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Poincaré Inequalities with Luxemburg Norms in
Lϕ(m)-Averaging Domains

Yuming Xing

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Yuming Xing, xyuming@hit.edu.cn

Received 28 November 2009; Accepted 29 January 2010

Academic Editor: Shusen Ding

Copyright q 2010 Yuming Xing. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We prove both local and global Poincaré inequalities with Luxemburg norms for differential forms
in Lϕ(m)-averaging domains, which can be considered as generalizations of the existing versions
of Poincaré inequalities.

1. Introduction

The Poincaré-type inequality has been playing a crucial role in analysis and related fields
during the last several decades. Many versions of the Poincaré inequality have been
developed and used in different areas of mathematics, including PDEs and analysis. For
example, in 1989, Staples in [1] proved the following Poincaré inequality for Sobolev
functions in Ls-averaging domains. IfD is an Lp-averaging domain, p ≥ n, then there exists a
constant C, such that

(
1
|D|

∫
D

|u − uD|pdm
)1/p

≤ C|D|1/n
(

1
|D|

∫
D

|∇u|pdm
)1/p

(1.1)

for each Sobolev function u defined in D. In [2], a global Poincaré inequality for solutions
of the A-harmonic equation was proved over the John domains; see [3–7] for more results
about the Poincaré inequality. However, most of these inequalities are developed with the Lp-
norms. In this paper, we will establish the Poincaré inequalities with the Luxemburg norms in
a relative large class of domains, the Lϕ(m)-averaging domain, so that many existing versions
of the Poincaré inequality are special cases of our new results.

Let Ω be a bounded domain in R
n, n ≥ 2, and let B and σB be the balls with the

same center and diam(σB) = σ diam(B) throughout this paper. The n-dimensional Lebesgue
measure of a set E ⊆ R

n is denoted by |E|. For a function u, we denote the average of
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u over B by uB = (1/|B|)∫Budm. All integrals involved in this paper are the Lebesgue
integrals. Differential forms are generalizations of differentiable functions inR

n. For example,
the function u(x1, x2, . . . , xn) is called a 0-form. A differential 1-form u(x) in R

n can be
written as u(x) =

∑n
i=1 ui(x1, x2, . . . , xn)dxi, where the coefficient functions ui(x1, x2, . . . , xn),

i = 1, 2, . . . , n, are differentiable. Similarly, a differential k-form u(x) can be expressed as

u(x) =
∑
I

uI(x)dxI =
∑

ui1i2···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik , (1.2)

where I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n. Let ∧l = ∧l( Rn) be the set of
all l-forms in R

n, D′(Ω,∧l) be the space of all differential l-forms in Ω, and let Lp(Ω,∧l)
be the l-forms u(x) =

∑
I uI(x)dxI in Ω satisfying

∫
Ω|uI |p < ∞ for all ordered l-tuples I,

l = 1, 2, . . . , n. We denote the exterior derivative by d and the Hodge star operator by �. The
Hodge codifferential operator d� is given by d� = (−1)nl+1 �d�, l = 1, 2, . . . , n. We consider here
the nonlinear partial differential equation

d�A(x, du) = B(x, du) (1.3)

which is called nonhomogeneous A-harmonic equation, where A : Ω × ∧l(Rn) → ∧l(Rn) and
B : Ω × ∧l(Rn) → ∧l−1(Rn) satisfy the conditions |A(x, ξ)| ≤ a|ξ|p−1, A(x, ξ) · ξ ≥ |ξ|p and
|B(x, ξ)| ≤ b|ξ|p−1 for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a, b > 0 are constants and
1 < p < ∞ is a fixed exponent associated with (1.3). A solution to (1.3) is an element of the
Sobolev spaceW1,p

loc (Ω,∧l−1) such that
∫
ΩA(x, du) ·dϕ+B(x, du) ·ϕ = 0 for all ϕ ∈ W

1,p
loc (Ω,∧l−1)

with compact support. If u is a function (0-form) in R
n, (1.3) reduces to

divA(x,∇u) = B(x,∇u). (1.4)

If the operator B = 0, (1.3) becomes

d�A(x, du) = 0 (1.5)

which is called the (homogeneous) A-harmonic equation. Let A : Ω × ∧l(Rn) → ∧l(Rn) be
defined by A(x, ξ) = ξ|ξ|p−2 with p > 1. Then, A satisfies the required conditions and (1.5)
becomes the p-harmonic equation d�(du|du|p−2) = 0 for differential forms. See [8–12] for
recent results on the A-harmonic equations and related topics.

2. Local Poincaré Inequalities

In this section, we establish the local Poincaré inequalities for the differential forms in any
bounded domain. A continuously increasing function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 is
called an Orlicz function. The Orlicz space Lϕ(Ω) consists of all measurable functions f on
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Ω such that
∫
Ωϕ(|f |/λ)dx < ∞ for some λ = λ(f) > 0. Lϕ(Ω) is equipped with the nonlinear

Luxemburg functional

∥∥f∥∥ϕ(Ω) = inf

{
λ > 0 :

∫
Ω
ϕ

(∣∣f∣∣
λ

)
dx ≤ 1

}
. (2.1)

A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young function, then
‖ · ‖ϕ defines a norm in Lϕ(Ω), which is called the Luxemburg norm.

Definition 2.1 (see [13]). We say that a Young function ϕ lies in the classG(p, q, C), 1 ≤ p < q <
∞, C ≥ 1, if (i) 1/C ≤ ϕ(t1/p)/g(t) ≤ C and (ii) 1/C ≤ ϕ(t1/q)/h(t) ≤ C for all t > 0, where g is
a convex increasing function and h is a concave increasing function on [0,∞).

From [13], each of ϕ, g and h in above definition is doubling in the sense that its values
at t and 2t are uniformly comparable for all t > 0, and the consequent fact that

C1t
q ≤ h−1(ϕ(t)) ≤ C2t

q, C1t
p ≤ g−1(ϕ(t)) ≤ C2t

p, (2.2)

where C1 and C2 are constants. Also, for all 1 ≤ p1 < p < p2 and α ∈ R , the function ϕ(t) =
tplogα+t belongs to G(p1, p2, C) for some constant C = C(p, α, p1, p2). Here log+(t) is defined by
log+(t) = 1 for t ≤ e; and log+(t) = log(t) for t > e. Particularly, if α = 0, we see that ϕ(t) = tp

lies in G(p1, p2, C), 1 ≤ p1 < p < p2. We will need the following Reverse Hölder inequality.

Lemma 2.2 (see [8]). Let u be a solution of the nonhomogeneous A-harmonic equation (1.3) in
a domain Ω an d let 0 < s, t < ∞. Then, there exists a constant C, independent of u, such that
‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB for all balls B with σB ⊂ Ω for some σ > 1.

We first prove the following generalized Poincaré inequality that will be used to
establish the global inequality.

Theorem 2.3. Let ϕ be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, and Ω
be a bounded domain. Assume that ϕ(|u|) ∈ L1

loc(Ω, m) and u is a solution of the nonhomogeneous
A-harmonic equation (1.3) inΩ, ϕ(|du|) ∈ L1

loc(Ω, m). Then for any ball B with σB ⊂ Ω, there exists
a constant C, independent of u, such that

∫
B

ϕ(|u − uB|)dm ≤ C

∫
σB

ϕ(|du|)dm. (2.3)

Proof. From [7, (3.5)], we have

‖u − uB‖s,B ≤ C1|B|1+1/n‖du‖s,B (2.4)

for any s > 0. Note that if u is a solution of the nonhomogeneous A-harmonic equation (1.3),
then u − uB is also a solution of (1.3) since uB is a closed form. From Lemma 2.2, it follows
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that

(∫
B

|u − uB|qdm
)1/q

≤ C2|B|(p−q)/pq
(∫

σB

|u − uB|pdm
)1/p

(2.5)

for any positive numbers p and q. From (2.5), (i) in Definition 2.1, and using the fact that ϕ is
an increasing function, Jensen’s inequality, and noticing that ϕ and g are doubling, we have

ϕ

((∫
B

|u − uB|qdm
)1/q

)
≤ ϕ

(
C2|B|(p−q)/pq

(∫
σB

|u − uB|pdm
)1/p

)

≤ ϕ

(
C3|B|1+1/n+(p−q)/pq

(∫
σB

|du|pdm
)1/p

)

≤ ϕ

((
C

p

3 |B|p(1+1/n)+(p−q)/q
∫
σB

|du|pdm
)1/p

)

≤ C4g

(
C

p

3 |B|p(1+1/n)+(p−q)/q
∫
σB

|du|pdm
)

= C4g

(∫
σB

C
p

3 |B|p(1+1/n)+(p−q)/q|du|pdm
)

≤ C4

∫
σB

g
(
C

p

3 |B|p(1+1/n)+(p−q)/q|du|p
)
dm.

(2.6)

Since p ≥ 1, then 1 + 1/n + (p − q)/pq > 0. Hence, we have |B|1+1/n+(p−q)/pq ≤ |Ω|1+1/n+(p−q)/pq ≤
C5. From (i) in Definition 2.1, we find that g(t) ≤ C6ϕ(t1/p). Thus,

∫
σB

g
(
C

p

3 |B|p(1+1/n)+(p−q)/q|du|p
)
dm ≤ C6

∫
σB

ϕ
(
C3|B|1+1/n+(p−q)/pq|du|

)
dm

≤ C6

∫
σB

ϕ(C7|du|)dm.

(2.7)

Combining (2.6) and (2.7) yields

ϕ

((∫
B

|u − uB|qdm
)1/q

)
≤ C8

∫
σB

ϕ(C7|du|)dm. (2.8)
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Using Jensen’s inequality for h−1, (2.2), and noticing that ϕ and h are doubling, we obtain

∫
B

ϕ(|u − uB|)dm = h

(
h−1

(∫
B

ϕ(|u − uB|)dm
))

≤ h

(∫
B

h−1(ϕ(|u − uB|)
)
dm

)

≤ h

(
C9

∫
B

|u − uB|qdm
)

≤ C10ϕ

((
C9

∫
B

|u − uB|qdm
)1/q

)

≤ C11ϕ

((∫
B

|u − uB|qdm
)1/q

)
.

(2.9)

Substituting (2.8) into (2.9) and noticing that ϕ is doubling, we have

∫
B

ϕ(|u − uB|)dm ≤ C12

∫
σB

ϕ(C7|du|)dm ≤ C13

∫
σB

ϕ(|du|)dm. (2.10)

We have completed the proof of Theorem 2.3.

Since each of ϕ, g, and h in Definition 2.1 is doubling, from the proof of Theorem 2.3
or directly from (2.3), we have

∫
B

ϕ

( |u − uB|
λ

)
dm ≤ C

∫
σB

ϕ

( |du|
λ

)
dm (2.11)

for all balls B with σB ⊂ Ω and any constant λ > 0. From (2.1) and (2.11), the following
Poincaré inequality with the Luxemburg norm

‖u − uB‖ϕ(B) ≤ C‖du‖ϕ(σB) (2.12)

holds under the conditions described in Theorem 2.3.

Theorem 2.4. Let ϕ be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, let Ω
be a bounded domain and q(n − p) < np. Assume that u ∈ D′(Ω,∧l) is any differential l-form,
l = 0, 1, . . . , n − 1, ϕ(|u|) ∈ L1

loc(Ω, m) and ϕ(|du|) ∈ L1
loc(Ω, m). Then for any ball B ⊂ Ω, there

exists a constant C, independent of u, such that

∫
B

ϕ(|u − uB|)dm ≤ C

∫
B

ϕ(|du|)dm. (2.13)
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Proof. From (2.9), it follows that

∫
B

ϕ(|u − uB|)dm ≤ C1ϕ

((∫
B

|u − uB|qdm
)1/q

)
. (2.14)

If 1 < p < n, by assumption, we have q < np/(n − p). Using the Poincaré-type inequality for
differential forms

(∫
B

|u − uB|np/(n−p)dm
)(n−p)/np

≤ C2

(∫
B

|du|pdm
)1/p

, (2.15)

we find that

(∫
B

|u − uB|qdm
)1/q

≤ C3

(∫
B

|du|pdm
)1/p

. (2.16)

Note that the Lp-norm of |u − uB| increases with p and np/(n − p) → ∞ as p → n, and it
follows that (2.16) still holds when p ≥ n. Since ϕ is increasing, from (2.14) and (2.16), we
obtain

∫
B

ϕ(|u − uB|)dm ≤ C1ϕ

(
C3

(∫
B

|du|pdm
)1/p

)
. (2.17)

Applying (2.17), (i) in Definition 2.1, Jensen’s inequality, and noticing that ϕ and g are
doubling, we have

∫
B

ϕ(|u − uB|)dm ≤ C1ϕ

(
C3

(∫
B

|du|pdm
)1/p

)

≤ C1g

(
C4

(∫
B

|du|pdm
))

≤ C5

∫
B

g
(|du|p)dm.

(2.18)

Using (i) in Definition 2.1 again yields

∫
B

g
(|du|p)dm ≤ C6

∫
B

ϕ(|du|)dm. (2.19)
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Combining (2.18) and (2.19), we obtain

∫
B

ϕ(|u − uB|)dm ≤ C7

∫
B

ϕ(|du|)dm. (2.20)

The proof of Theorem 2.4 has been completed.

Similar to (2.12), from (2.1) and (2.13), the following Luxemburg norm Poincaré
inequality

‖u − uB‖ϕ(B) ≤ C‖du‖ϕ(B) (2.21)

holds if all conditions of Theorem 2.4 are satisfied.

3. Global Poincaré Inequalities

In this section, we extend the local Poincaré inequalities into the global cases in the following
Lϕ(m)-averaging domains.

Definition 3.1 (see [14]). Let ϕ be an increasing convex function on [0,∞) with ϕ(0) = 0. We
call a proper subdomain Ω ⊂ R

n an Lϕ(m)-averaging domain, if m(Ω) < ∞ and there exists
a constant C such that

∫
Ω
ϕ(τ |u − uB0 |)dm ≤ C sup

B⊂Ω

∫
B

ϕ(σ|u − uB|)dm (3.1)

for some ball B0 ⊂ Ω and all u such that ϕ(|u|) ∈ L1
loc(Ω, m), where τ, σ are constants with

0 < τ < ∞, 0 < σ < ∞ and the supremum is over all balls B ⊂ Ω.

From above definition we see that Ls-averaging domains and Ls(m)-averaging
domains are special Lϕ(m)-averaging domains when ϕ(t) = ts in Definition 3.1. Also, uniform
domains and John domains are very special Lϕ(m)-averaging domains; see [15–18] for more
results about domains.

Theorem 3.2. Let ϕ be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, an d let Ω
be any bounded Lϕ(m)-averaging domain. Assume that ϕ(|u|) ∈ L1(Ω, m) and u is a solution of the
nonhomogeneous A-harmonic equation (1.4) inΩ, ϕ(|du|) ∈ L1(Ω, m). Then, there exists a constant
C, independent of u, such that

∫
Ω
ϕ(|u − uB0 |)dm ≤ C

∫
Ω
ϕ(|du|)dm, (3.2)

where B0 ⊂ Ω is some fixed ball.
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Proof. From Definition 3.1, (2.3) and noticing that ϕ is doubling, we have

∫
Ω
ϕ(|u − uB0 |)dm ≤ C1sup

B⊂Ω

∫
B

ϕ(|u − uB|)dm

≤ C1sup
B⊂Ω

(
C2

∫
σB

ϕ(|du|)dm
)

≤ C1sup
B⊂Ω

(
C2

∫
Ω
ϕ(|du|)dm

)

≤ C3

∫
Ω
ϕ(|du|)dm.

(3.3)

We have completed the proof of Theorem 3.2.

Similar to the local case, the following global Poincaré inequality with the Luxemburg
norm

‖u − uB‖ϕ(Ω) ≤ C‖du‖ϕ(Ω) (3.4)

holds if all conditions in Theorem 3.2 are satisfied. Also, by the same way, we can extend
Theorem 2.4 into the following global result in Lϕ(m)-averaging domains.

Theorem 3.3. Let ϕ be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, Ω be a
bounded Lϕ(m)-averaging domain and q(n − p) < np. Assume that u ∈ D′(Ω,∧0) and ϕ(|u|) ∈
L1(Ω, m) and ϕ(|du|) ∈ L1(Ω, m). Then, there exists a constant C, independent of u, such that

∫
Ω
ϕ(|u − uB0 |)dm ≤ C

∫
Ω
ϕ(|du|)dm, (3.5)

where B0 ⊂ Ω is some fixed ball.

Note that (3.5) can be written as

‖u − uB0‖ϕ(Ω) ≤ C‖du‖ϕ(Ω). (3.6)

It has been proved that any John domain is a special Lϕ(m)-averaging domain. Hence, we
have the following results.

Corollary 3.4. Let ϕ be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, and Ω be
a bounded John domain. Assume that ϕ(|u|) ∈ L1(Ω, m) and u is a solution of the nonhomogeneous
A-harmonic equation (1.4) in Ω, ϕ(|du|) ∈ L1(Ω, m). Then, there exists a constant C, independent
of u, such that

∫
Ω
ϕ(|u − uB0 |)dm ≤ C

∫
Ω
ϕ(|du|)dm, (3.7)

where B0 ⊂ Ω is some fixed ball.
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Choosing ϕ(t) = tplogα+t in Theorems 3.2 and 3.3, respectively, we obtain the following
Poincaré inequalities with the Lp(logα+L)-norms.

Corollary 3.5. Let ϕ(t) = tplogα+t, p ≥ 1 and α ∈ R . Assume that ϕ(|u|) ∈ L1(Ω, m) and u is a
solution of the nonhomogeneous A-harmonic equation (1.4), ϕ(|du|) ∈ L1(Ω, m). Then, there exists
a constant C, independent of u, such that

∫
Ω
|u − uB0 |plogα+(|u − uB0 |)dm ≤ C

∫
Ω
|du|plogα+(|du|)dm (3.8)

for any bounded Lϕ(m)-averaging domain Ω and B0 ⊂ Ω is some fixed ball.

Note that (3.8) can be written as the following version with the Luxemburg norm:

‖u − uB0‖Lp(logα+L)(Ω) ≤ C‖du‖Lp(logα+L)(Ω), (3.9)

provided that the conditions in Corollary 3.5 are satisfied.

Corollary 3.6. Let ϕ(t) = tplogα+t, 1 ≤ p1 < p < p2 and α ∈ R and Ω be a bounded Lϕ(m)-
averaging domain and p2(n − p1) < np1. Assume that u ∈ D′(Ω,∧0), ϕ(|u|) ∈ L1(Ω, m), and
ϕ(|du|) ∈ L1(Ω, m) Then, there exists a constant C, independent of u, such that

∫
Ω
|u − uB0 |plogα+(|u − uB0 |)dm ≤ C

∫
Ω
|du|plogα+(|du|)dm, (3.10)

where B0 ⊂ Ω is some fixed ball.

4. Applications

Choose u to be a 0-form (a function) in the homogeneous A-harmonic equation (1.5). Then,
(1.5) reduces to the following A-harmonic equation:

divA(x,∇u) = 0 (4.1)

for functions. If the above operator A : Ω × ∧l(Rn) → ∧l(Rn) is defined by A(x, ξ) = ξ|ξ|p−2
with p > 1, then, A satisfies the required conditions and (4.1) becomes the usual p-harmonic
equation

div
(
∇u|∇u|p−2

)
= 0 (4.2)

for functions. Thus, from Theorem 3.2, we have the following example.

Example 4.1. Let u be a solution of the usual A-harmonic equation (4.1) or the p-harmonic
equation (4.2), let ϕ be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, and Ω
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be any bounded Lϕ(m)-averaging domain. If ϕ(|u|) ∈ L1(Ω, m) and ϕ(|du|) ∈ L1(Ω, m), then
there exists a constant C, independent of u, such that

∫
Ω
ϕ(|u − uB0 |)dm ≤ C

∫
Ω
ϕ(|du|)dm, (4.3)

where B0 ⊂ Ω is some fixed ball.

Example 4.2. For any locally Ls-integrable form u(y), 1 ≤ s < ∞, the Hardy-Littlewood
maximal operator Ms is defined by Ms(u) = supr>0((1/|B(x, r)|)

∫
B(x,r)|u(y)|sdy)

1/s and

the sharp maximal operator M#
s by M

#
s(u) = supr>0((1/|B(x, r)|)

∫
B(x,r)|u(y) − uB(x,r)|sdy)1/s,

where B(x, r) is the ball of radius r, centered at x. Under the conditions of Theorem 3.3, we
have

∫
Ω
ϕ
(∣∣Ms(u) − (Ms(u))B0

∣∣)dm ≤ C

∫
Ω
ϕ(|d(Ms(u))|)dm,

∫
Ω
ϕ

(∣∣∣∣M#
s(u) −

(
M

#
s(u)

)
B0

∣∣∣∣
)
dm ≤ C

∫
Ω
ϕ
(∣∣∣d(M#

s(u)
)∣∣∣)dm,

(4.4)

where B0 ⊂ Ω is some fixed ball.

Remark 4.3. (i) We know that the Ls-averaging domains are the special Lϕ(m)-averaging
domains. Thus, Theorems 3.2 and 3.3 also hold for the Ls-averaging domain. (ii) In Theorems
2.4 and 3.3, u does not need to be a solution of any version of the A-harmonic equation.
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