1

|B|1−β/n
(∫

B

ω1(x)dx
)1/λ

� ω2(x), for r = 1 almost all x ∈ B,

(2.1)

where C > 0 is a constant.

In [4], Nolder obtains the following local Caccioppoli-type estimate.

Lemma 2.2. Let u be an A-harmonic tensor in Ω and let σ > 1. Then there exists a constant C,
independent of u and du, such that

‖du‖s,B ≤ Cdiam (B)−1‖u − c‖s,σB (2.2)

for all balls or cubes B with σB ⊂ Ω and all closed forms c. Here 1 < s < ∞.

The next lemma is the generalized Hölder inequality which will be widely used in this
paper.

Lemma 2.3. Let 0 < α < ∞, 0 < β < ∞, and s−1 = α−1 + β−1. If u and v are measurable functions on
R

n, then

‖uv‖s,E ≤ ‖u‖α,E‖v‖β,E (2.3)

for any measurable set E ⊂ R
n.

The following weak reverse Hölder inequality plays an important role in founding the
integral estimate of the nonhomogeneous and homogeneous A-harmonic tensor; see [4].

Lemma 2.4. Let u be a solution to (1.2) in Ω, σ > 1 and 0 < s, t < ∞. Then there exists a constant
C, depending only on s, t, a, p, σ, and n, such that

‖u‖s,B ≤ C|B|(s−t)/st‖u‖t,σB (2.4)

for all balls or cubes B with σB ⊂ Ω.

The following Whitney covering lemma appears in [4].
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Lemma 2.5. Each Ω has a modified Whitney cover of cubes ν = {Qi} such that

⋃

i

Qi = Ω,

∑

Q∈ν
χ√(5/4)Q ≤ NχΩ

(2.5)

for all x ∈ R
n and some N > 1, where χE is the characteristic function for a set E. Moreover, if

Qi ∩Qj /= ∅, then there exists a cube R (this cube does not need to be a member of ν) in Qi ∩Qj such
that Qi ∪Qj ⊂ NR.

Now we are ready to prove the local weighted Caccioppoli-type inequality for
homogeneous A-harmonic tensors.

Theorem 2.6. Let u ∈ Ls(Ω,∧l), l = 0, 1, . . . , n − 1, be a solution to the homogeneous A-harmonic
equation (1.5) and (ω1(x), ω2(x)) ∈ A

β

r,λ(Ω) for some 0 ≤ β < n and 1 ≤ r ≤ λ < ∞. Then there
exists a constant C, independent of u and du, such that

(∫

B

|du|sωα
1dx

)1/s

≤ C|B|(λα/s)(1/r−β/n)−1/n−α/s
(∫

σB

|u − c|sωλα/r
2 dx

)1/s
(2.6)

for all balls or cubes B with σB ⊂ Ω and all closed forms c.
Specially, if λ = r, one has

(∫

B

|du|sωα
1dx

)1/s

≤ C|B|−αβr/ns−1/n
(∫

σB

|u − c|sωα
2dx

)1/s

. (2.7)

Here α is any constant with 0 < α < 1.

Proof. Choosing t = s/(1 − α) and by Lemma 2.3, we have

(∫

B

|du|sωα
1dx

)1/s

=
(∫

B

(
|du|ωα/s

1

)s
dx

)1/s

≤
(∫

B

|du|tdx
)1/t(∫

B

(
ωα/s

1

)st/(t−s)
dx

)(t−s)/st

= ‖du‖t,B ·
(∫

B

ω1dx

)(t−s)/st
.

(2.8)

Choosing 1 < σ1 < σ and by Lemma 2.2, we know that

‖du‖t,B ≤ C1 diam (B)−1‖u − c‖t,σ1B
, (2.9)
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where c is a closed form. Putting (2.9) into (2.8), we have

(∫

B

|du|sωα
1dx

)1/s

≤ ‖du‖t,B ·
(∫

B

ω1dx

)(t−s)/st

≤ C1 diam (B)−1‖u − c‖t,σ1B

(∫

B

ω1dx

)α/s

.

(2.10)

Since c is a closed form and u is a solution to (1.5), u − c is still a solution to (1.5).
When r > 1, taking m = s/(1 + (λ/r)α(r − 1)) = rs/(r + λα(r − 1)) and by Lemma 2.4,

we obtain

‖u − c‖t,σ1B
≤ C2|B|(m−t)/mt‖u − c‖m,σB. (2.11)

By Lemma 2.3, we have

‖u − c‖m,σB =
(∫

σB

(
|u − c|ωλα/rs

2 ω−λα/rs
2

)m
dx

)1/m

≤
(∫

σB

|u − c|sω(λ/r)α
2 dx

)1/s
(∫

σB

(
1
ω2

)λαm/r(s−m)

dx

)(s−m)/sm

= ‖u − c‖s,σB,ω(λ/rα)
2

(∫

σB

(
1
ω2

)1/(r−1)
dx

)(λα/s)(1−1/r)
.

(2.12)

By the condition (ω1(x), ω2(x)) ∈ A
β

r,λ
(Ω), we obtain

(∫

B

ω1dx

)α/s
(∫

σB

(
1
ω2

)1/(r−1)
dx

)(λα/s)(1−1/r)

=

⎧
⎨

⎩
|B|1−β/n|B|β/n−1

(∫

B

ω1dx

)1/λ
(∫

σB

(
1
ω2

)1/(r−1)
dx

)1−1/r⎫⎬

⎭

λα/s

≤
⎧
⎨

⎩
|B|1−β/n|B|β/n−1

(∫

σB

ω1dx

)1/λ
(∫

σB

(
1
ω2

)1/(r−1)
dx

)1−1/r⎫⎬

⎭

λα/s

=

⎧
⎨

⎩
|B|1−β/n|B|β/n−1

(∫

σB

ω1dx

)1/λ
(∫

σB

(
1
ω2

)r ′−1
dx

)1/r ′
⎫
⎬

⎭

λα/s

≤ C3|B|(1−β/n)(λ/s)α,

(2.13)
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where 1/r + 1/r ′ = 1. By (2.10), (2.11), (2.12), and (2.13), we conclude that

(∫

B

|du|sωα
1dx

)1/s

≤ C1 diam (B)−1C2|B|(m−t)/mt‖u − c‖m,σB

(∫

B

ω1dx

)α/s

≤ C4 diam (B)−1|B|(m−t)/mt‖u − c‖s,σB,ω(λ/r)α
2

(∫

B

ω1dx

)α/s

×
(∫

σB

(
1
ω2

)1/(r−1)
dx

)(λα/s)(1−1/r)

≤ C5 diam (B)−1|B|1/t−1/m|B|(1−β/n)(λ/s)α‖u − c‖s,σB,ωλα/r
2

.

(2.14)

Since diam(B) = C6|B|1/n, inequality (2.14) can be rewritten as

(∫

B

|du|sωα
1dx

)1/s

� C7|B|−1/n|B|1/t−1/m|B|(1−β/n)(λ/s)α‖u − c‖s,σB,ωλα/r
2

. (2.15)

By simple computation, we know that

1
t
− 1
m

=
1 − α

s
− 1 + (λα/r)(r − 1)

s
= −α

s
− λα

s

(

1 − 1
r

)

. (2.16)

Then we can change inequality (2.15) into

(∫

B

|du|sωα
1dx

)1/s

≤ C|B|(λα/s)(1/r−β/n)−1/n−α/s‖u − c‖s,σB,ωλα/r
2

. (2.17)

When r = 1, taking m < s and by Lemma 2.4, we obtain

‖u − c‖t,σ1B
≤ C8|B|(m−t)/mt‖u − c‖m,σB. (2.18)

By Lemma 2.3, it follows that

‖u − c‖m,σB =
(∫

σB

(|u − c|ωλα/s
2 ω−λα/s

2 )mdx
)1/m

≤
(∫

σB

|u − c|sωλα
2 dx

)1/s
(∫

σB

(
1
ω2

)λαm/(s−m)

dx

)(s−m)/sm

= ‖u − c‖s,σB,ωλα
2

{

|σB|1−β/n
(∫

σB

ω1(x)dx
)−1/λ}λα/s

|σB|(s−m)/sm

= ‖u − c‖s,σB,ωλα
2
|σB|(λα/s)(1−β/n)

(∫

σB

ω1(x)dx
)−α/s

|σB|(s−m)/sm.

(2.19)
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By (2.10), (2.18), and (2.19), we conclude that

(∫

B

|du|sωα
1dx

)1/s

≤ C1 diam (B)−1C8|B|(m−t)/mt‖u − c‖m,σB

(∫

B

ω1dx

)α/s

≤ C9 diam (B)−1|B|(m−t)/mt‖u − c‖s,σB,ωλα
2

(∫

B

ω1dx

)α/s

× |σB|(λα/s)(1−β/n)
(∫

σB

ω1(x)dx
)−α/s

|σB|(s−m)/sm

≤ C10 diam (B)−1|B|1/t−1/m|σB|(λα/s)(1−β/n)|σB|1/m−1/s‖u − c‖s,σB,ωλα
2
.

(2.20)

Since diam(B) = C11|B|1/n and |σB| = σn|B|, inequality (2.20) can be rewritten as

(∫

B

|du|sωα
1dx

)1/s

≤ C12|B|−1/n|B|1/t−1/m|B|(1−β/n)(λα/s)|B|1/m−1/s‖u − c‖s,σB,ωλα
2

= C12|B|−1/n+1/t−1/s+(1−β/n)(λα/s)‖u − c‖s,σB,ωλα
2
.

(2.21)

Because of t = s/(1 − α), we have that

(∫

B

|du|sωα
1dx

)1/s

≤ C|B|(λα/s)(1−β/n)−1/n−α/s‖u − c‖s,σB,ωλα
2
. (2.22)

The proof of Theorem 2.6 is completed.

Since there are fore real parameters, α, λ, β, and r, in Theorem 2.6, we can obtain some
desired versions of weighted Caccioppoli-type estimates by different choices of them. Let
β = n − 1 in Theorem 2.6, we obtain the following corollaries.

Corollary 2.7. Let u ∈ Ls(Ω,∧l), l = 0, 1, . . . , n − 1, be a solution to the homogeneous A-harmonic
equation (1.5) and (ω1(x), ω2(x)) ∈ An−1

r,r (Ω) for some 0 < α < 1 and 1 < r < ∞. Then there exists a
constant C, independent of u and du, such that

(∫

B

|du|sωα
1dx

)1/s

≤ C|B|αr/ns−1/n−αr/s
(∫

σB

|u − c|sωα
2dx

)1/s
(2.23)

for all closed forms c.

Furthermore, choosing α = 1/r in Corollary 2.7, we get the following result.
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Corollary 2.8. Let u ∈ Ls(Ω,∧l), l = 0, 1, . . . , n − 1, be a solution to the homogeneous A-harmonic
equation (1.5) and (ω1(x), ω2(x)) ∈ An−1

r,r (Ω) for some 1 < r < ∞. Then there exists a constant C,
independent of u and du, such that

(∫

B

|du|sω1/r
1 dx

)1/s

≤ C|B|1/ns−1/n−1/s
(∫

σB

|u − c|sω1/r
2 dx

)1/s
(2.24)

for all closed forms c.

3. The Local Weighted Estimates for the Decomposition

The Hodge decomposition theorem has been playing an important part in partial differential
equation, the operator theory, and so on. In the recent years, there are some interesting
conclusions on the Hodge decomposition of differential forms; see [5, 6]. In [7], there is the
following decomposition theorem for differential form u ∈ Lp(Rn,∧l).

Lemma 3.1. Let u ∈ Lp(Rn,∧l), 1 < p < ∞, l = 1, 2, . . . , n − 1. Then, there exist differential forms
Q ∈ LP

1 (R
n,∧l−1) and R ∈ LP

1 (R
n,∧l+1), such that

u = dQ + d�R, d�Q = dR = 0, (3.1)

‖∇Q‖p + ‖∇R‖p ≤ C‖u‖p, (3.2)

here C is a positive constant.

Definition 3.2. The weight ω(x) satisfies the Ar-condition on the set E ⊂ R
n, write ω ∈ Ar(E),

if ω(x) > 0, a.e., and for all balls B ⊂ E, one has that

sup
B

(
1
|B|

∫

B

ωdx

)(
1
|B|

∫

B

(
1
ω

)1/(r−1)
dx

)r−1
< ∞, (3.3)

where r > 1.

The next lemma states the reverse Hölder inequality for Ar(E)-weight; see [8].

Lemma 3.3. Assume that ω ∈ Ar(E). Then, there exists a constant C, independent of ω, for all balls
B ⊂ E, such that

‖ω‖β,B ≤ C|B|(1−β)/β‖ω‖1,B, (3.4)

where β > 1 is a real number.

In this section, we will extend (3.2) to the weighted form.
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Theorem 3.4. Let u ∈ Lp(Ω,∧l) be the solution to the nonhomogeneous A-harmonic equation (1.2),
1 < p < ∞, l = 1, 2, . . . , n − 1. Then, there exist differential forms Q ∈ LP

1 (Ω,∧l−1) and R ∈
LP
1 (Ω,∧l+1), such that

u = dQ + d�R, d�Q = dR = 0, (3.5)

‖∇Q‖p,B,ωα + ‖∇R‖p,B,ωα ≤ C‖u‖p,σB,ωα , (3.6)

here ω ∈ Ar(Ω), r > 1, σ > 1, 0 < α ≤ 1, and C > 0 is a constant.

Proof. From (3.2), it follows that

‖∇Q‖s ≤ C1‖u‖s, (3.7)

‖∇R‖s ≤ C2‖u‖s (3.8)

for any s > 1.
When 0 < α < 1, take s = p/(1 − α) > p > 1. By Lemma 2.3 with 1/p = 1/s + (s − p)/sp

and (3.7), we have

‖∇Q‖p,B,ωα =
(∫

B

|∇Q|pωαdx

)1/p

=
(∫

B

(
|∇Q|ωα/p

)p
dx

)1/p

≤
(∫

B

(|∇Q|)sdx
)1/s(∫

B

(ωα/p)sp/(s−p)dx
)(s−p)/sp

= ‖∇Q‖s,B
(∫

B

ωdx

)α/p

≤ C1‖u‖s,B
(∫

B

ωdx

)α/p

.

(3.9)

Similarly, using Lemma 2.3 and (3.8), we have

‖∇R‖p,B,ωα =
(∫

B

|∇R|pωαdx

)1/p

=
(∫

B

(|∇R|ωα/p)pdx
)1/p

≤
(∫

B

(|∇R|)sdx
)1/s(∫

B

(
ωα/p

)sp/(s−p)
dx

)(s−p)/sp

= ‖∇R‖s,B
(∫

B

ωdx

)α/p

≤ C2‖u‖s,B
(∫

B

ωdx

)α/p

.

(3.10)
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Combining (3.9) with (3.10), we have

‖∇Q‖p,B,ωα + ‖∇R‖p,B,ωα ≤ C1‖u‖s,B
(∫

B

ωdx

)α/p

+ C2‖u‖s,B
(∫

B

ωdx

)α/p

≤ C3‖u‖s,B
(∫

B

ωdx

)α/p

.

(3.11)

Take t = p/(1 + α(r − 1)), then t < p < s and (p − t)/pt = α(r − 1)/p. By Lemma 2.4, it follows
that

‖u‖s,B ≤ C4|B|(t−s)/st‖u‖t,σB, (3.12)

here σ > 1 is a constant. Putting (3.11) into (3.12), we get

‖∇Q‖p,B,ωα + ‖∇R‖p,B,ωα ≤ C3‖u‖s,B
(∫

B

ωdx

)α/p

≤ C5|B|(t−s)/st‖u‖t,σB
(∫

B

ωdx

)α/p

.

(3.13)

By Lemma 2.3, the following inequality holds:

‖u‖t,σB =
(∫

σB

|u|tdx
)1/t

=
(∫

σB

(|u|ωα/pω−α/p)tdx
)1/t

≤
(∫

σB

|u|pωαdx

)1/p(∫

σB

(ω−α/p)pt/(p−t)dx
)(p−t)/pt

=
(∫

σB

|u|pωαdx

)1/p
(∫

σB

(
1
ω

)1/(r−1)
dx

)α(r−1)/p

= ‖u‖p,σB,ωα

(∫

σB

(
1
ω

)1/(r−1)
dx

)α(r−1)/p
.

(3.14)

Combining (3.13) with (3.14), we obtain the following estimate:

‖∇Q‖p,B,ωα + ‖∇R‖p,B,ωα ≤ C5|B|(t−s)/st‖u‖t,σB
(∫

B

ωdx

)α/p

≤ C5|B|(t−s)/st‖u‖p,σB,ωα

(∫

B

ωdx

)α/p

·
(∫

σB

(
1
ω

)1/(r−1)
dx

)α(r−1)/p
.

(3.15)
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Since ω ∈ Ar(Ω), we have

(∫

B

ωdx

)α/p

·
(∫

σB

(
1
ω

)1/(r−1)
dx

)α(r−1)/p

≤
(∫

σB

ωdx

)α/p

·
(∫

σB

(
1
ω

)1/(r−1)
dx

)α(r−1)/p

=

⎧
⎨

⎩
|σB|r

(
1

|σB|
∫

σB

ωdx

)(
1

|σB|
∫

σB

(
1
ω

)1/(r−1)
dx

)r−1⎫⎬

⎭

α/p

≤ C6|B|αr/p.

(3.16)

Putting (3.16) into (3.15), we get

‖∇Q‖p,B,ωα + ‖∇R‖p,B,ωα ≤ C7|B|(t−s)/st|B|αr/p‖u‖p,σB,ωα . (3.17)

Recall that s = p/(1 − α), t = p/(1 + α(r − 1)), then we have

t − s

ts
=

p(1 − α) − p[1 + α(r − 1)]
p2

= −αr
p
. (3.18)

So (3.17) can be rewritten as

‖∇Q‖p,B,ωα + ‖∇R‖p,B,ωα ≤ C7‖u‖p,σB,ωα . (3.19)

When α = 1, by Lemma 3.3, we know that

‖ω‖β,B ≤ C8|B|(1−β)/β‖ω‖1,B, (3.20)

where β > 1.
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Let s = βp/(β − 1), then 1 < p < s and β = s/(s − p). By Lemma 2.3 with 1/p =
1/s + (s − p)/sp and (3.20), we have that

‖∇Q‖p,B,ω =
(∫

B

|∇Q|pωdx

)1/p

=
(∫

B

(
|∇Q|ω1/p

)p
dx

)1/p

≤
(∫

B

(|∇Q|)sdx
)1/s(∫

B

(
ω1/p

)sp/(s−p)
dx

)(s−p)/sp

= ‖∇Q‖s,B
(∫

B

ωβdx

)1/pβ

≤ C9|B|(1−β)/pβ‖ω‖1/p1,B ‖∇Q‖s,B.

(3.21)

Similarly, by Lemma 2.3 and (3.20), we have that

‖∇R‖p,B,ω =
(∫

B

|∇R|pωdx

)1/p

=
(∫

B

(
|∇R|ω1/p

)p
dx

)1/p

≤
(∫

B

(|∇R|)sdx
)1/s(∫

B

(
ω1/p

)sp/(s−p)
dx

)(s−p)/sp

= ‖∇R‖s,B
(∫

B

ωβdx

)1/pβ

≤ C10|B|(1−β)/pβ‖ω‖1/p1,B ‖∇R‖s,B.

(3.22)

Putting (3.7) into (3.21), we have

‖∇Q‖p,B,ω ≤ C9|B|(1−β)/pβ‖ω‖1/p1,B ‖∇Q‖s,B

≤ C11|B|(1−β)/pβ‖ω‖1/p1,B ‖u‖s,B.
(3.23)

Putting (3.8) into (3.22), we conclude that

‖∇R‖p,B,ω ≤ C10|B|(1−β)/pβ‖ω‖1/p1,B ‖∇R‖s,B

≤ C12|B|(1−β)/pβ‖ω‖1/p1,B ‖u‖s,B.
(3.24)
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Combining (3.23) with (3.24), we obtain

‖∇Q‖p,B,ω + ‖∇R‖p,B,ω

≤ C11|B|(1−β)/pβ‖ω‖1/p1,B ‖u‖s,B + C12|B|(1−β)/pβ‖ω‖1/p1,B ‖u‖s,B

≤ C13|B|(1−β)/pβ‖ω‖1/p1,B ‖u‖s,B.

(3.25)

Let t = p/r, then t < p. By Lemma 2.4, we have

‖u‖s,B ≤ C14|B|(t−s)/st‖u‖t,σB, (3.26)

where σ > 1. Putting (3.26) into (3.25), we get

‖∇Q‖p,B,ω + ‖∇R‖p,B,ω ≤ C13|B|(1−β)/pβ‖ω‖1/p1,B ‖u‖s,B

≤ C15|B|(1−β)/pβ|B|(t−s)/st‖u‖t,σB‖ω‖1/p1,B .

(3.27)

By Lemma 2.3, we get

‖u‖t,σB =
(∫

σB

|u|tdx
)1/t

=
(∫

σB

(
|u|ω1/pω−1/p

)t
dx

)1/t

≤
(∫

σB

|u|pωdx

)1/p
(∫

σB

(
1
ω

)pt/(p−t)
dx

)(p−t)/pt

= ‖u‖p,σB,ω
(∫

σB

(
1
ω

)1/(r−1)
dx

)(r−1)/p
.

(3.28)

Putting (3.28) into (3.27), it follows that

‖∇Q‖p,B,ω + ‖∇R‖p,B,ω

≤ C15|B|(1−β)/pβ|B|(t−s)/st‖u‖t,σB‖ω‖1/p1,B

≤ C15|B|(1−β)/pβ|B|(t−s)/st‖u‖p,σB,ω
(∫

σB

(
1
ω

)1/(r−1)
dx

)(r−1)/p(∫

B

ωdx

)1/p

.

(3.29)
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Since ω ∈ Ar(Ω), we have

(∫

B

ωdx

)1/p

·
(∫

σB

(
1
ω

)1/(r−1)
dx

)(r−1)/p

≤
(∫

σB

ωdx

)1/p

·
(∫

σB

(
1
ω

)1/(r−1)
dx

)(r−1)/p

=

⎧
⎨

⎩
|σB|r

(
1

|σB|
∫

σB

ωdx

)(
1

|σB|
∫

σB

(
1
ω

)1/(r−1)
dx

)r−1⎫⎬

⎭

1/p

≤ C16|B|r/p.

(3.30)

Putting (3.30) into (3.29), we get the following inequality:

‖∇Q‖p,B,ω + ‖∇R‖p,B,ω ≤ C17|B|(1−β)/pβ|B|(t−s)/st|B|r/p‖u‖p,σB,ω. (3.31)

Since (1 − β)/pβ + (t − s)/st + r/p = −1/s + (t − s)/st + 1/t = (t − s)/st + (s − t)/st = 0, (3.31)
can be rewritten as

‖∇Q‖p,B,ω + ‖∇R‖p,B,ω ≤ C17‖u‖p,σB,ω. (3.32)

So inequality (3.4) is true for 0 < α ≤ 1.

4. The Global Weighted Estimates

Based on the local weighted estimate for the decomposition and the Whitney covering
lemma, we get the global weighted estimate on domain Ω ⊂ R

n.

Theorem 4.1. Let u ∈ Lp(Ω,∧l) be a differential form satisfying the nonhomogeneous A-harmonic
equation (1.2) in a bounded domain Ω ⊂ R

n, 1 < p < ∞, l = 1, 2, . . . , n − 1, and ω ∈ Ar(Ω), r > 1.
Then, there exist differential forms Q ∈ LP

1 (Ω,∧l−1) and R ∈ LP
1 (Ω,∧l+1), such that

u = dQ + d�R, d�Q = dR = 0,

‖∇Q‖p,Ω,ωα + ‖∇R‖p,Ω,ωα ≤ C‖u‖p,Ω,ωα ,
(4.1)

where 0 < α ≤ 1 and C > 0 is a constant.
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Proof. By Lemma 2.5, Ω ⊂ R
n has a modified Whitney cover of cubes ν = {Bi}. Let

σ =
√
5/4.
First, we assume that all cubes Bi satisfy σBi ⊂ Ω. By Lemma 2.5 and (3.6), we know

that

‖∇Q‖p,Ω,ωα + ‖∇R‖p,Ω,ωα =
(∫

Ω
|∇Q|pωαdx

)1/p

+
(∫

Ω
|∇R|pωαdx

)1/p

≤
∑

B∈ν

{(∫

B

|∇Q|pωαdx

)1/p

+
(∫

B

|∇R|pωαdx

)1/p
}

≤
∑

B∈ν
C1

(∫

σB

|u|pωαdx

)1/p

≤
∑

B∈ν
C2

(∫

σB

|u|pωαdx

)1/p

χσB(x)

≤
∑

B∈ν
C2

(∫

Ω
|u|pωαdx

)1/p

χσB(x)

≤
(∫

Ω
|u|pωαdx

)1/p∑

B∈ν
C2χσB(x)

≤ C

(∫

Ω
|u|pωαdx

)1/p

.

(4.2)

In the above proof, if there exists one cube B0 ∈ ν, such that σB0 can not be contained
in Ω completely, the proof is as follows. Set Ω1 =

⋃
B∈ν σB, and define U(x) on Ω1 as

follows:

U(x) =

⎧
⎪⎨

⎪⎩

u(x), x ∈ Ω,

0 x ∈ Ω1 −Ω.
(4.3)

Then, we know that the following formulas are true:

(∫

σB

|u|pωαdx

)1/p

=
(∫

σB

|U|pωαdx

)1/p

,

(∫

Ω1

|U|pωαdx

)1/p

=
(∫

Ω
|u|pωαdx

)1/p

.

(4.4)
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Note that (4.4) hold, and then the following formula is true:

‖∇Q‖p,Ω,ωα + ‖∇R‖p,Ω,ωα =
(∫

Ω
|∇Q|pωαdx

)1/p

+
(∫

Ω
|∇R|pωαdx

)1/p

≤
∑

B∈ν

{(∫

B

|∇Q|pωαdx

)1/p

+
(∫

B

|∇R|pωαdx

)1/p
}

≤
∑

B∈ν
C3

(∫

σB

|u|pωαdx

)1/p

=
∑

B∈ν
C3

(∫

σB

|U|pωαdx

)1/p

≤
∑

B∈ν
C4

(∫

σB

|U|pωαdx

)1/p

χσB(x)

≤
∑

B∈ν
C5

(∫

Ω1

|U|pωαdx

)1/p

χσB(x)

≤
(∫

Ω1

|U|pωαdx

)1/p
∑

B∈ν
C5χσB(x)

≤ C

(∫

Ω1

|U|pωαdx

)1/p

= C

(∫

Ω
|u|pωαdx

)1/p

.

(4.5)

The proof of Theorem 4.1 is completed.

In Theorems 3.4 and 4.1, there is a real parameter α, which makes the results more
flexible. By choosing different value of the parameter α, we get the estimates in different
forms. For example, if we take α = 1, we have the following corollary.

Corollary 4.2. Let u ∈ Lp(Ω,∧l) be the solution to the nonhomogeneousA-harmonic equation (1.2),
1 < p < ∞, l = 1, 2, . . . , n − 1, and ω ∈ Ar(Ω), r > 1. Then, there exist differential forms Q ∈
LP
1 (Ω,∧l−1) and R ∈ LP

1 (Ω,∧l+1), such that

u = dQ + d�R, d�Q = dR = 0,

‖∇Q‖p,Ω,ω + ‖∇R‖p,Ω,ω ≤ C‖u‖p,Ω,ω,
(4.6)

where C > 0 is a constant.
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