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We prove some existence results of solutions for a new class of generalized bi-quasivariational
inequalities (GBQVI) for quasi-pseudomonotone type II and strongly quasi-pseudomonotone
type II operators defined on noncompact sets in locally convex Hausdorff topological vector
spaces. To obtain these results on GBQVI for quasi-pseudomonotone type II and strongly quasi-
pseudomonotone type II operators, we use Chowdhury and Tan’s generalized version (1996) of
Ky Fan’s minimax inequality (1972) as the main tool.

1. Introduction and Preliminaries

In this paper, we obtain some results on generalized bi-quasi-variational inequalities for
quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II operators
defined on noncompact sets in locally convex Hausdorff topological vector spaces. Thus we
begin this section by defining the generalized bi-quasi-variational inequalities. For this, we
need to introduce some notations which will be used throughout this paper.

Let X be a nonempty set and let 2X be the family of all nonempty subsets of X. If X
and Y are topological spaces and T : X → 2Y , then the graph of T is the set G(T) := {(x, y) ∈
X × Y : y ∈ T(x)}. Throughout this paper, Φ denotes either the real field R or the complex
field C.

Let E be a topological vector space over Φ, let F be a vector space over Φ and let
〈·, ·〉 : F × E → Φ be a bilinear functional.

For any x0 ∈ E, any nonempty subset A of E, and any ε > 0, let W(x0; ε) := {y ∈ F :
|〈y, x0〉| < ε} and U(A; ε) := {y ∈ F : supx∈A|〈y, x〉| < ε}. Let σ〈F, E〉 be the (weak) topology
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on F generated by the family {W(x; ε) : x ∈ E and ε > 0} as a subbase for the neighbourhood
system at 0 and let δ〈F, E〉 be the (strong) topology on F generated by the family {U(A; ε) :
A is a nonempty bounded subset of E and ε > 0} as a base for the neighbourhood system
at 0. We note then that F, when equipped with the (weak) topology σ〈F, E〉 or the (strong)
topology δ〈F, E〉, becomes a locally convex topological vector space which is not necessarily
Hausdorff. But, if the bilinear functional 〈·, ·〉 : F × E → Φ separates points in F, that is, for
any y ∈ F with y /= 0, there exists x ∈ E such that 〈y, x〉/= 0, then F also becomes Hausdorff.
Furthermore, for any net {yα}α∈Γ in F and y ∈ F,

(1) yα → y in σ〈F, E〉 if and only if 〈yα, x〉 → 〈y, x〉 for any x ∈ E,

(2) yα → y in δ〈F, E〉 if and only if 〈yα, x〉 → 〈y, x〉 uniformly for any x ∈ A, where a
nonempty bounded subset of E.

The generalized bi-quasi-variational inequality problem was first introduced by Shih
and Tan [1] in 1989. Since Shih and Tan, some authors have obtained many results on
generalized (quasi)variational inequalities, generalized (quasi)variational-like inequalities
and generalized bi-quasi-variational inequalities (see [2–15]).

The following is the definition due to Shih and Tan [1].

Definition 1.1. Let E and F be a vector spaces over Φ, let 〈·, ·〉 : F × E → Φ be a bilinear
functional, and let X be a nonempty subset of E. If S : X → 2X and M,T : X → 2F , the
generalized bi-quasi variational inequality problem (GBQVI) for the triple (S, M, T) is to find
ŷ ∈ X satisfying the following properties:

(1) ŷ ∈ S(ŷ),

(2) infw∈T(ŷ) Re〈f −w, ŷ − x〉 ≤ 0 for any x ∈ S(ŷ) and f ∈ M(ŷ).

The following definition of the generalized bi-quasi-variational inequality problem is
a slight modification of Definition 1.1.

Definition 1.2. Let E and F be vector spaces over Φ, let 〈·, ·〉 : F × E → Φ be a bilinear
functional, and let X be a nonempty subset of E. If S : X → 2X and M,T : X → 2F , then the
generalized bi-quasivariational inequality (GBQVI) problem for the triple (S,M, T) is:

(1) to find a point ŷ ∈ X and a point ŵ ∈ T(ŷ) such that

ŷ ∈ S
(

ŷ
)

, Re
〈

f − ŵ, ŷ − x
〉 ≤ 0, ∀x ∈ S

(

ŷ
)

, f ∈ M
(

ŷ
)

, (1.1)

(2) to find a point ŷ ∈ X, a point ŵ ∈ T(ŷ), and a point ̂f ∈ M(ŷ) such that

ŷ ∈ S
(

ŷ
)

, Re
〈

̂f − ŵ, ŷ − x
〉

≤ 0, ∀x ∈ S
(

ŷ
)

. (1.2)

LetX be a nonempty subset of E and let T : X → 2E
∗
be a set-valued mapping. Then T

is said to be monotone on X if, for any x, y ∈ X, u ∈ T(x), and w ∈ T(y),Re〈w − u, y − x〉 ≥ 0.
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Let X and Y be topological spaces and let T : X → 2Y be a set-valued mapping. Then
T is said to be:

(1) upper (resp., lower) semicontinuous at x0 ∈ X if, for each open set G in Y with
T(x0) ⊂ G (resp., T(x0) ∩ G/= ∅), there exists an open neighbourhood U of x0 in X
such that T(x) ⊂ G (resp., T(x) ∩G/= ∅) for all x ∈ U,

(2) upper (resp., lower) semicontinuous onX if T is upper (resp., lower) semicontinuous
at each point of X,

(3) continuous on X if T is both lower and upper semi-continuous on X.

Let X be a convex set in a topological vector space E. Then f : X → R is said to be
lower semi-continuous if, for all λ ∈ R, {x ∈ X : f(x) ≤ λ} is closed in X.

If X is a convex set in a vector space E, then f : X → R is said to be concave if, for all
x, y ∈ X and 0 ≤ λ ≤ 1,

f
(

λx + (1 − λ)y
) ≥ λf(x) + (1 − λ)f

(

y
)

. (1.3)

Our main results in this paper are to obtain some existence results of solutions
of the generalized bi-quasi-variational inequalities using Chowdhury and Tan’s following
definition of quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II
operators given in [3].

Definition 1.3. Let E be a topological vector space, let X be a nonempty subset of E, and let F
be a topological vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a bilinear functional. Consider
a mapping h : X → R and two set-valued mappings M : X → 2F and T : X → 2F .

(1) T is called an h-quasi-pseudo-monotone (resp., strongly h-quasi-pseudo-monotone) type
II operator if, for any y ∈ X and every net {yα}α∈Γ in X converging to y (resp.,
weakly to y) with

lim sup
α

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

]

≤ 0,

lim sup
α

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

≥ inf
f∈M(y)

inf
w∈T(y)

Re
〈

f −w,y − x
〉

+ h
(

y
) − h(x), ∀x ∈ X.

(1.4)

(2) T is said to be a quasi-pseudo-monotone (resp., strongly quasi-pseudo-monotone) type
II operator if T is an h-quasi-pseudo-monotone (resp., strongly h-quasi-pseudo-
monotone) type II operator with h ≡ 0.

The following is an example on quasi-pseudo-monotone type II operators given in [3].

Example 1.4. Consider X = [−1, 1] and E = R. Then E∗ = R. Let M : X → 2R be a set-valued
mapping defined by

M(x) =

⎧

⎨

⎩

[0, 2x] if x ≥ 0,

[2x, 0] if x < 0.
(1.5)
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Again, let T : X → 2R be a set-valued mapping defined by

T(x) =

{

{1, 3} if x < 1,
{1, 2, 3} if x = 1.

(1.6)

Then M is lower semi-continuous and T is upper semi-continuous. It can be shown that T
becomes a quasi-pseudo-monotone type II operator on X = [−1, 1].

(i) To show that M is lower semi-continuous, consider x0 ≥ 0. Then M(x0) = [0, 2x0].
Let ε > 0 be given. Then, ifG = (2x0−ε, 2x0+ε), thenM(x0)∩G = [0, 2x0]∩(2x0−ε, 2x0+ε)/= ∅.
Let ε > 0 be so chosen that 0 < x0 −ε/2 < x0 < x0 +ε/2 < 1. Now, if we takeU = (x0−ε/2, x0 +
ε/2), then, for all x ∈ U, we have 2x0 − ε < 2x < 2x0 + ε. Thus 2x ∈ M(x) ∩ G. Hence
M(x) ∩G/= ∅.

If x0 = 0, M(0) = 0. Then, for 0 ∈ G = (ε, ε), we can take U = (−ε/2, ε/2). Thus for all
x ∈ U, M(x) = [0, 2x] ∩ (ε, ε)/= ∅ because −ε < x < ε/2 implies 2x ∈ G = (−ε, ε).

Finally, if x0 < 0, then M(x0) = [2x0, 0]. We take G = (2x0 − ε, 2x0 + ε) for some ε > 0
so that M(x0) ∩ G/= ∅ and x0 + ε/2 < 0. Thus, for all x ∈ U = (x0 − ε/2, x0 + ε/2), we have
2x0 − ε < 2x < 2x0 + ε. Hence 2x ∈ G ∩M(x), where M(x) = [2x, 0] for x < 0. Consequently,
M is lower semi-continuous on X = [−1, 1].

(ii) To show that T is upper semi-continuous, let x0 ∈ [−1, 1] be such that x0 < 1.
Then T(x0) = {1, 3}. Let G be an open set in R such that T(x0) = {1, 3} ⊂ G. Let ε > 0 be
such that −1 < x0 − ε < x0 < x0 + ε < 1. Consider U = (x0 − ε, x0 + ε). Then, for all x ∈ U,
T(x) = {1, 3} ⊂ G since x < 1. Again, if x = 1, then T(1) = {1, 2, 3}. Let G be an open set in R
such that T(1) = {1, 2, 3} ⊂ G. Let ε > 0 be such that −1 < 1 − ε < 1 < 1 + ε. Let U = (1 − ε, 1]
which is an open neighbourhood of 1 in X = [−1, 1]. Then for all x ∈ U = (1 − ε, 1], we have
T(x) = {1, 3} if 1 − ε < x < 1 and T(x) = {1, 2, 3} if x = 1. Now, T(1) = {1, 2, 3} ⊂ G. Also,
for all x ∈ U with 1 − ε < x < 1, we have T(x) = {1, 3} ⊂ {1, 2, 3} ⊂ G. Hence T is upper
semi-continuous on X = [−1, 1].

(iii) Finally, we will show that T is also a quasi-pseudo-monotone type II operator. To
show this, let us assume first that 〈yα〉 is a net in X = [−1, 1] such that yα → y in X = [−1, 1].
We now show that

lim sup
α

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

]

≤ 0. (1.7)

We have

lim sup
α

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

]

= lim sup
α

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

inf
f∈[0,2yα]

inf
u∈{1,3}

(

f − u
)(

yα − y
)

]

= (0 − 3)
(

yα − y
)

= 3
(

y − yα

)

, if 0 ≤ yα < 1,
[

inf
f∈[2yα,0]

inf
u∈{1,3}

(

f − u
)(

yα − y
)

]

=
(

2yα − 3
)(

yα − y
)

, if yα < 0 and so yα < 1,
[

inf
f∈[0,2yα]

inf
u∈{1,2,3}

(

f − u
)(

yα − y
)

]

= (0 − 3)
(

yα − y
)

= 3
(

y − yα

)

, if yα = 1, that is, yα ≥ 0

= 0

(1.8)
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(considering yα − y ≥ 0, the value will be also 0 if we consider yα − y ≤ 0). So, it follows that,
for all x ∈ [−1, 1],

lim sup
α

[

inf
f∈M(yα)

inf
u∈T(yα)

(

f − u
)(

yα − x
)

]

= lim sup
α

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

inf
f∈[0,2yα]

inf
u∈{1,3}

(

f − u
)(

yα − x
)

]

= (0 − 3)
(

yα − x
)

= 3
(

x − yα

)

, if 0 ≤ yα < 1,
[

inf
f∈[2yα,0]

inf
u∈{1,3}

(

f − u
)(

yα − x
)

]

=
(

2yα − 3
)(

yα − x
)

, if yα < 0 and so yα < 1,
[

inf
f∈[0,2yα]

inf
u∈{1,2,3}

(

f − u
)(

yα − x
)

]

= (0 − 3)
(

yα − x
)

= 3
(

x − yα

)

, if yα = 1, that is, yα ≥ 0,
(

consider yα − x ≥ 0
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3
(

x − y
)

, if 0 ≤ yα < 1,
(

2y − 3
)(

y − x
)

, if yα < 0 and so yα < 1,

3
(

x − y
)

, if yα = 1,
(

consider y − x ≥ 0
)

.

(1.9)

The values can be obtained similarly for the cases where yα − x ≤ 0 and y − x ≤ 0. Also, it
follows that, for all x ∈ X = [−1, 1],

inf
f∈M(y)

inf
u∈T(y)

(

f − u
)(

y − x
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

inf
f∈[0,2y]

inf
u∈{1,3}

(

f − u
)(

y − x
)

]

= (0 − 3)
(

y − x
)

= 3
(

x − y
)

, if 0 ≤ y < 1,
[

inf
f∈[2y,0]

inf
u∈{1,3}

(

f − u
)(

y − x
)

]

=
(

2y − 3
)(

y − x
)

, if y < 0 and so y < 1,
[

inf
f∈[0,2y]

inf
u∈{1,2,3}

(

f − u
)(

y − x
)

]

= (0 − 3)
(

y − x
)

= 3
(

x − y
)

, if y = 1, that is, y ≥ 0,
(

consider y − x ≥ 0
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3
(

x − y
)

, if 0 ≤ y < 1,
(

2y − 3
)(

y − x
)

, if y < 0 and so y < 1,

3
(

x − y
)

, if y = 1,
(

consider y − x ≥ 0
)

.

(1.10)
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The values can be obtained similarly for the cases when y − x ≤ 0. Therefore, in all the cases,
we have shown that

lim sup
α

[

inf
f∈M(yα)

inf
u∈T(yα)

(

f − u
)(

yα − x
)

]

≥ inf
f∈M(y)

inf
u∈T(y)

(

f − u
)(

y − x
)

. (1.11)

Hence T is a quasi-pseudo-monotone type II operator.
The above example is a particular case of a more general result on quasi-pseudo-

monotone type II operators. We will establish this result in the following proposition.

Proposition 1.5. Let X be a nonempty compact subset of a topological vector space E. Suppose that
M : X → 2E

∗
and T : X → 2E

∗
are two set-valued mappings such that M is lower semi-continuous

and T is upper semi-continuous. Suppose further that, for any x ∈ X, M(x) and T(x) are weak∗-
compact sets in E∗. Then T is both a quasi-pseudo-monotone type II and a strongly quasi-pseudo-
monotone type II operator.

Proof. Suppose that {yα}α∈Γ is a net in X and y ∈ X with yα → y (resp., yα → y weakly) and
lim supα[inff∈M(yα)infu∈T(yα) Re〈f − u, yα − y〉] ≤ 0. Then it follows that, for any x ∈ X,

lim sup
α∈Γ

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − x
〉

]

≥ lim inf
α∈Γ

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − x
〉

]

≥ lim inf
α∈Γ

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

]

+ lim inf
α∈Γ

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, y − x
〉

]

≥ 0 + lim inf
α∈Γ

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, y − x
〉

]

= inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

.

(1.12)

To obtain the above inequalities, we use the following facts. For any α ∈ Γ, uα ∈ T(yα) and
fα ∈ M(yα). SinceX is compact and T(x) andM(x) are weak∗-compact valued for any x ∈ X,
using the lower semicontinuity ofM and the upper semicontinuity of T it can be shown that
(details can be verified by the reader easily) uα → u ∈ T(y) and fα → f ∈ M(y). Thus we
obtain

lim inf
α∈Γ

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, y − x
〉

]

= inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

(1.13)

in the last inequality above. Consequently, T is both a quasi-pseudo-monotone type II and a
strongly quasi-pseudo-monotone type II operator.
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In Section 3 of this paper, we obtain some general theorems on solutions for a new
class of generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II and
strongly quasi-pseudo-monotone type II operators defined on noncompact sets in topological
vector spaces. To obtain these results, we mainly use the following generalized version of Ky
Fan’s minimax inequality [16] due to Chowdhury and Tan [17].

Theorem 1.6. Let E be a topological vector space, let X be a nonempty convex subset of E, and let
f : X ×X → R ∪ {−∞,+∞} be such that

(a) for any A ∈ F(X) and fixed x ∈ co(A), y �→ f(x, y) is lower semi-continuous on co(A),

(b) for any A ∈ F(X) and y ∈ co(A),minx∈Af(x, y) ≤ 0,

(c) for any A ∈ F(X) and x, y ∈ co(A), every net {yα}α∈Γ in X converging to y with f(tx +
(1 − t)y, yα) ≤ 0 for all α ∈ Γ and t ∈ [0, 1], one has f(x, y) ≤ 0,

(d) there exist a nonempty closed and compact subsetK ofX and x0 ∈ K such that f(x0, y) > 0
for all y ∈ X \K.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

Now, we use the following lemmas for our main results in this paper.

Lemma 1.7 (see [18]). Let X be a nonempty subset of a Hausdorff topological vector space E and
let S : X → 2E be an upper semi-continuous mapping such that S(x) is a bounded subset of E
for any x ∈ X. Then, for any continuous linear functional p on E, the mapping fp : X → R
defined by fp(y) = supx∈S(y) Re〈p, x〉 is upper semi-continuous; that is, for any λ ∈ R, the set
{y ∈ X : fp(y) = supx∈S(y) Re〈p, x〉 < λ} is open in X.

Lemma 1.8 (see [1, 19]). Let X and Y be topological spaces, let f : X → R be nonnegative and
continuous and let g : Y → R be lower semi-continuous. Then the mapping F : X × Y → R defined
by F(x, y) = f(x)g(y) for all (x, y) ∈ X × Y is lower semi-continuous.

Theorem 1.9 (see [20, 21]). Let X be a nonempty convex subset of a vector space and let Y be a
nonempty compact convex subset of a Hausdorff topological vector space. Suppose that f is a real-
valued function on X × Y such that, for each fixed x ∈ X, the mapping y �→ f(x, y), that is, f(x, ·) is
lower semi-continuous and convex on Y and, for each fixed y ∈ Y , the mapping x �→ f(x, y), that is,
f(·, y) is concave on X. Then

min
y∈Y

sup
x∈X

f
(

x, y
)

= sup
x∈X

min
y∈Y

f
(

x, y
)

. (1.14)

2. Existence Results

In this section, we will obtain and prove some existence theorems for the solutions to the
generalized bi-quasi-variational inequalities of quasi-pseudo-monotone type II and strongly
quasi-pseudo-monotone type II operators with noncompact domain in locally convex
Hausdorff topological vector spaces. Our results extend and/or generalize the corresponding
results in [1].

Before we establish our main results, we state the following result which is Lemma3.1
in [3].
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Lemma 2.1. Let E be a Hausdorff topological vector space over Φ, let F be a vector space over Φ,
and let X be a nonempty compact subset of E. Let 〈·, ·〉 : F × E → Φ be a bilinear functional such
that 〈·, ·〉 separates points in F. Suppose that the F equips with the σ〈F, E〉-topology; for any w ∈ F,
x �→ Re〈w,x〉 is continuous on E and T , M : X → 2F are upper semi-continuous maps such that
T(x) and M(x) are compact for any x ∈ X. Let x0 ∈ X and h : X → R be continuous. Define a
mapping g : X → R by

g
(

y
)

=
[

inf
f∈M(y)

inf
w∈T(y)

Re
〈

f −w,y − x0
〉

]

+ h
(

y
) − h(x0), ∀y ∈ X. (2.1)

Suppose that 〈·, ·〉 is continuous over the (compact) subset [
⋃

y∈X M(y) −⋃y∈X T(y)] ×X of F × E.
Then g is lower semi-continuous on X.

Now, we establish our first main result as follows.

Theorem 2.2. Let E be a locally convex Hausdorff topological vector space over Φ, let X be a
nonempty paracompact convex and bounded subset of E, and let F be a Hausdorff topological vector
space overΦ. Let 〈·, ·〉 : F×E → Φ be a bilinear functional which is continuous over compact subsets
of F ×X. Suppose that

(a) S : X → 2X is upper semi-continuous such that each S(x) is compact and convex,

(b) h : E → R is convex and h(X) is bounded,

(c) T : X → 2F is an h-quasi-pseudo-monotone type II (resp., strongly h-quasi-pseudo-
monotone type II) operator and is upper semi-continuous such that each T(x) is compact
(resp., weakly compact) and convex and T(X) is strongly bounded,

(d) M : X → 2F is an upper semi-continuous mapping such that each M(x) is weakly
compact and convex,

(e) the set Σ = {y ∈ X : supx∈S(y)(inff∈M(y)infu∈T(y) Re〈f − u, y − x〉 + h(y) − h(x)) > 0}
is open in X.

Suppose further that there exist a nonempty closed and compact (resp., weakly closed and
weakly compact) subset K of X and a point x0 ∈ X such that x0 ∈ K ∩ S(y) and

inf
w∈T(y)

inf
f∈M(y)

Re
〈

f −w,y − x0
〉

+ h
(

y
) − h(x0) > 0, ∀y ∈ X \K. (2.2)

Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ),

(2) there exist a point ̂f ∈ M(ŷ) and a point ŵ ∈ T(ŷ) such that

Re
〈

̂f − ŵ, ŷ − x
〉

≤ h(x) − h
(

ŷ
)

, ∀x ∈ S
(

ŷ
)

. (2.3)

Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally convex, and if T ≡ 0,
then the continuity assumption on 〈·, ·〉 can be weakened to the assumption that, for any f ∈ F, the
mapping x �→ 〈f, x〉 is continuous (resp., weakly continuous) on X.
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Proof. We need to show that there exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[

inf
f∈M(ŷ)

inf
u∈T(ŷ)

Re
〈

f − u, ŷ − x
〉

+ h
(

ŷ
) − h(x)

]

≤ 0. (2.4)

Suppose the contrary. Then, for any y ∈ X, either y /∈S(y) or there exists x ∈ S(y) such
that

inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x) > 0, (2.5)

that is, for any y ∈ X, either y /∈S(y) or y ∈ Σ. If y /∈S(y), then, by a separation theorem for
convex sets in locally convex Hausdorff topological vector spaces, there exists p ∈ E∗ such
that

Re
〈

p, y
〉 − sup

x∈S(y)
Re
〈

p, x
〉

> 0. (2.6)

Let

γ
(

y
)

= sup
x∈S(y)

inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x),

V0 :=
{

y ∈ X : γ
(

y
)

> 0
}

= Σ,

(2.7)

and, for any p ∈ E∗, set

Vp :=

{

y ∈ X : Re
〈

p, y
〉 − sup

x∈S(y)
Re
〈

p, x
〉

> 0

}

. (2.8)

Then X = V0 ∪
⋃

p∈E∗ Vp. Since each Vp is open in X by Lemma 1.7 and V0 is open in X by
hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X. Since X is paracompact, there exists
a continuous partition of unity {β0, βp : p ∈ E∗} for X subordinated to the covering {V0, Vp :
p ∈ E∗} (see Dugundji [22, TheoremVIII, 4.2]); that is, for any p ∈ E∗, βp : X → [0, 1] and
β0 : X → [0, 1] are continuous functions such that, for any p ∈ E∗, βp(y) = 0 for all y ∈ X \Vp

and β0(y) = 0 for all y ∈ X \ V0 and {support β0, support βp : p ∈ E∗} is locally finite and
β0(y) +

∑

p∈E∗ βp(y) = 1 for any y ∈ X. Note that, for any A ∈ F(X), h is continuous on co(A)
(see [23, Corollary 10.1.1]). Define a mapping φ : X ×X → R by

φ
(

x, y
)

= β0
(

y
)

[

inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x)

]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x
〉

, ∀x, y ∈ X.
(2.9)

Then we have the following.
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(i) Since E is Hausdorff, for any A ∈ F(X) and fixed x ∈ co(A), the mapping

y �−→ inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x) (2.10)

is lower semi-continuous (resp., weakly lower semi-continuous) on co(A) by Lemma 2.1 and
so the mapping

y �−→ β0
(

y
)

[

inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x)

]

(2.11)

is lower semi-continuous (resp., weakly lower semi-continuous) on co(A) by Lemma 1.8.
Also, for any fixed x ∈ X,

y �−→
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x
〉

(2.12)

is continuous on X. Hence, for any A ∈ F(X) and fixed x ∈ co(A), the mapping y �→ φ(x, y)
is lower semi-continuous (resp., weakly lower semi-continuous) on co(A).

(ii) For any A ∈ F(X) and y ∈ co(A), minx∈Aφ(x, y) ≤ 0. Indeed, if this is false, then,
for some A = {x1, x2, . . . , xn} ∈ F(X) and y ∈ co(A) (say y =

∑n
i=1 λixi where λ1, λ2, . . . , λn ≥ 0

with
∑n

i=1 λi = 1), we have min1≤i≤nφ(xi, y) > 0. Then, for any i = 1, 2, . . . , n,

β0
(

y
)

[

inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − xi

〉

+ h
(

y
) − h(xi)

]

+
∑

p∈E∗
βj
(

y
)

Re
〈

p, y − xi

〉

> 0, (2.13)

which implies that

0 = φ
(

y, y
)

= β0
(

y
)

[

inf
f∈M(y)

inf
u∈T(y)

Re

〈

f − u, y −
n
∑

i=1

λixi

〉

+ h
(

y
) − h

(

n
∑

i=1

λixi

)]

+
∑

p∈E∗
βj
(

y
)

Re

〈

p, y −
n
∑

i=1

λixi

〉

≥
n
∑

i=1

λi

⎧

⎨

⎩

⎛

⎝β0
(

y
)

⎡

⎣ inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − xi

〉

+ h
(

y
) − h(xi)

⎤

⎦

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − xi

〉

⎞

⎠

⎫

⎬

⎭

> 0,

(2.14)

which is a contradiction.
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(iii) Suppose that A ∈ A(X), x, y ∈ co(A), and {yα}α∈Γ is a net in X converging to y
(resp., weakly to y) with φ(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and t ∈ [0, 1].

Case 1 (β0(y) = 0). Note that β0(yα) ≥ 0 for any α ∈ Γ and β0(yα) → 0. Since T(X) is strongly
bounded and {yα}α∈Γ is a bounded net, it follows that

lim sup
α

[

β0
(

yα

)

(

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
)]

= 0. (2.15)

Also, we have

β0
(

y
)

[

min
f∈M(y)

min
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x)

]

= 0. (2.16)

Thus, from (2.15), it follows that

lim sup
α

[

β0
(

yα

)

(

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
)]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x
〉

=
∑

p∈E∗
βp
(

y
)

Re〈p, y − x〉

= β0
(

y
)

[

min
f∈M(y)

min
u∈T(y)

Re〈f − u, y − x〉 + h
(

y
) − h(x)

]

+
∑

p∈E∗
βp
(

y
)

Re〈p, y − x〉.

(2.17)

When t = 1, we have φ(x, yα) ≤ 0 for all α ∈ Γ, that is,

β0
(

yα

)

[

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

+
∑

p∈E∗
βp
(

yα

)

Re〈p, yα − x〉 ≤ 0.

(2.18)

Therefore, by (2.18), we have

lim sup
α

[

β0
(

yα

)

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

+ lim inf
α

⎡

⎣

∑

p∈E∗
βp
(

yα

)

Re
〈

p, yα − x
〉

⎤

⎦

≤ lim sup
α

⎡

⎣β0
(

yα

)

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f−u, yα−x
〉

+h
(

yα

)−h(x)+
∑

p∈E∗
βp
(

yα

)

Re〈p, yα−x〉
⎤

⎦

≤ 0,
(2.19)
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which implies that

lim sup
α

[

β0
(

yα

)

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

+
∑

p∈E∗
βp
(

y
)

Re〈p, y − x〉 ≤ 0.

(2.20)

Hence, by (2.17) and (2.20), we have φ(x, y) ≤ 0.

Case 2 (β0(y) > 0). Since β0(yα) → β0(y), there exists λ ∈ Γ such that β0(yα) > 0 for any α ≥ λ.
When t = 0, we have φ(y, yα) ≤ 0 for all α ∈ Γ, that is,

β0
(

yα

)

[

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

]

+
∑

p∈E∗
βp
(

yα

)

Re〈p, yα − y〉 ≤ 0.

(2.21)

Thus it follows that

lim sup
α

⎡

⎣β0
(

yα

)

(

inf
f∈M(yα)

inf
u∈T(yα)

R
〈

f−u, yα−y
〉

+h
(

yα

) − h
(

y
)

)

+
∑

p∈E∗
βp
(

yα

)

Re
〈

p, yα−y
〉

⎤

⎦≤0.

(2.22)

Hence, by (2.22), we have

lim sup
α

[

β0
(

yα

)

(

inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

)]

+ lim inf
α

⎡

⎣

∑

p∈E∗
βp
(

yα

)

Re
〈

p, yα − y
〉

⎤

⎦

≤ lim sup
α

⎡

⎣β0
(

yα

)

⎛

⎝ inf
f∈M(yα)

inf
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

⎞

⎠

+
∑

p∈E∗
βp
(

yα

)

Re〈p, yα − y〉
⎤

⎦

≤ 0.

(2.23)

Since lim infα[
∑

p∈E∗ βp(yα)Re〈p, yα − y〉] = 0, we have

lim sup
α

[

β0
(

yα

)

(

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

)]

≤ 0. (2.24)
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Since β0(yα) > 0 for all α ≥ λ, it follows that

β0
(

y
)

lim sup
α

[

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

]

= lim sup
α

[

β0
(

yα

)

(

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

)]

.

(2.25)

Since β0(y) > 0, by (2.24) and (2.25), we have

lim sup
α

[

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − y
〉

+ h
(

yα

) − h
(

y
)

]

≤ 0. (2.26)

Since T is an h-quasi-pseudo-monotone type II (resp., strongly h-quasi-pseudo-monotone
type (II) operator, we have

lim sup
α

[

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

≥ min
f∈M(y)

min
w∈T(y)

Re
〈

f −w,y − x
〉

+ h
(

y
) − h(x), ∀x ∈ X.

(2.27)

Since β0(y) > 0, we have

β0
(

y
)

[

lim sup
α

(

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
)]

≥ β0
(

y
)

[

min
f∈M(y)

min
w∈T(y)

Re
〈

f −w,y − x
〉

+ h
(

y
) − h(x)

]

(2.28)

and so

β0
(

y
)

[

lim sup
α

(

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
)]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x
〉

≥ β0
(

y
)

[

min
f∈M(y)

min
w∈T(y)

Re
〈

f −w,y − x
〉

+ h
(

y
) − h(x)

]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x
〉

.

(2.29)

When t = 1, we have φ(x, yα) ≤ 0 for all α ∈ Γ, that is,

β0
(

yα

)

[

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

+
∑

p∈E∗
βp
(

yα

)

Re
〈

p, yα − x
〉 ≤ 0 (2.30)
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and so, by (2.29),

0 ≥ lim sup
α

⎡

⎣β0
(

yα

)

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f−u, yα−x
〉

+h
(

yα

)−h(x) +
∑

p∈E∗
βp
(

yα

)

Re〈p, yα−x〉
⎤

⎦

≥ lim sup
α

[

β0
(

yα

)

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f − u, yα − x
〉

+ h
(

yα

) − h(x)
]

+ lim inf
α

⎡

⎣

∑

p∈E∗
βp
(

yα

)

Re
〈

p, yα − x
〉

⎤

⎦

= β0
(

y
)

[

lim sup
α

{

min
f∈M(yα)

min
u∈T(yα)

Re
〈

f−u, yα−x
〉

+h
(

yα

)−h(x)
}]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y−x〉

≥ β0
(

y
)

[

min
f∈M(y)

min
w∈T(y)

Re
〈

f −w,y − x
〉

+ h
(

y
) − h(x)

]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x
〉

.

(2.31)

Hence we have φ(x, y) ≤ 0.

(iv) By the hypothesis, there exists a nonempty compact and so a closed (resp., weakly
closed and weakly compact) subset K of X and a point x0 ∈ X such that x0 ∈ K ∩ S(y) and

inf
f∈M(y)

inf
w∈T(y)

Re
〈

f −w,y − x0
〉

+ h
(

y
) − h(x0) > 0, ∀y ∈ X \K. (2.32)

Thus it follows that

β0
(

y
)

[

inf
w∈T(y)

inf
f∈M(y)

Re
〈

f −w,y − x0
〉

+ h
(

y
) − h(x0)

]

> 0, ∀y ∈ X \K, (2.33)

whenever β0(y) > 0 and Re〈p, y − x0〉 > 0 whenever βp(y) > 0 for all p ∈ E∗. Consequently,
we have

φ
(

x0, y
)

= β0
(

y
)

[

inf
f∈M(y)

inf
w∈T(y)

Re
〈

f −w,y − x0
〉

+ h
(

y
) − h(x0)

]

+
∑

p∈E∗
βp
(

y
)

Re
〈

p, y − x0
〉

> 0, ∀y ∈ X \K.
(2.34)

(If T is a strongly h-quasi-pseudo-monotone type II operator, then we equip E with the weak
topology.) Thus φ satisfies all the hypotheses of Theorem 1.6 and so, by Theorem 1.6, there
exists a point ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X, that is,

β0
(

ŷ
)

[

inf
f∈M(ŷ)

inf
u∈T(ŷ)

Re
〈

f − u, ŷ − x
〉

+ h
(

ŷ
) − h(x)

]

+
∑

p∈E∗
βp
(

ŷ
)

Re
〈

p, ŷ − x
〉 ≤ 0, ∀x ∈ X.

(2.35)
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Now, the rest of the proof is similar to the proof in Step 1 of Theorem1 in [24]. Hence
we have shown that

sup
x∈S(ŷ)

[

inf
f∈M(ŷ)

inf
u∈T(ŷ)

Re
〈

f − u, ŷ − x
〉

+ h
(

ŷ
) − h(x)

]

≤ 0. (2.36)

Then, by applying Theorem 1.9 as we proved in Step 3 of Theorem1 in [24], we can show that
there exist a point ̂f ∈ M(ŷ) and a point ŵ ∈ T(ŷ) such that

Re
〈

̂f − ŵ, ŷ − x
〉

≤ h(x) − h
(

ŷ
)

, ∀x ∈ S
(

ŷ
)

. (2.37)

We observe from the above proof that the requirement that E is locally convex is
needed if and only if the separation theorem is applied to the case y /∈S(y). Thus, if S : X →
2X is the constant mapping S(x) = X for all x ∈ X, the E is not required to be locally convex.

Finally, if T ≡ 0, in order to show that, for any x ∈ X, y �→ φ(x, y) is lower semi-
continuous (resp., weakly lower semi-continuous), Lemma 2.1 is no longer needed and the
weaker continuity assumption on 〈·, ·〉 that, for any f ∈ F, the mapping x �→ 〈f, x〉 is
continuous (resp., weakly continuous) on X is sufficient. This completes the proof.

We will now establish our last result of this section.

Theorem 2.3. Let E be a locally convex Hausdorff topological vector space over Φ, let X be a
nonempty paracompact convex and bounded subset of E, and let F be a vector space over Φ. Let
〈·, ·〉 : F × E → Φ be a bilinear functional such that 〈·, ·〉 separates points in F, 〈·, ·〉 is continuous
over compact subsets of F × X, and, for any f ∈ F, the mapping x �→ 〈f, x〉 is continuous on X.
Suppose that F equips with the strong topology δ〈F, E〉 and

(a) S : X → 2X is a continuous mapping such that each S(x) is compact and convex,

(b) h : X → R is convex and h(X) is bounded,

(c) T : X → 2F is an h-quasi-pseudo-monotone type II (resp., strongly h-quasi-pseudo-
monotone type II) operator and is an upper semi-continuous mapping such that each T(x)
is strongly, that is, δ〈F, E〉-compact and convex (resp., weakly, i.e., σ〈F, E〉-compact and
convex),

(d) M : X → 2F is an upper semi-continuous mapping such that each M(x) is δ〈F, E〉-
compact convex and, for any y ∈ Σ, M is upper semi-continuous at some point x in S(y)
with inff∈M(y)infu∈T(y) Re〈f − u, y − x〉 + h(y) − h(x) > 0, where

Σ =

{

y ∈ X : sup
x∈S(y)

[

inf
f∈M(y)

inf
u∈T(y)

Re
〈

f − u, y − x
〉

+ h
(

y
) − h(x)

]

> 0

}

. (2.38)

Suppose further that there exist a nonempty closed and compact (resp., weakly closed and weakly
compact) subset K of X and a point x0 ∈ X such that x0 ∈ K ∩ S(y) and

inf
f∈M(y)

inf
w∈T(y)

Re
〈

f −w,y − x0
〉

+ h
(

y
) − h(x0) > 0, ∀y ∈ X \K. (2.39)
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Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ),

(2) there exist a point ̂f ∈ M(ŷ) and a point ŵ ∈ T(ŷ) with

Re
〈

̂f − ŵ, ŷ − x
〉

≤ h(x) − h
(

ŷ
)

, ∀x ∈ S
(

ŷ
)

. (2.40)

Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally convex.

Proof. The proof is similar to the proof of Theorem2 in [24] and so the proof is omitted here.

Remark 2.4. (1) Theorems 2.2 and 2.3 of this paper are generalizations of Theorems 3.2 and 3.3
in [3], respectively, on noncompact sets. In Theorems 2.2 and 2.3, X is considered to be a
paracompact convex and bounded subset of locally convex Hausdorff topological vector
space E whereas, in [3], X is just a compact and convex subset of E. Hence our results
generalize the corresponding results in [3].

(2) The first paper on generalized bi-quasi-variational inequalities was written by Shih
and Tan in 1989 in [1] and the results were obtained on compact sets where the set-valued
mappings were either lower semi-continuous or upper semi-continuous. Our present paper is
another extension of the original work in [1] using quasi-pseudo-monotone type II operators
on noncompact sets.

(3) The results in [4] were obtained on compact sets where one of the set-valued
mappings is a quasi-pseudo-monotone type I operators which were defined first in [4] and
extends the results in [1]. The quasi-pseudo-monotone type I operators are generalizations of
pseudo-monotone type I operators introduced first in [17]. In all our results on generalized
bi-quasi-variational inequalities, if the operators M ≡ 0 and the operators T are replaced by
−T , then we obtain results on generalized quasi-variational inequalities which generalize the
corresponding results in the literature (see [18]).

(4) The results on generalized bi-quasi-variational inequalities given in [5] were
obtained for set-valued quasi-semi-monotone and bi-quasi-semi-monotone operators and the
corresponding results in [2] were obtained for set-valued upper-hemi-continuous operators
introduced in [6]. Our results in this paper are also further extensions of the corresponding
results in [2, 5] using set-valued quasi-pseudo-monotone type II operators on noncompact
sets.
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