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We introduce two iterative sequence for finding a common element of the set of solutions of an
equilibrium problem and the set of fixed points of a countable family of strict pseudocontractions
in Hilbert Space. Then we study the weak and strong convergence of the sequences.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H and let T be a self-mapping
of C. Then T is said to be a strict pseudocontraction mappings if for all x, y ∈ C, there exists
a constant 0 ≤ κ < 1 such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2 (1.1)

(if (1.1) holds, we also say that T is a κ-strict pseudocontraction). We use F(T) to denote the
set of fixed points of T , ⇀ (→ ) to denote weak(strong) convergence, and Ww(xn) = {x :
∃xnk ⇀ x} to denote theW-limit set of {xn}.

Let f : C×C → R be a bifunction whereR is the set of real numbers. Then, we consider
the following equilibrium problem:

Find z ∈ C such that f
(

z, y
) ≥ 0, ∀y ∈ C. (1.2)
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The set of such z ∈ C is denoted by EP(f). Numerous problems in physics, optimization,
and economics can be reduced to find a solution of (1.2). Some methods have been proposed
to solve the equilibrium problem (see [1–3]). Recently, S. Takahashi and W. Takahashi [4]
introduced an iterative scheme by the viscosity approximation method for finding a common
element of the set of solutions of the equilibrium problem and the set of fixed points of a
nonexpansive mapping in Hilbert spaces. They also studied the strong convergence of the
sequences generated by their algorithm for a solution of the EP which is also a fixed point of
a nonexpansive mapping defined on a closed convex subset of a Hilbert space.

In this paper, thanks to the condition introduced by Aoyama et al. [5], We introduce
two iterative sequence for finding a common element of the set of solutions of an equilibrium
problems and the set of fixed points of a countable family of strict pseudocontractions
mappings in Hilbert Space. Then we study the weak and strong convergence of the
sequences. The additional condition is inspired by Marino and Xu [6] and Kim and Xu [7].

2. Preliminaries

For solving the equilibrium problem, let us assume that the bifunction f satisfies the
following conditions (see [3]):

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for any x, y ∈ C;

(A3) f is upper-hemicontinuous, that is, for each x,y, z ∈ C, lim supt→ 0+f(tz + (1 −
t)x, y) ≤ f(x, y);

(A4) f(x, ·) is convex and lower semicontinuous for each x ∈ C.

Let H be a real Hilbert space. Then there hold the following well-known results:

∥
∥tx + (1 − t)y

∥
∥
2 = t‖x‖2 + (1 − t)

∥
∥y

∥
∥
2 − t(1 − t)

∥
∥x − y

∥
∥
2
, ∀x, y ∈ H, ∀t ∈ [0, 1];

∥
∥x + y

∥
∥
2 = ‖x‖2 − ∥

∥y
∥
∥
2 − 2

〈

x − y, y
〉

, ∀x, y ∈ H.
(2.1)

If {xn} is a sequence in H weakly convergent to z, then

lim sup
n→∞

∥
∥xn − y

∥
∥
2 = lim sup

n→∞
‖xn − z‖2 + ∥

∥z − y
∥
∥
2 ∀y ∈ H. (2.2)

Recall that the nearest point projection PC from H onto C assigns to each x ∈ H its nearest
point denoted by PCx in C; that is, PCx is the unique point in C with the property

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.3)

Given x ∈ H and z ∈ C, then z = PCx if and only if there holds the following relation:

〈x − z, y − z〉 ≤ 0, ∀y ∈ C. (2.4)
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Lemma 2.1 (see [6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T :
C → C be a κ-strict pseudocontraction such that F(T)/= ∅.

(1) (Demi-closed principle) T is demi-closed on C, that is, if xn ⇀ x ∈ C and xn − Txn → 0,
then x = Tx.

(2) T satisfies the Lipschitz condition

∥
∥Tx − Ty

∥
∥ ≤ L

∥
∥x − y

∥
∥ =

1 + κ

1 − κ

∥
∥x − y

∥
∥ ∀x, y ∈ C. (2.5)

(3) The fixed point set F(T) of T is closed and convex so that the projection PF(T) is well defined.

Lemma 2.2 (see [5]). Let C be a nonempty closed convex subset of a Banach space and let {Tn} be a
sequence of mapping of C into itself. Suppose

∑∞
n=1 supx∈C‖Tn+1x − Tnx‖ < ∞. Then, for each y ∈ C,

{Tny} converges strongly to some point of C. Moreover, let T be a mapping of C into itself defined by

Ty = lim
n→∞

Tny ∀y ∈ C. (2.6)

Then limn→∞supx∈C‖Tnx − Tx‖ = 0.

Lemma 2.3 (see [8]). Let C be a closed convex subset ofH. Let {xn} be a sequence inH and u ∈ H.
Let q = PCu. If {xn} is such that Ww(xn) ⊂ C and satisfies the condition

‖xn − u‖ ≤ ∥
∥u − q

∥
∥ ∀n, (2.7)

then xn → q.

Lemma 2.4 (see [9]). Let C be a nonempty closed convex subset of H. Let f be a bifunction from
C×C into R satisfying (A1), (A2), (A3), and(A4). Then, for any λ > 0 and x ∈ H, there exists z ∈ C
such that

f
〈

z, y
〉

+
1
λ

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C. (2.8)

Further, if Tλx = {z ∈ C : f〈z, y〉 + (1/λ)〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, then the following holds:

(1) Tλx is single-valued;

(2) Tλx is firmly nonexpansive, that is,

∥
∥Tλx − Tλy

∥
∥
2 ≤ 〈Tλx − Tλy, x − y〉, ∀x, y ∈ H; (2.9)

(3) F(Tλ) = EP(f);

(4) EP(f) is closed and convex.
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3. Weak Convergence Theorems

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and let {Tn} be a
sequence of κn-strict pseudocontractions mappings on C into itself with 0 ≤ κn < 1. Assume that
κ = max{κn : n ≥ 1}. Let f : C × C → R be a bifunction satisfying (A1), (A2), (A3), (A4), and
EP(f) ∩⋂∞

n=1 F(Tn)/= ∅. Let {xn} and {zn} be sequence generated by x1 ∈ C and

f
(

zn, y
)

+
1
rn

〈

y − zn, zn − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnzn + (1 − αn)Tnzn, ∀n ≥ 1.

(3.1)

Assume that {αn} ⊂ [0, 1] with κ + δ < αn < 1 − δ for all n, where δ ∈ (0, 1) is a small enough
constant, and {rn} is a sequence in (0,∞) with lim infn→∞rn > 0 and

∑∞
n=1 |rn+1 − rn| < ∞. Let

∑∞
n=1 supx∈B‖Tn+1x−Tnx‖ < ∞ for any bounded subset B of C and let T be a mapping of C into itself

defined by Tx = limn→∞Tnx for all x ∈ C and suppose that F(T) =
⋂∞

n=1 F(Tn). Then the sequences
{xn} and {zn} converge weakly to an element of F(T) ∩ EP(f).

Proof. Pick p ∈ F(T)∩EP(f). Then from the definition of Tr in Lemma 2.4, we have zn = Trnxn,
and therefore ‖zn − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖. It follows from (3.1) that

∥
∥xn+1 − p

∥
∥
2 =

∥
∥(1 − αn)(Tnzn − p) + αn(zn − p)

∥
∥
2

= αn

∥
∥zn − p

∥
∥
2 + (1 − αn)

∥
∥Tnzn − p

∥
∥
2 − αn(1 − αn)‖zn − Tnzn‖2

≤ αn

∥
∥zn − p

∥
∥
2 + (1 − αn)

(∥
∥zn − p

∥
∥
2 + κ‖zn − Tnzn‖2

)

− αn(1 − αn)‖zn − Tnzn‖2

=
∥
∥zn − p

∥
∥
2 − (αn − κ)(1 − αn)‖zn − Tnzn‖2

≤ ∥
∥xn − p

∥
∥
2 − (αn − κ)(1 − αn)‖zn − Tnzn‖2.

(3.2)

Since κ + δ < αn < 1 − δ for all n, we get ‖xn+1 − p‖ ≤ ‖xn − p‖; that is, the sequence {‖xn − p‖}
is decreasing. Hence limn→∞‖xn − p‖ exists. In particular, {xn} is bounded. Since Tr is firmly
nonexpensive, {zn} is also bounded. Also (3.2) implies that

‖zn − Tnzn‖2 ≤ 1
δ2

(∥
∥xn − p

∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2
)

. (3.3)

Taking the limit as n → ∞ yields that

lim
n→∞

‖zn − Tnzn‖ = 0. (3.4)

Since {zn} is bounded, it follows that

∞∑

n=1

sup
x∈{zn}

‖Tn+1x − Tnx‖ < ∞. (3.5)
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We apply Lemma 2.2 to get

‖zn − Tzn‖ ≤ ‖zn − Tnzn‖ + ‖Tnzn − Tzn‖
≤ ‖zn − Tnzn‖ + sup{‖Tnz − Tz‖ : z ∈ {zn}} −→ 0.

(3.6)

Next, we claim that limn→∞‖zn−xn‖ = 0. Indeed, let p be an arbitrary element of F(T)∩EP(f).
Then as above

∥
∥zn − p

∥
∥
2 =

∥
∥Trxn − Trp

∥
∥
2

≤ 〈Trxn − Trp, xn − p〉
= 〈zn − Trp, xn − p〉

=
1
2

(∥
∥zn − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ‖xn − zn‖2

)

,

(3.7)

and hence

∥
∥zn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖xn − zn‖2. (3.8)

Therefore, from (3.2), we have

∥
∥xn+1 − p

∥
∥
2 ≤ ∥

∥zn − p
∥
∥
2 − (αn − κ)(1 − αn)‖zn − Tnzn‖2

≤ ∥
∥zn − p

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ‖xn − zn‖2,

(3.9)

and hence

‖xn − zn‖2 ≤
∥
∥xn − p

∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2
. (3.10)

So, from the existence of limn→∞‖xn − p‖, we have

lim
n→∞

‖xn − zn‖ = 0. (3.11)

Next, we claim thatWw(xn) ⊂ F(T) ∩ EP(f). since {xn} is bounded andH is reflexive,
Ww(xn) is nonempty. Let w ∈ Ww(xn) be an arbitrary element. Then a subsequence xni of
{xn} converges weakly to w. Hence, from (3.11) we know that zni ⇀ w. As ‖zn − Tzn‖ → 0,
we obtain that Tzni ⇀ w. Let us show Ww(xn) ⊂ EP(f). Since zn = Trnxn, we have

f
(

zn, y
)

+
1
rn

〈

y − zn, zn − xn

〉 ≥ 0, ∀y ∈ C. (3.12)
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By (A2), we have

1
rn

〈

y − zn, zn − xn

〉 ≥ f
(

y, zn
)

, (3.13)

and hence

〈

y − zni ,
zni − xni

rni

〉

≥ f
(

y, zni

)

. (3.14)

From (A4), we have

0 ≥ f
(

y,w
) ∀y ∈ C. (3.15)

Then, for t ∈ (0, 1] and y ∈ C, from (A1), and (A4), we also have

0 = f
(

ty + (1 − t)w, ty + (1 − t)w
)

≤ tf
(

ty + (1 − t)w,y
)

+ (1 − t)f
(

ty + (1 − t)w,w
)

≤ tf
(

ty + (1 − t)w,y
)

,

(3.16)

Taking t → 0+ and using (A3), we get

f
(

w,y
) ≥ 0 ∀y ∈ C, (3.17)

and hence w ∈ EP(f). Since T is a strict pseudocontraction mapping, by Lemma 2.1(1) we
know that the mapping T is demiclosed at zero. Note that ‖zn − Tzn‖ → 0 and zni ⇀ w.
Thus, w ∈ F(T). Consequently, we deduce that w ⊂ F(T) ∩ EP(f). Since w is an arbitrary
element, we conclude that Ww(xn) ⊂ F(T) ∩ EP(f).

To see that {xn} and {zn} are actually weakly convergent, we take x, x̃ ∈
Ww(xn) (xni ⇀ x, xmj ⇀ x̃). Since limn→∞‖xn − p‖ exist for every p ∈ F(T), by (2.2), we
have

lim
n→∞

‖xn − x̃‖2 = lim
i→∞

‖(xni − x̃)‖2

= lim
i→∞

‖xni − x‖2 + ‖x − x̃‖2

= lim
j→∞

∥
∥
∥xmj − x

∥
∥
∥

2
+ ‖x − x̃‖2

= lim
j→∞

∥
∥
∥xmj − x̃

∥
∥
∥

2
+ 2‖x − x̃‖2

= lim
n→∞

‖xn − x̃‖2 + 2‖x − x̃‖2.

(3.18)

Hence x̃ = x and proof is completed.
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4. Strong Convergence Theorems

Theorem 4.1. Let C be a closed convex subset of a real Hilbert spaceH. Let {Tn} be a sequence of κn-
strict pseudocontractions mappings on C into itself with 0 ≤ κn < 1. Assume that κ = max{κn : n ≥
1}. Let f : C×C → R be a bifunction satisfying (A1), (A2), (A3), (A4) and EP(f)∩⋂∞

n=1 F(Tn)/= ∅.
For C1 = C and x1 = PC1x0, let {xn} and {zn} be sequence generated by x0 ∈ C and

yn = αnxn + (1 − αn)Tnxn,

zn ∈ C such that f
(

zn, y
)

+
1
rn
〈y − zn, zn − yn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {v ∈ C : ‖zn − v‖ ≤ ‖xn − v‖},
xn+1 = PCn+1x0, n ≥ 1.

(4.1)

Assume that {αn} ⊂ [0, 1] with κ + δ < αn < 1 − δ for all n, where δ ∈ (0, 1) is a small enough
constant, and {rn} is a sequence in (0,∞) with lim infn→∞rn > 0 and

∑∞
n=1 |rn+1 − rn| < ∞. Let

∑∞
n=1 supx∈B‖Tn+1x−Tnx‖ < ∞ for any bounded subset B of C and let T be a mapping of C into itself

defined by Tx = limn→∞Tnx for all x ∈ C Suppose that F(T) =
⋂∞

n=1 F(Tn). Then, {xn} converges
strongly to PF(T)∩EP(f)x0.

Proof. First, we show that Cn is closed and convex. It is obvious that C1 = C is closed and
convex. Suppose that Ck is closed and convex for some k ≥ 1. For z ∈ Ck, we know that
‖zk − z‖ ≤ ‖xk − z‖ is equivalent to

‖zk − xk‖2 + 2〈zk − xk, xk − z〉 ≤ 0. (4.2)

So Ck+1 is closed and convex. Then, Cn is closed and convex.
Next, we show by induction that F(T) ∩ EP(f) ⊂ Cn for all n ≥ 1. F(T) ∩ EP(f) ⊂ C1 is

obvious. Suppose that F(T) ∩ EP(f) ⊂ Ck for some k ≥ 1. Let p ∈ F(T) ∩ EP(f) ⊂ Ck. Putting
zn = Trnyn for all n, we know from (4.1) that

∥
∥zn − p

∥
∥
2 =

∥
∥Trnyn − p

∥
∥
2

≤ ∥
∥yn − p

∥
∥
2

=
∥
∥(1 − αn)(Tnxn − p) + αn(xn − p)

∥
∥
2

= αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥Tnxn − p

∥
∥
2 − αn(1 − αn)‖xn − Tnxn‖2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

(∥
∥xn − p

∥
∥
2 + κ‖xn − Tnxn‖2

)

− αn(1 − αn)‖xn − Tnxn‖2
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=
∥
∥xn − p

∥
∥
2 − (αn − κ)(1 − αn)‖xn − Tnxn‖2

≤ ∥
∥xn − p

∥
∥
2 − δ2‖xn − Tnxn‖2

≤ ∥
∥xn − p

∥
∥
2
,

(4.3)

and hence p ∈ Ck+1. This implies that F(T) ∩ EP(f) ⊂ Cn for all n ≥ 1.
This implied that {xn} is well defined.
From xn = PCnx0, we have

‖x0 − xn‖ ≤ ∥
∥x0 − y

∥
∥ ∀y ∈ Cn. (4.4)

Using F(T) ∩ EP(f) ⊂ Cn, we have

‖x0 − xn‖ ≤ ‖x0 − u‖ ∀u ∈ F(T) ∩ EP
(

f
)

, n ≥ 1. (4.5)

Then, {xn} is bounded. So are {yn} and {zn}. In particular,

‖x0 − xn‖ ≤ ∥
∥x0 − p

∥
∥ where p = PF(T)∩EP(f)x0. (4.6)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

‖x0 − xn‖ ≤ ‖x0 − xn+1‖. (4.7)

Since {‖xn − x0‖} is bounded, limn→∞‖xn − x0‖ exists. From xn = PCnx0 and xn+1 = PCn+1x0 ∈
Cn+1 ⊂ Cn.we also have

〈x0 − xn, xn − xn+1〉 ≥ 0. (4.8)

In fact, from (4.8), we have

‖xn − xn+1‖ = ‖xn − x0 + x0 − xn+1‖2

= ‖x0 − xn+1‖2 − ‖x0 − xn‖2 − 2〈x0 − xn, xn − xn+1〉

≤ ‖x0 − xn+1‖2 − ‖x0 − xn‖2.

(4.9)

Since limn→∞‖xn − x0‖ exists, we have that ‖xn − xn+1‖ → 0. On the other hand xn+1 ∈ Cn+1 ⊂
Cn implies that

‖zn − xn+1‖ ≤ ‖xn − xn+1‖ −→ 0. (4.10)
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Further, we have

lim
n→∞

‖zn − xn‖ = 0. (4.11)

From (4.3), we have

‖xn − Tnxn‖2 ≤ 1
δ2

(∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2
)

. (4.12)

On the other hand, we have

∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2 = ‖xn‖2 − ‖zn‖2 + 2〈zn − xn, p〉
≤ ‖xn − zn‖(‖xn‖ + ‖zn‖) + 2

∥
∥p

∥
∥‖xn − zn‖.

(4.13)

Then, we have

lim
n→∞

∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2 = 0. (4.14)

Therefore, we have

lim
n→∞

‖xn − Tnxn‖ = 0. (4.15)

We apply Lemma 2.2 to get

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + ‖Tnxn − Txn‖
≤ ‖xn − Tnxn‖ + sup{‖Tnx − Tx‖ : x ∈ {xn}} −→ 0.

(4.16)

Lastly, we show that the sequence {xn} converges to PF(T)∩EP(f)x0. Since {xn} is
bounded and H is reflexive, Ww(xn) is nonempty. Let w ∈ Ww(xn) be an arbitrary element.
Then a subsequence xni of {xn} converges weakly to w. From Lemma 2.1 and (4.16), we
obtain that ωw(xn) ⊂ F(T). Next, we show Ww(xn) ⊂ EP(f). Let p be an arbitrary element of
F(T) ∩ EP(f). From zn = Trnyn and ‖yn − p‖ ≤ ‖xn − p‖, we have

∥
∥zn − p

∥
∥
2 ≤ ∥

∥Tryn − Trp
∥
∥
2

≤ 〈Tryn − Trp, yn − p〉
= 〈zn − Trp, yn − p〉

=
1
2

(∥
∥zn − p

∥
∥
2 +

∥
∥yn − p

∥
∥
2 − ∥

∥yn − zn
∥
∥
2
)

=
1
2

(∥
∥zn − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥yn − zn
∥
∥
2
)

,

(4.17)
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and hence

∥
∥yn − zn

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥zn − p
∥
∥
2
. (4.18)

Therefore, we have

lim
n→∞

∥
∥yn − zn

∥
∥ = 0. (4.19)

As in the proof of Theorem 3.1, we have

f
(

zn, y
)

+
1
rn
〈y − zn, zn − yn〉 ≥ 0, ∀y ∈ C. (4.20)

By (A2), we have

1
rn

〈

y − zn, zn − yn

〉 ≥ f
(

y, zn
)

, (4.21)

and hence

〈y − zni ,
zni − yni

rni

〉 ≥ f
(

y, zni

)

. (4.22)

From (A4), we have

0 ≥ f
(

y,w
) ∀y ∈ C. (4.23)

Then, for t ∈ (0, 1] and y ∈ C, from (A1) and (A4), we also have

0 = f
(

ty + (1 − t)w, ty + (1 − t)w
)

≤ tf
(

ty + (1 − t)w,y
)

+ (1 − t)f
(

ty + (1 − t)w,w
)

≤ tf
(

ty + (1 − t)w,y
)

.

(4.24)

Taking t → 0+ and using (A3), we get

f
(

w,y
) ≥ 0 ∀y ∈ C, (4.25)

and hence w ∈ EP(f). Lemma 2.3 and (4.6) ensure the strong convergence of {xn} to
PF(T)∩EP(f)x0. This completes the proof.
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