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We prove the new versions of the weighted Hardy-Littlewood inequality and Caccioppoli-type
inequality for A-harmonic tensors. We also explore applications of our results to K-quasiregular
mappings and p-harmonic functions in Rn.

1. Introduction

The purpose of this paper is to prove the new versions of the weighted Hardy-Littlewood and
Caccioppoli-type inequalities for the A-harmonic tensors. Our results may have applications
in different fields, particularly, in the study of the integrability of solutions to theA-harmonic
equation in some domains. Roughly speaking, the A-harmonic tensors are solutions of the
A-harmonic equation, which is intimately connected to the fields, including potential theory,
quasiconformal mappings, and the theory of elasticity. The investigation of the A-harmonic
equation has developed rapidly in the recent years see [1–11].

In this paper, we still keep using the standard notations and symbols. All notations and
definitions involved in this paper can be found in [1] cited in the paper. We always assume
thatM is a bounded and convex domain in Rn, n ≥ 2. We write R = R1. Let e1, e2, . . . , en be
the standard unit basis of Rn and ∧l = ∧l (Rn) the linear space of l-vectors, generated by the
exterior products eI = ei1 ∧ ei2 ∧ · · · eil , corresponding to all ordered l-tuples I = (i1, i2, . . . , il),
1 ≤ i1 < i2 < · · · < il ≤ n, l = 0, 1, . . . , n. The Grassman algebra ∧ = ⊕∧l is a graded algebra with
respect to the exterior products. For α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧, the inner product in ∧

is given by 〈α, β〉 =
∑

αIβI , with summation over all l-tuples I = (i1, i2, . . . , il) and all integers
l = 0, 1, . . . , n. We define the Hodge star operator �: ∧ → ∧ by the rule �1 = e1 ∧ e2 ∧ · · · ∧ en
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and α ∧ �β = β ∧ �α = 〈α, β〉(�1) for all α, β ∈ ∧. The norm of α ∈ ∧ is given by the formula
|α|2 = 〈α, α〉 = �(α ∧ �α) ∈ ∧0 = R. The Hodge star is an isometric isomorphism on ∧ with
� : ∧l → ∧n−l and � � (−1)l(n−l) : ∧l → ∧l.

It is well known that a differential l-form ω on M is a de Rham current (see [12,
Chapter III]) onMwith values in ∧l(Rn). Let ΛlM be the lth exterior power of the cotangent
bundle. We use D′(M,Λl) to denote the space of all differential l-forms and Lp(ΛlM) to
denote the l-forms

ω(x) =
∑

I

ωI(x)dxI =
∑

ωi1i2···il(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil (1.1)

on M satisfying
∫
M|ωI |p < ∞ for all ordered l-tuples I, where I = (i1, i2, . . . , il), 1 ≤ i1 <

i2 < · · · < il ≤ n, and ωi1i2···il(x) are differentiable functions. Thus, Lp(ΛlM) is a Banach

space with norm ||ω||p,M = (
∫
M|ω(x)|pdx)1/p = (

∫
M(

∑
I |ωI(x)|2)p/2dx)

1/p
. Here, |u(x)| =

(
∑

I |ωI(x)|2)1/2 = (
∑

I |ωi1i2···il(x)|2)1/2. We denote the exterior derivative by d : D′(M,Λl) →
D′(M,Λl+1) for l = 0, 1, . . . , n. The Hodge codifferential operator d� : D′(M,Λl+1) →
D′(M,Λl) is given by d� = (−1)nl+1 � d� on D′(M,∧l+1), l = 0, 1, . . . , n. We use B to denote
a ball and σB, σ > 0, is the ball with the same center as B and with diam(σB) = σ diam(B).
We do not distinguish the balls from cubes in this paper. For any measurable set E ⊂ Rn, we
write |E| for the n-dimensional Lebesgue measure of E. We call w a weight if w ∈ L1

loc(R
n)

and w > 0 a.e.. For 0 < p < ∞, we write f ∈ Lp(ΛlE,wα) if the weighted Lp-norm of f over E
satisfies ||f ||p,E,wα = (

∫
E|f(x)|pw(x)αdx)1/p < ∞, where α is a real number. See [1] or [13] for

more properties of differential forms.
For any differential k-form u(x) =

∑
I ωI(x)dxI =

∑
ωi1i2···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

k = 1, 2, . . . , n, the vector-valued differential form ∇u is defined by

∇u =
(

∂u

∂x1
, . . . ,

∂u

∂xn

)

=

(
∑

I

∂uI

∂x1
dxI,

∑

I

∂uI

∂x2
dxI, . . . ,

∑

I

∂uI

∂xn
dxI

)

,

|∇u| =
⎛

⎝
n∑

j=1

∣
∣
∣
∣
∣

∂u

∂xj

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

=

⎛

⎝
n∑

j=1

∑

I

∣
∣
∣
∣
∣

∂uI

∂xj

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

.

(1.2)

Also, we all know that

du(x) =
n∑

k=1

∑

1≤i1<i2<···<ik

∂ωi1i2···ik(x)
∂xk

dxk ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik , k = 0, 1, . . . , n − 1,

|du(x)| =
(

n∑

k=1

∑

1≤i1<i2<···<ik

∣
∣
∣
∣
∂ωi1i2···ik(x)

∂xk

∣
∣
∣
∣

2
)1/2

.

(1.3)

There has been remarkable work in the study of the A-harmonic equation

d�A(x, dω) = 0 (1.4)
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for differential forms, where A : M × ∧l(Rn) → ∧l(Rn) satisfies the following conditions:

|A(x, ξ)| ≤ a|ξ|p−1, 〈A(x, ξ), ξ〉 ≥ |ξ|p (1.5)

for almost every x ∈ M and all ξ ∈ ∧l(Rn). Here a > 0 is a constant and 1 < p < ∞ is a
fixed exponent associated with (1.4). A solution to (1.4) is an element of the Sobolev space
W1

p,loc(Ω,∧l−1) such that
∫
Ω〈A(x, dω), dϕ〉 = 0 for all ϕ ∈ W1

p(M,∧l−1)with compact support.

Definition 1.1. We call u an A-harmonic tensor on M if u satisfies the A-harmonic equation
(1.4) on M.

A differential l-form u ∈ D′(M,∧l) is called a closed form if du = 0 on M. Similarly, a
differential l + 1-form v ∈ D′(M,∧l+1) is called a coclosed form if d�v = 0. The equation

A(x, du) = d�v (1.6)

is called the conjugate A-harmonic equation. Suppose that u is a solution to (1.4) in Ω. Then,
at least locally in a ball B, there exists a form v ∈ W1

q (B,∧l+1), 1/p + 1/q = 1, such that (1.6)
holds.

Definition 1.2. When u and v satisfy (1.6) on M, and A−1 exists on M, we call u and v
conjugate A-harmonic tensors on M.

Let Q ⊂ Rn be a cube or a ball. To each y ∈ Q there corresponds a linear
operator Ky : C∞(Q,∧l) → C∞(Q,∧l−1) defined by (Kyω)(x; ξ1, . . . , ξl) =

∫1
0t

l−1ω(tx + y −
ty;x − y, ξ1, . . . , ξl−1)dt and the decomposition ω = d(Kyω) + Ky(dω). The linear operator
TQ : C∞(Q,∧l) → C∞(Q,∧l−1) is defined by averaging Ky over all points y in QTQω =∫
Qϕ(y)Kyωdy, where ϕ ∈ C∞

0 (Q) is normalized by
∫
Qϕ(y)dy = 1. See [1] for more property

for the operator TQ. We define the l-form ωQ ∈ D′(Q,∧l) by ωQ = |Q|−1∫Qω(y)dy, l = 0, and
ωQ = d(TQω), l = 1, 2, . . . , n, for all ω ∈ Lp(Q,∧l), 1 ≤ p < ∞.

2. The Local Hardy-Littlewood Inequality

We first introduce the following two-weight class which is an extension of Ar-weight and
Ar(λ)-weights.

Definition 2.1. We say the weight (w1(x), w2(x)) satisfies theAr(λ,M) condition for r > 1 and
0 < λ < ∞, write (w1, w2) ∈ Ar(λ,M), if w1(x) > 0, w2(x) > 0 a.e., and

sup
B

(
1
|B|

∫

B

wλ
1dx

)(
1
|B|

∫

B

(
1
w2

)1/(r−1)
dx

)(r−1)
< ∞ (2.1)

for any ball B ⊂ M.

If we choose w1 = w2 in Definition 2.1, we obtain the usual Ar(λ)-weights introduced
in [7]. Also, if λ = 1 and w1 = w2, the above weight reduces to the well-known Ar-weight.
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See [1, 14, 15] for more properties of weights. We will also need the following generalized
Hölder inequality.

Lemma 2.2. Let 0 < α < ∞, 0 < β < ∞, and s−1 = α−1 + β−1. If f and g are measurable functions on
Rn, then

∥
∥fg

∥
∥
s,M ≤ ∥

∥f
∥
∥
α,M · ∥∥g∥∥β,M (2.2)

for any M ⊂ Rn.

The following two versions of the Hardy-Littlewood integral inequality (Theorem A
and Theorem B) appear in [16] and [9], respectively.

Theorem A. For each p > 0, there is a constant C such that

∫

D

|u − u(0)|pdx dy ≤ C

∫

D

|v − v(0)|pdx dy (2.3)

for all analytic functions f = u + iv in the unit disk D.

Theorem B. Let u and v be conjugate A-harmonic tensors in M ⊂ Rn, σ > 1, and 0 < s, t < ∞.
Then there exists a constant C, independent of u and v, such that

‖u − uB‖s,B ≤ C|B|β‖v − c‖q/pt,σB
(2.4)

for all balls B with σB ⊂ M. Here c is any form in W1
p,loc(M,Λ) with d�c = 0 and β = 1/s + 1/n −

(1/t + 1/n)q/p.

Now we prove the following local two-weight Hardy-Littlewood integral inequality.

Theorem 2.3. Let u and v be conjugate A-harmonic tensors on M ⊂ Rn and (w1, w2) ∈ Ar(λ,M)
for some r > 1 and λ > 0. Let 0 < s, t < ∞. Then there exists a constant C, independent of u and v,
such that

(∫

B

|u − uB|swλ/α
1 dx

)1/s

≤ C|B|γ
(∫

σB

|v − c|twpt/αqs

2 dx

)q/pt

(2.5)

for all balls B with σB ⊂ M ⊂ Rn, σ > 1 and α > 1. Here c is any form inW1
q,loc(M,Λ) with d∗c = 0

and γ = 1/s + 1/n − (1/t + 1/n)q/p.

Note that (2.5) can be written as the following symmetric form:

(
1
|B|

∫

B

|u − uB|swλ/α
1 dx

)1/qs

≤ C|B|(1/q−1/p)/n
(

1
|B|

∫

σB

|v − c|twpt/αqs

2 dx

)1/pt

. (2.6′)
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Proof. Let k = αs/(α − 1). Since α > 1, then k > 0 and k > s. Applying the Hölder inequality,
we have

(∫

B

|u − uB|swλ/α
1 dx

)1/s

=
(∫

B

(
|u − uB|wλ/αs

1

)s
dx

)1/s

≤ ‖u − uB‖k,B
(∫

B

w
kλ/α(k−s)
1 dx

)(k−s)/ks

= ‖u − uB‖k,B
(∫

B

wλ
1dx

)1/αs

.

(2.6)

Choose m = αqst/(αqs + pt(r − 1)), thenm < t. By Theorem B we have

‖u − uB‖k,B ≤ C1|B|β‖v − c‖q/pm,σB, (2.7)

where β = 1/k+1/n−(1/m+1/n)q/p. Since 1/m = 1/t+(t−m)/mt, by the Hölder inequality
again, we obtain

‖v − c‖m,σB =
(∫

σB

(
|v − c|wp/αqs

2 w
−p/αqs
2

)m
dx

)1/m

≤
(∫

σB

|v − c|twpt/αqs

2 dx

)1/t
(∫

σB

(
1
w2

)pmt/αqs(t−m)

dx

)(t−m)/mt

=
(∫

σB

|v − c|twpt/αqs

2 dx

)1/t
(∫

σB

(
1
w2

)1/(r−1)
dx

)p(r−1)/αqs
.

(2.8)

Hence

‖v − c‖q/pm,σB ≤
(∫

σB

(
1
w2

)1/(r−1)
dx

)(r−1)/αs(∫

σB

|v − c|twpt/αqs

2 dx

)q/pt

. (2.9)

Combining (2.6), (2.7), and (2.9) yields

(∫

B

|u − uB|swλ/α
1 dx

)1/s

≤ C1|B|β
(∫

B

wλ
1dx

)1/αs
(∫

σB

(
1
w2

)1/(r−1)
dx

)(r−1)/αs(∫

σB

|v − c|twpt/αqs

2 dx

)q/pt

.

(2.10)
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Using the condition that (w1, w2) ∈ Ar(λ,M), we obtain

(∫

B

wλ
1dx

)1/αs
(∫

σB

(
1
w2

)1/(r−1)
dx

)(r−1)/αs

≤ |σB|r/αs
((

1
|σB|

∫

B

wλ
1dx

)(
1

|σB|
∫

σB

(
1
w2

)1/(r−1)
dx

))1/αs

≤ C2|σB|r/αs

= C3|B|r/αs.

(2.11)

Putting (2.11) into (2.10) and noting that β + r/αs = 1/k + 1/n − (1/m + 1/n)q/p + r/αs =
1/s + 1/n − (1/t + 1/n)q/p, we have

(∫

B

|u − uB|swλ/α
1 dx

)1/s

≤ C|B|γ
(∫

σB

|v − c|twpt/αqs

2 dx

)q/pt

, (2.12)

where γ = 1/s + 1/n − (1/t + 1/n)q/p. We have completed the proof of Theorem 2.3.

Note that in Theorem 2.3, α > 1 is arbitrary. Hence, if we choose α to be some
special values, we will have some different versions of the Hardy-Littlewood inequality. For
example, if we let α = λ, λ > 1. By Theorem 2.3, we have

(∫

B

|u − uB|sw1dx

)1/s

≤ C|B|γ
(∫

σB

|v − c|twpt/λqs

2 dx

)q/pt

(2.13)

for all balls B with σB ⊂ M ⊂ Rn, σ > 1, and γ = 1/s + 1/n − (1/t + 1/n)q/p.
If we choose α = p in Theorem 2.3, we obtain the following result:

(∫

B

|u − uB|swλ/p

1 dx

)1/s

≤ C|B|γ
(∫

σB

|v − c|twt/qs

2 dx

)q/pt

(2.14)

for all balls B with σB ⊂ M ⊂ Rn, σ > 1, and γ = 1/s + 1/n − (1/t + 1/n)q/p.
As an application of Theorem 2.3, we have the following example.

Example 2.4. Let f(x) = (f1, f2, . . . , fn) be K-quasiregular in Rn, then

u = fldf1 ∧ df2 ∧ · · · ∧ dfl−1, v = ∗fl+1dfl+2 ∧ · · · ∧ dfn, (2.15)
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l = 1, 2, . . . , n − 1, are conjugate A-harmonic tensors with p = n/l and q = n/(n − l), where A
is some operator satisfying (1.5). Then by Theorem 2.3, we obtain

(∫

B

∣
∣
∣fldf1 ∧ df2 ∧ · · · ∧ dfl−1 −

(
fldf1 ∧ df2 ∧ · · · ∧ dfl−1

)

B

∣
∣
∣
s
wλ/α

1 dx

)1/s

≤ C|B|γ
(∫

σB

| ∗ fl+1dfl+2 ∧ · · · ∧ dfn − c|twpt/αqs

2 dx

)q/pt

,

(2.16)

where C is independent of f , γ = 1/s + 1/n − (1/t + 1/n)q/p and d∗c = 0.

For more examples of conjugate harmonic tensors, see [3]. We will have different
versions of the global two-weight Hardy-Littlewood inequality if we choose α and λ to be
some special values as we did in the local case. Recently, Xing and Ding introduced the
following A(α, β, γ ;E)-weights in [17].

Definition 2.5. We say that a measurable function g(x) defined on a subset E ⊂ Rn satisfies the
A(α, β, γ ;E)-condition for some positive constants α, β, γ , write g(x) ∈ A(α, β, γ ;E) if g(x) > 0
a.e., and

sup
B

(
1
|B|

∫

B

gαdx

)(
1
|B|

∫

B

g−βdx
)γ/β

< ∞, (2.17)

where the supremum is over all balls B ⊂ E. We say g(x) satisfies the A(α, β;E)-condition if
(2.17) holds for γ = 1 and write g(x) ∈ A(α, β;E) = A(α, β, 1;E).

We should notice that there are three parameters in the definition of the A(α, β, γ ;E)-
weights. If we choose some special values for these parameters, we may obtain some existing
weighted classes. For example, it is easy to see that theA(α, β, γ ;E)-class reduces to the usual
Ar(E)-class if α = γ = 1 and β = 1/(r − 1). Moreover, it has been proved in [17] that the
Ar(E)-weight is a proper subset of the A(α, β, γ ;E)-weight. Using the similar method to the
proof of Theorem 1.5.5 in [1], we can prove the following version of the Hardy-Littlewood
inequality. Considering the length of the paper, we do not include the proof here.

Theorem 2.6. Let u and v be conjugate A-harmonic tensors on M ⊂ Rn and g(x) ∈ A(α, β, α;M)
with α > 1 and β > 0. Let 0 < s, t < ∞. Then, there exists a constant C, independent of u and v, such
that

(∫

B

|u − uB|sg dx

)1/s

≤ C|B|γ
(∫

σB

|v − c|tgpt/qsdx

)q/pt

(2.18)

for all balls B with σB ⊂ M ⊂ Rn and σ > 1. Here c is any form in W1
q,loc(M,Λ) with d∗c = 0 and

γ = 1/s + 1/n − (1/t + 1/n)q/p.
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Example 2.7. Let

u(x) =
3

√
x2
1 + x2

2 + x2
3

(2.19)

be a harmonic function in R3 and v a 2-form in R3 defined by

v = v3dx1 ∧ dx2 + v2dx1 ∧ dx3 + v1dx2 ∧ dx3, (2.20)

where v1, v2, and v3 are defined as follows:

v1 =
x2x3

√∑
x2
i

x4
2 − x4

3
∏

i<j

(
x2
i + x2

j

) =
x2x3

√
x2
1 + x2

2 + x2
3

x2
2 − x2

3
(
x2
1 + x2

2

)(
x2
1 + x2

3

) ,

v2 =
x1x3

√∑
x2
i

x4
1 − x4

3
∏

i<j

(
x2
i + x2

j

) =
x1x3

√
x2
1 + x2

2 + x2
3

x2
1 − x2

3
(
x2
1 + x2

2

)(
x2
2 + x2

3

) ,

v3 =
x1x2

√∑
x2
i

x4
1 − x4

2
∏

i<j

(
x2
i + x2

j

) =
x1x2

√
x2
1 + x2

2 + x2
3

x2
1 − x2

2
(
x2
1 + x2

3

)(
x2
2 + x2

3

) .

(2.21)

Then u and v are a pair of conjugate harmonic tensors; see [3]. Hence, the Hardy-Littlewood
inequality is applicable. Using inequality (2.5) with w1 = w2 = 1 and c = 0 over any ball
B, we can obtain the norm comparison inequality for u and v defined by (2.19) and (2.20),
respectively.

3. The Local Caccioppoli-Type Inequality

The purpose of this section is to obtain some estimates which give upper bounds for the Lp-
norm of∇u or du in terms of the corresponding norm u or u−c, where u is a differential form
satisfying the A-harmonic equation (1.4) and c is any closed form. These kinds of estimates
are called the Caccioppoli-type estimates or the Caccioppoli inequalities. From [9], we can
obtain the following Caccioppoli-type inequality.

Theorem C. Let u be an A-harmonic tensor on M and let σ > 1. Then there exists a constant C,
independent of u, such that

‖du‖s,B ≤ Cdiam (B)−1‖u − c‖s,σB (3.1)

for all balls or cubes B with σB ⊂ M and all closed forms c. Here 1 < s < ∞.

The following weak reverse Hölder inequality appears in [9].
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Theorem D. Let u be an A-harmonic tensor in Ω, σ > 1 and 0 < s, t < ∞. Then there exists a
constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (3.2)

for all balls or cubes B with σB ⊂ Ω.

Now, we prove the following local two-weight Caccioppoli-type inequality for A-
harmonic tensors.

Theorem 3.1. Let u ∈ D′(M,∧l), l = 0, 1, . . . , n, be an A-harmonic tensor on M ⊂ Rn, ρ > 1 and
0 < α < 1. Assume that 1 < s < ∞ is a fixed exponent associated with the A-harmonic equation and
(w1, w2) ∈ Ar(λ,M) for some r > 1 and λ > 0. Then there exists a constant C, independent of u,
such that

(∫

B

|du|swαλ
1 dx

)1/s

≤ C

diam(B)

(∫

ρB

|u − c|swα
2dx

)1/s

(3.3)

for all balls B with ρB ⊂ M and all closed forms c.

Proof. Choose t = s/(1 − α), then 1 < s < t. Since 1/s = 1/t + (t − s)/st, by Hölder inequality
and Theorem C, we have

(∫

B

|du|swαλ
1 dx

)1/s

=
(∫

B

(
|du|wαλ/s

1

)s
dx

)1/s

≤
(∫

B

|du|tdx
)1/t(∫

B

(
wαλ/s

1

)st/(t−s)
dx

)(t−s)/st

≤ ‖du‖t,B ·
(∫

B

wλ
1dx

)α/s

= C1 diam (B)−1‖u − c‖t,σB
(∫

B

wλ
1dx

)α/s

(3.4)

for all balls B with σB ⊂ Ω and all closed forms c. Since c is a closed form and u is an A-
harmonic tensor, then u− c is still anA-harmonic tensor. Takingm = s/(1+ α(r − 1)), we find
that m < s < t. Applying Theorem D yields

‖u − c‖t,σB ≤ C2|B|(m−t)/mt‖u − c‖m,σ2B

= C2|B|(m−t)/mt‖u − c‖m,ρB,
(3.5)

where ρ = σ2. Substituting (3.5) in (3.4), we have

(∫

B

|du|swαλ
1 dx

)1/s

≤ C3 diam (B)−1|B|(m−t)/mt‖u − c‖m,ρB

(∫

B

wλ
1dx

)α/s

. (3.6)
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Now 1/m = 1/s + (s −m)/sm, by the Hölder inequality again, we obtain

‖u − c‖m,ρB =

(∫

ρB

|u − c|mdx
)1/m

=

(∫

ρB

(
|u − c|wα/s

2 w−α/s
2

)m
dx

)1/m

≤
(∫

ρB

|u − c|swα
2dx

)1/s(∫

ρB

(
1
w2

)1/(r−1)
dx

)α(r−1)/s

(3.7)

for all balls B with ρB ⊂ Ω and all closed forms c. Combining (3.6) and (3.7), we obtain

(∫

B

|du|swαλ
1 dx

)1/s

≤ C3 diam (B)−1|B|(m−t)/mt‖w1‖αλ/sλ,B

∥
∥
∥
∥

1
w2

∥
∥
∥
∥

α/s

1/(r−1),ρB

(∫

ρB

|u − c|swα
2dx

)1/s

.

(3.8)

Since (w1, w2) ∈ Ar(λ,M), then we have

‖w1‖αλ/sλ,B
·
∥
∥
∥
∥

1
w2

∥
∥
∥
∥

α/s

1/(r−1),ρB
≤
⎛

⎝

(∫

ρB

wλ
1dx

)(∫

ρB

(
1
w2

)1/(r−1)
dx

)r−1⎞

⎠

α/s

=

⎛

⎝
∣
∣ρB

∣
∣r
(

1
∣
∣ρB

∣
∣

∫

ρB

wλ
1dx

)(
1

∣
∣ρB

∣
∣

∫

ρB

(
1
w2

)1/(r−1)
dx

)r−1⎞

⎠

α/s

≤ C4|B|αr/s.
(3.9)

Substituting (3.9) in (3.8), we find that

(∫

B

|du|swαλ
1 dx

)1/s

≤ C

diam(B)

(∫

ρB

|u − c|swα
2dx

)1/s

(3.10)

for all balls B with ρB ⊂ M and all closed forms c. This ends the proof of Theorem 3.1.
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Note that if λ = 1, then Ar(λ,M) = Ar(1,M) becomes the usual Ar(M) weight. See
[14] for the properties of Ar(M) weights. Thus, choosing λ = 1 and w1 = w2 in Theorem 3.1,
we have the following Ar(M)-weighted Caccioppoli-type inequality.

Theorem 3.2. Let u ∈ D′(M,∧l), l = 0, 1, . . . , n, be an A-harmonic tensor in a domain M ⊂ Rn,
ρ > 1 and 0 < α < 1. Assume that 1 < s < ∞ is a fixed exponent associated with the A-harmonic
equation and w ∈ Ar(M) for some r > 1. Then there exists a constant C, independent of u, such that

(∫

B

|du|swαdx

)1/s

≤ C

diam(B)

(∫

ρB

|u − c|swαdx

)1/s

(3.11)

for all balls B with ρB ⊂ M and all closed forms c.

We also need to note that in Theorem 3.1α is a parameter with 0 < α < 1. Thus, we
will obtain different versions of the Caccioppoli-type inequality if we let α be some particular
values. For example, putting α = 1/s, we have the following result.

Theorem 3.3. Let u ∈ D′(M,∧l), l = 0, 1, . . . , n, be an A-harmonic tensor in a domain M ⊂ Rn

and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with the A-harmonic equation and
(w1, w2) ∈ Ar(λ,M) for some r > 1 and λ > 0. Then there exists a constant C, independent of u,
such that

(∫

B

|du|swλ/s
1 dx

)1/s

≤ C

diam(B)

(∫

ρB

|u − c|sw1/s
2 dx

)1/s

(3.12)

for all balls B with ρB ⊂ M and all closed forms c.

If we choose α = 1/s in Theorem 3.2, then 0 < α < 1 since 1 < s < ∞. Thus, Theorem 3.2
reduces to the following version.

Theorem 3.4. Let u ∈ D′(M,∧l), l = 0, 1, . . . , n, be an A-harmonic tensor in a domain M ⊂ Rn

and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated with the A-harmonic equation and
w ∈ Ar(M) for some r > 1. Then there exists a constant C, independent of u, such that

(∫

B

|du|sw1/sdx

)1/s

≤ C

diam(B)

(∫

ρB

|u − c|sw1/sdx

)1/s

(3.13)

for all balls B with ρB ⊂ M and all closed forms c.

Example 3.5. Let A : M × ∧l(Rn) → ∧l(Rn) be an operator defined by A(x, ξ) = ξ|ξ|p−2. Then
A satisfies the condition (1.5). Equation (1.4) reduces to the p-harmonic equation

d�
(
du|u|p−2

)
= 0 (3.14)
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and (1.6) reduces to the conjugate p-harmonic equation

du|u|p−2 = d�v (3.15)

for differential forms, respectively. If u is a function (0-form), (3.14) reduces to the usual p-
harmonic equation

div
(
∇u|∇u|p−2

)
= 0. (3.16)

Also, (3.16) becomes the usual Laplace equation if we let p = 2 in (3.16). Now assume that
u is a solution to (3.14). By theorems obtained above, we know that u satisfies (3.3), (3.11),
(3.12), and (3.13), respectively.

The following example appeared in [18] which shows us how to use the Caccioppoli
inequality to estimate the norm of the harmonic function u in R2.

Example 3.6. Let u(x, y) be a function (0-form) defined in R2 by

u
(
x, y

)
=

1
π

(

arctan
y

x − 1
− arctan

y

x + 1

)

. (3.17)

It is easy to check that u(x, y) satisfies the Laplace equation uxx(x, y) + uyy(x, y) = 0 in the
upper half-plane; that is, u(x, y) is a harmonic function in the upper half-plane. Let r > 0 be
a constant, (x0, y0) be a fixed point with y0 > r, and B = {(x, y) : (x − x0)

2 + (y − y0)
2 ≤

r2}. To obtain the upper bound for the Ls-norm ‖du(x, y)‖s,B with s > 1, it would be very
complicated if we evaluate the integral (

∫
B|du(x, y)|sdx ∧ dy)1/s directly. However, using

Caccioppoli inequality (3.11)withw(x) = 1 and n = 2, we can easily obtain the upper bound
of the norm ‖du(x, y)‖s,B as follows. First, we know that |B| = πr2 and

∣
∣u
(
x, y

)∣
∣ ≤ 1

π

∣
∣
∣
∣arctan

y

x − 1
− arctan

y

x + 1

∣
∣
∣
∣

≤ 1
π

∣
∣
∣
∣arctan

y

x − 1

∣
∣
∣
∣ +

∣
∣
∣arctan

y

x + 1

∣
∣
∣

≤ 1
π

(π

2
+
π

2

)
= 1.

(3.18)
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Applying (3.11) and (3.18), we have

∥
∥du(x, y)

∥
∥
s,B =

(∫

B

∣
∣du

(
x, y

)∣
∣sdx ∧ dy

)1/s

≤ C|B|−1/2
(∫

σB

∣
∣u
(
x, y

)∣
∣sdx ∧ dy

)1/s

≤ Cπ−1/2r−1
(∫

σB

dx ∧ dy

)1/s

= Cπ−1/2r−1
(
π(σr)2

)1/s

= Cπ1/s−1/2r2/s−1σ2/s

= C
(
π2−sr4−2sσ4

)1/2s
.

(3.19)

4. The Global Hardy-Littlewood Inequality

Finally, we should notice that the local Hardy-Littlewood inequality can be extended into the
global case in the John domain. A proper subdomainΩ ⊂ Rn is called a δ-John domain, δ > 0,
if there exists a point x0 ∈ Ωwhich can be joined with any other point x ∈ Ω by a continuous
curve γ ⊂ Ω so that

d(ξ, ∂Ω) ≥ δ|x − ξ| (4.1)

for each ξ ∈ γ . Here d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω.
Using the properties of John domain and the well-known Covering Lemma, we can

prove the following global two-weight Hardy-Littlewood inequality.

Theorem 4.1. Let u ∈ D′(Ω,Λ0) and v ∈ D′(Ω,Λ2) be conjugate A-harmonic tensors in a John
domain Ω. Assume that q ≤ p, v − c ∈ Lt(Ω,Λ2), (w1, w2) ∈ Ar(λ,Ω), and w1 ∈ Ar(Ω) for some
r > 1 and λ > 0. If s is defined by s = npt/(nq + t(q − p)), 0 < t < ∞, then there exists a constant
C, independent of u and v, such that

(∫

Ω

∣
∣u − uQ0

∣
∣swλ/α

1 dx

)1/s

≤ C

(∫

Ω
|v − c|twpt/αqs

2 dx

)q/pt

(4.2)

for any real number α > 1. Here c is any form in W1
q,loc(Ω,Λ) with d∗c = 0 and Q0 ⊂ Ω is a fixed

cube.

It is easy to see that our global results can also be used to study K-quasiregular
mappings and p-harmonic functions in Rn as we did in the local cases. Similar to the local
case, some global versions of the two-weight inequalities will be obtained if we choose λ and
α to be some special values in Theorem 4.1. Considering the length of the paper, we do not
list these similar results here.
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