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The purpose of this work is to introduce an iterative method for finding a common element of
a solution set of a generalized equilibrium problem, of a solution set solutions of a variational
inequality problem and of a fixed point set of a strict pseudocontraction. Strong convergence
theorems are established in the framework of Hilbert spaces.

1. Introduction and Preliminaries

Let H be a real Hilbert space, C a nonempty closed and convex subset of H, and B : C → H
a nonlinear mapping. Recall the following definitions.

(a) The mapping B is said to be monotone if

〈
Bx − By, x − y

〉 ≥ 0, ∀x, y ∈ C. (1.1)

(b) B is said to be β-strongly monotone if there exists a constant β > 0 such that

〈Bx − By, x − y〉 ≥ β
∥∥x − y

∥∥2
, ∀x, y ∈ C. (1.2)
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(c) B is said to be β-inverse-strongly monotone if there exists a constant β > 0 such that

〈
Bx − By, x − y

〉 ≥ β
∥
∥Bx − By

∥
∥2

, ∀x, y ∈ C. (1.3)

The classical variational inequality problem is to find u ∈ C such that

〈Bu, v − u〉 ≥ 0, ∀v ∈ C. (1.4)

In this paper, we use VI(C,B) to denote the solution set of the problem (1.4). One can easily
see that the variational inequality problem is equivalent to a fixed point problem. u ∈ C is a
solution to the problem (1.4) if and only if u is a fixed point of the mapping PC(I −λB), where
λ > 0 is a constant and I is the identity mapping.

Let S : C → C be a nonlinear mapping. In this paper, we use F(S) to denote the fixed
point set of S. Recall the following definitions.

(d) The mapping S is said to be nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.5)

(e) S is strictly pseudocontractive with a constant k ∈ [0, 1) if

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I − S)x − (I − S)y

∥∥2
, ∀x, y ∈ C. (1.6)

For such a case, S is called a k-strict pseudocontraction.

(f) S is said to be pseudocontractive if

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 +
∥∥(I − S)x − (I − S)y

∥∥2
, ∀x, y ∈ C. (1.7)

Clearly, the class of strict pseudocontractions falls into the one between a class of
nonexpansive mappings and a class of pseudocontractions.

Recently, many authors considered the problem of finding a common element of
the solution set of the variational inequality (1.4) and of fixed point set of a nonexpansive
mapping in Hilbert spaces; see, for examples, [1–5] and the references therein.

In 2005, Iiduka and Takahashi [2] obtained the following theorem in a real Hilbert
space.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let B be an α-inverse-
strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) ∩ VI(C,B)/= ∅. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnx + (1 − αn)SPC(xn − λnBxn) (1.8)



Journal of Inequalities and Applications 3

for every n = 1, 2, . . . , where {αn} is a sequence in [0, 1) and {λn} is a sequence in [a, b]. If {αn} and
{λn} are chosen so that {λn} ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,
∞∑

n=1

|λn+1 − λn| < ∞, (1.9)

then {xn} converges strongly to PF(S)∩VI(C,B)x.

Let A be an inverse-strongly monotone mapping, and F a bifunction of C × C into R,
where R is the set of real numbers. We consider the following equilibrium problem:

find z ∈ C such that F
(
z, y

)
+ 〈Az, y − z〉 ≥ 0, ∀y ∈ C. (1.10)

In this paper, the set of such z ∈ C is denoted by EP(F,A), that is,

EP(F,A) =
{
z ∈ C : F

(
z, y

)
+
〈
Az, y − z

〉 ≥ 0, ∀y ∈ C
}
. (1.11)

In the case of A ≡ 0, the zero mapping, the problem (1.10) is reduced to

Find z ∈ C such that F
(
z, y

) ≥ 0, ∀y ∈ C. (1.12)

In this paper, we use EP(F) to denote the solution set of the problem (1.12), whichwas studied
by many others; see, for examples, [1, 3, 6–23] and the reference therein. In the case of F ≡ 0,
the problem (1.10) is reduced to the classical variational inequality (1.4). The problem (1.10) is
very general in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, the Nash equilibrium problem in noncooperative games,
and others; see, for instances, [15, 24].

To study the problems (1.10) and (1.12), we may assume that the bifunction F : C ×
C → R satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim sup
t↓0

F
(
tz + (1 − t)x, y

) ≤ F
(
x, y

)
; (1.13)

(A4) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semicontinuous.

Recently, S. Takahashi and W. Takahashi [21] considered the problem (1.12) by
introducing an iterative method in a Hilbert space. To be more precise, they proved the
following theorem.
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Theorem TT 1. Let C be a nonempty closed convex subset ofH. Let F be a bifunction from C ×C to
R satisfying (A1)–(A4), and let S be a nonexpansive mapping ofC intoH such that F(S)∩EP(F)/= ∅.
Let f be a contraction ofH into itself, and let {xn} and {yn} be sequences generated by x1 ∈ H and

F
(
yn, u

)
+

1
rn

〈
u − yn, yn − xn

〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf(xn) + (1 − αn)Syn, n ≥ 1,

(1.14)

where {αn} ∈ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,

lim inf
n→∞

rn > 0,
∞∑

n=1

|rn+1 − rn| < ∞.

(1.15)

Then {xn} and {yn} converge strongly to z ∈ F(S) ∩ EP(F), where z = PF(S)∩EP(F)f(z).

Very recently, S. Takahashi and W. Takahashi [22] further considered the problem
(1.10). Strong convergence theorems of common elements are established. More precisely,
they obtained the following result.

Theorem TT 2. Let C be a closed convex subset of a real Hilbert spaceH, and let F : C ×C → R be
a bifunction satisfying (A1), (A2), (A3) and (A4). Let A be an α-inverse-strongly monotone mapping
of C into H and let S be a nonexpansive mapping of C into itself such that F(S) ∩ EP(F,A)/= ∅. Let
u ∈ C and x1 ∈ C and let {zn} ⊂ C and {xn} ⊂ C be sequences generated by

F
(
zn, y

)
+
〈
Axn, y − zn

〉
+

1
λn

〈
y − zn, zn − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn +
(
1 − βn

)
S[αnu + (1 − αn)zn], ∀n ≥ 1,

(1.16)

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1], and {λn} ⊂ [0, 2α] satisfy

0 < c ≤ βn ≤ d < 1, 0 < a ≤ λn ≤ b < 2α,

lim
n→∞

(λn − λn+1) = 0, lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞.
(1.17)

Then, {xn} converges strongly to z = PF(S)∩EP(F,A)u.

In this paper, motivated by Theorem IT, Theorem TT1, and Theorem TT2, we introduce
a general iterative method for the problem of finding a common element of a solution set of a
generalized equilibrium problem (1.10), of a solution set of a variational inequality problem
(1.4), and of a fixed point set of a strict pseudocontraction. Strong convergence theorems are
established in the framework of Hilbert spaces. The results presented in this paper improve
and extend the corresponding results announced by many others.
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In order to prove our main results, we need the following lemmas.
The following lemmas can be found in [11, 24].

Lemma 1.1. Let C be a nonempty closed convex subset of H and let F : C × C → R be a bifunction
satisfying (A1)–(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (1.18)

Further, define a mapping Tr by

Trx =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(1.19)

for all r > 0 and x ∈ H. Then, the following hold.
(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,
∥∥Trx − Try

∥∥2 ≤ 〈
Trx − Try, x − y

〉
; (1.20)

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

Lemma 1.2 (see [25]). Let C be a nonempty closed convex subset of a real Hilbert space H and
S : C → C a k-strict pseudocontraction. Define Sα : C → C by Sαx = αx + (1 − α)Sx for each
x ∈ C. Then, as α ∈ [k, 1), Sα is nonexpansive and F(Sα) = F(S).

Lemma 1.3 (see [26]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (1.21)

Suppose that xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (1.22)

Then limn→∞‖yn − xn‖ = 0.

The following lemma can be deduced from Bruck [8].

Lemma 1.4. Let C be a closed convex subset of a strictly convex Banach space E. Let S1, S2, and S3

be three nonexpansive mappings on C. Suppose
⋂3

n=1 F(Sn) is nonempty. Let a1, a2, and a3 be three
constant in (0, 1). Then the mapping S on C defined by

Sx = a1S1x + a2S2x + a3S3x (1.23)

for x ∈ C is well defined, nonexpansive, and F(S) =
⋂3

n=1 F(Sn) holds.
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Lemma 1.5 (see [6]). Let H be a real Hilbert space, C a nonempty closed and convex subset of E,
and S : C → C a nonexpansive mapping. Then I − S is demiclosed at zero.

Lemma 1.6 (see [14]). Let H be a real Hilbert space, C a nonempty closed and convex subset of E
and S : C → C a k-strict pseudocontraction. Then F(S) is closed and convex.

Lemma 1.7 (see [27]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (1.24)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(a)

∑∞
n=1 γn = ∞;

(b) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞αn = 0.

2. Main Results

Theorem 2.1. Let C be a nonempty closed and convex subset of a real Hilbert space H and F a
bifunction from C × C to R satisfying (A1)–(A4). Let A be an α-inverse-strongly monotone mapping
of C into H and B a β-inverse-strongly monotone mapping of C into H. Let S : C → C be a k-strict
pseudocontraction with a fixed point. Assume that Ω := EP(F,A) ∩ F(S) ∩VI(C,B)/= ∅. Let {xn} be
a sequence in C generated by

x1 ∈ C, chosen arbitrarily,

F
(
un, y

)
+
〈
Axn, y − un

〉
+
1
r

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

vn = PC(xn − λBxn),

yn = δnxn + (1 − δn)Sxn,

xn+1 = αnu + βnxn + γn
(
μ(1,n)yn + μ(2,n)un + μ(3,n)vn

)
, ∀n ≥ 1,

(2.1)

where u is a fixed element inC, {αn}, {βn}, {γn}, {μ(1,n)}, {μ(2,n)} and {μ(3,n)} are sequences in (0, 1),
{δn} is sequence in [k, 1), r ∈ (0, 2α] and λ ∈ (0, 2β]. Assume that the above control sequences satisfy
the following restrictions

(R1) αn + βn + γn = μ(1,n) + μ(2,n) + μ(3,n) = 1, for all n ≥ 1;

(R2) limn→∞αn = 0,
∑∞

n=1 αn = ∞;

(R3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(R4) limn→∞δn = δ ∈ [k, 1) and limn→∞μ(i,n) = μi ∈ (0, 1) for all 1 ≤ i ≤ 3.

Then the sequence {xn} defined by the iterative process (2.1) converges strongly to x = PΩu.

Proof. The proof is divided into six steps.

Step 1. Show that PΩu is well defined.
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From Lemma 1.6, we see that F(S) is closed and convex. On the other hand, we see
that the mapping I − rA, where r ∈ (0, 2α], is nonexpansive. Indeed, for any x, y ∈ C, we
have that

∥
∥(I − rA)x − (I − rA)y

∥
∥2 =

∥
∥x − y − r(Ax −Ay)

∥
∥2

=
∥
∥x − y

∥
∥2 − 2r〈x − y,Ax −Ay〉 + r2

∥
∥Ax −Ay

∥
∥2

≤ ∥
∥x − y

∥
∥2 − 2rα

∥
∥Ax −Ay

∥
∥2 + r2

∥
∥Ax −Ay

∥
∥2

=
∥
∥x − y

∥
∥2 − r(2α − r)

∥
∥Ax −Ay

∥
∥2

≤ ∥
∥x − y

∥
∥2

.

(2.2)

This shows that I − rA is nonexpansive mapping. Similarly, we can prove that I − λB, where
λ ∈ (0, 2β] is nonexpansive. It follows that VI(C,B) = F(PC(I − λB)), for all λ > 0 is closed
and convex. From Lemma 1.1, we see that EP(F,A) = F(Tr(I − rA)). Since Tr(I − rA) is
nonexpansive, we obtain that EP(F,A) is closed and convex. This shows that PΩu is well
defined.

Step 2. Show that {xn} is bounded.
Put Tn = δnI + (1 − δn)S for each n ≥ 1. In view of Lemma 1.2 and (R4), we obtain that

Tn is nonexpansive and F(Tn) = F(S). Letting x∗ ∈ Ω, we obtain that

x∗ = Tr(I − rA)x∗ = Tnx
∗ = Sx∗ = PC(I − λB)x∗, ∀n ≥ 1. (2.3)

Note that yn = Tnxn for each n ≥ 1. It follows that ‖yn − x∗‖ ≤ ‖xn − x∗‖. Putting

en = μ(1,n)yn + μ(2,n)un + μ(3,n)vn, ∀n ≥ 1, (2.4)

we have that

‖en − x∗‖ ≤ μ(1,n)
∥∥yn − x∗∥∥ + μ(2,n)‖un − x∗‖ + μ(3,n)‖vn − x∗‖

= μ(1,n)
∥∥yn − x∗∥∥ + μ(2,n)‖Tr(I − rA)xn − Tr(I − rA)x∗‖

+ μ(3,n)‖PC(I − λA)xn − PC(I − λB)x∗‖
≤ μ(1,n)‖xn − x∗‖ + μ(2,n)‖xn − x∗‖ + μ(3,n)‖xn − x∗‖
= ‖xn − x∗‖.

(2.5)



8 Journal of Inequalities and Applications

It follows that

‖xn+1 − x∗‖ =
∥
∥αnu + βnxn + γnen − x∗∥∥

≤ αn‖u − x∗‖ + βn‖xn − x∗‖ + γn‖en − x∗‖
≤ αn‖u − x∗‖ + βn‖xn − x∗‖ + γn‖xn − x∗‖
= αn‖u − x∗‖ + (1 − αn)‖xn − x∗‖
≤ max{‖u − x∗‖, ‖x1 − x∗‖}.

(2.6)

This shows that the sequence {xn} is bounded. Note that

‖un − x∗‖ = ‖Tr(I − rA)xn − x∗‖ ≤ ‖xn − x∗‖ ,

‖vn − x∗‖ = ‖PC(xn − λBxn) − x∗‖ ≤ ‖xn − x∗‖.
(2.7)

This proves that the sequences {un} and {vn} are bounded, too.

Step 3. Show that xn+1 − xn → 0 as n → ∞.
Note that

∥∥yn+1 − yn

∥∥ = ‖Tn+1xn+1 − Tnxn‖
≤ ‖Tn+1xn+1 − Tn+1xn‖ + ‖Tn+1xn − Tnxn‖
≤ ‖xn+1 − xn‖ + |δn+1 − δn|M1,

(2.8)

whereM1 is an appropriate constant such thatM1 = supn≥1{‖xn − Sxn‖}. On the other hand,
we have

‖vn+1 − vn‖ = ‖PC(xn+1 − λBxn+1) − PC(xn − λBxn)‖ ≤ ‖xn+1 − xn‖ ,

‖un+1 − un‖ = ‖Tr(I − rA)xn+1 − Tr(I − rA)xn‖ ≤ ‖xn+1 − xn‖.
(2.9)

It follows from (2.1) and (2.9) that

‖en+1 − en‖ =
∥∥μ(1,(n+1))yn+1 + μ(2,(n+1))un+1 + μ(3,(n+1))vn+1

− (
μ(1,n)yn + μ(2,n)un + μ(3,n)vn

)∥∥

≤ μ(1,(n+1))
∥∥yn+1 − yn

∥∥ +
∥∥yn

∥∥∣∣μ(1,(n+1)) − μ(1,n)
∣∣

+ μ(2,(n+1))‖un+1 − un‖ + ‖un‖
∣∣μ(2,(n+1)) − μ(2,n)

∣∣

+ μ(3,(n+1))‖vn+1 − vn‖ + ‖vn‖
∣∣μ(3,(n+1)) − μ(3,n)

∣∣ ≤ ‖xn+1 − xn‖
+M2

(∣∣μ(1,(n+1)) − μ(1,n)
∣∣ +

∣∣μ(2,(n+1)) − μ(2,n)
∣∣ +

∣∣μ(3,(n+1)) − μ(3,n)
∣∣ + |δn+1 − δn|

)
,

(2.10)
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where M2 is an appropriate constant such that

M2 ≥ max

{

sup
n≥1

∥
∥yn

∥
∥, sup

n≥1
‖un‖, sup

n≥1
‖vn‖,M1

}

. (2.11)

Put ln = (xn+1 − βnxn)/(1 − βn), for each n ≥ 1, that is,

xn+1 =
(
1 − βn

)
ln + βnxn, ∀n ≥ 1. (2.12)

Now, we compute ‖ln+1 − ln‖. Notice that

ln+1 − ln =
αn+1u + γn+1en+1

1 − βn+1
− αnu + γnen

1 − βn

=
αn+1

1 − βn+1
u +

1 − βn+1 − αn+1

1 − βn+1
en+1 − αn

1 − βn
u − 1 − βn − αn

1 − βn
en

=
αn+1

1 − βn+1
(u − en+1) +

αn

1 − βn
(en − u) + en+1 − en.

(2.13)

It follows that

‖ln+1 − ln‖ ≤ αn+1

1 − βn+1
‖u − en+1‖ + αn

1 − βn
‖en − u‖ + ‖en+1 − en‖. (2.14)

Substituting (2.10) into (2.14), we arrive at

‖ln+1 − ln‖ − ‖xn+1 − xn‖

≤ αn+1

1 − βn+1
‖u − en+1‖ + αn

1 − βn
‖en − u‖

+M2
(∣∣μ(1,(n+1)) − μ(1,n)

∣∣ +
∣∣μ(2,(n+1)) − μ(2,n)

∣∣ +
∣∣μ(3,(n+1)) − μ(3,n)

∣∣ + |δn+1 − δn|
)
.

(2.15)

It follows from the restrictions (R2)–(R4) that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn+1‖) < 0. (2.16)

From Lemma 1.3, we obtain that

lim
n→∞

‖ln − xn‖ = 0. (2.17)

From (2.12), we see that

xn+1 − xn =
(
1 − βn

)
(ln − xn). (2.18)
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In view of (2.17), we get that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.19)

Step 4. Show that xn − en → 0 as n → ∞.
From the iterative process (2.1), we have

γn(en − xn) = xn+1 − xn + αn(xn − u). (2.20)

This implies that

γn‖en − xn‖ ≤ ‖xn+1 − xn‖ + αn‖xn − u‖. (2.21)

It follows from the restrictions (R2) and (R3) that we arrive at

lim
n→∞

‖en − xn‖ = 0. (2.22)

Step 5. Show that lim supn→∞〈u − x, xn − x〉 ≤ 0, where x = PΩu.
To show that, we can choose a sequence {xni} of {xn} such that

lim sup
n→∞

〈u − x, xn − x〉 = lim
i→∞

〈u − x, xni − x〉. (2.23)

Since {xni} is bounded, we see that there exists a subsequence {xnij
} of {xni}which converges

weakly to ξ. Without loss of generality, we may assume that xni ⇀ ξ.
Next, we show that ξ ∈ Ω = F(S) ∩ VI(C,B) ∩ EP(F,A). In fact, define a mapping

Q : C → C by

Qx = μ1Tx + μ2Tr(I − rA)x + μ3PC(I − λB), ∀x ∈ C, (2.24)

where T = δI + (1 − δ)S. Note that T is nonexpansive and F(T) = F(S). From Lemma 1.4, we
see that Q is a nonexpansive mapping such that

F(Q) = F(T) ∩ F(Tr(I − rA)) ∩ F(PC(I − λB)) = F(S) ∩ EP(F,A) ∩ VI(C,B). (2.25)

On the other hand, we have

‖en −Qxn‖ =
∥∥(μ(1,n)yn + μ(2,n)Tr(I − rA)xn + μ(3,n)PC(I − λB)xn

)

− (
μ1Txn + μ2Tr(I − rA)xn + μ3PC(I − λB)xn

)∥∥

≤ ∣∣μ(1,n)δn − μ1δ
∣∣‖xn‖ +

∣∣μ(1,n)(1 − δn) − μ1(1 − δ)
∣∣‖Sxn‖

+ ‖Tr(I − rA)xn‖
∣∣μ(2,n) − μ2

∣∣ +
∣∣μ(3,n) − μ3

∣∣‖PC(I − λB)xn‖.

(2.26)
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It follows from the condition (R4) that en −Qxn → 0. Note that

Qxn − xn = Qxn − en + en − xn. (2.27)

From (2.22), we arrive at

lim
n→∞

‖Qxn − xn‖ = 0. (2.28)

It follows from Lemma 1.5 that

ξ ∈ F(Q) = Ω. (2.29)

Thanks to (2.23), we arrive at

lim sup
n→∞

〈u − x, xn − x〉 = 〈u − x, ξ − x〉 ≤ 0. (2.30)

Step 6. Show that xn → x as n → ∞.
Notice that

‖xn+1 − x‖2 = ∥∥αnu + βnxn + γnen − x
∥∥2

=
〈
αn(u − x) + βn(xn − x) + γn(en − x), xn+1 − x

〉

= αn〈u − x, xn+1 − x〉 + βn〈xn − x, xn+1 − x〉 + γn〈en − x, xn+1 − x〉
≤ αn〈u − x, xn+1 − x〉 + βn‖xn − x‖‖xn+1 − x‖ + γn‖en − x‖‖xn+1 − x‖
≤ αn〈u − x, xn+1 − x〉 + βn‖xn − x‖‖xn+1 − x‖ + γn‖xn − x‖‖xn+1 − x‖
= (1 − αn)‖xn − x‖‖xn+1 − x‖ + αn〈u − x, xn+1 − x〉

≤ (1 − αn)
2

(
‖xn − x‖2 + ‖xn+1 − x‖2

)
+ αn〈u − x, xn+1 − x〉,

(2.31)

which yields that

‖xn+1 − x‖2 ≤ (1 − αn)‖xn − x‖2 + 2αn〈u − x, xn+1 − x〉.
(2.32)

In view of the restrictions (R2) and (2.30), we from Lemma 1.7 can conclude the desired
conclusion easily. This completes the proof.

As corollaries of Theorem 2.1, we have the following results.
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Corollary 2.2. Let C be a nonempty closed and convex subset of a real Hilbert space H and F a
bifunction from C × C to R satisfying (A1)–(A4). Let B be a β-inverse-strongly monotone mapping
of C into H. Let S : C → C be a k-strict pseudocontraction with a fixed point. Assume that Ω :=
EP(F) ∩ F(S) ∩ VI(C,B)/= ∅. Let {xn} be a sequence in C generated by

x1 ∈ C, chosen arbitrarily,

F
(
un, y

)
+
1
r

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

vn = PC(xn − λBxn),

yn = δnxn + (1 − δn)Sxn,

xn+1 = αnu + βnxn + γn
(
μ(1,n)yn + μ(2,n)un + μ(3,n)vn

)
, ∀n ≥ 1,

(2.33)

where u is a fixed element inC, {αn}, {βn}, {γn}, {μ(1,n)}, {μ(2,n)}, and {μ(3,n)} are sequences in (0, 1),
{δn} is sequence in [k, 1), r ∈ (0,∞), and λ ∈ (0, 2β]. Assume that the above control sequences satisfy
the following restrictions:

(R1) αn + βn + γn = μ(1,n) + μ(2,n) + μ(3,n) = 1, for all n ≥ 1;

(R2) limn→∞αn = 0,
∑∞

n=1 αn = ∞;

(R3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(R4) limn→∞δn = δ ∈ [k, 1) and limn→∞μ(i,n) = μi ∈ (0, 1) for all 1 ≤ i ≤ 3.

Then the sequence {xn} defined by the iterative process (2.1) converges strongly to x = PΩu.

Proof. In Theorem 2.1, put A = 0, the zero mapping. Then for any α > 0, we see that the the
following inequality holds.

〈
x − y,Ax −Ay

〉 ≥ α
∥∥Ax −Ay

∥∥2
. (2.34)

Then, we can obtain the desired conclusion easily from Theorem 2.1. This completes the
proof.

Corollary 2.3. Let C be a nonempty closed and convex subset of a real Hilbert space H and F a
bifunction from C × C to R satisfying (A1)–(A4). Let SA be a kα-strict pseudocontraction of C into
H and KB a kβ-strict pseudocontraction of C intoH. Let S : C → C be a k-strict pseudocontraction
with a fixed point. Assume thatΩ := EP(F, I −SA)∩F(S)∩F(SB))/= ∅. Let {xn} be a sequence in C
generated by

x1 ∈ C, chosen arbitrarily,

F
(
un, y

)
+
〈
xn − SAxn, y − un

〉
+
1
r
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

vn = (1 − λ)xn + λSBxn,

yn = δnxn + (1 − δn)Sxn,

xn+1 = αnu + βnxn + γn
(
μ(1,n)yn + μ(2,n)un + μ(3,n)vn

)
, ∀n ≥ 1,

(2.35)
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where u is a fixed element in C, {αn}, {βn}, {γn}, {μ(1,n)}, {μ(2,n)}, and {μ(3,n)} are sequences in
(0, 1), {δn} is sequence in [k, 1), r ∈ (0, 1 − kα], and λ ∈ (0, 1 − kβ]. Assume that the above control
sequences satisfy the following restrictions:

(R1) αn + βn + γn = μ(1,n) + μ(2,n) + μ(3,n) = 1, for all n ≥ 1;

(R2) limn→∞αn = 0,
∑∞

n=1 αn = ∞;

(R3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(R4) limn→∞δn = δ ∈ [k, 1) and limn→∞μ(i,n) = μi ∈ (0, 1)for all 1 ≤ i ≤ 3.

Then the sequence {xn} defined by the above iterative process converges strongly to x = PΩu.

Proof. Put A = I − SA and B = I − SB. Then, we see that A is ((1 − kα)/2)-inverse-strongly
monotone and B is ((1−kβ)/2)-inverse-strongly monotone; see [7]. We have F(SB) = VI(C,B)
and

PC(xn − λnBxn) = (1 − λn)xn + λnSBxn. (2.36)

It is easy to obtain the desired conclusion from Theorem 2.1.

Remark 2.4. If f : C → C is a contractive mapping and we replace u by f(xn) in the
recursion formula (2.1), we can obtain the so-called viscosity iteration method. We note that
all theorems and corollaries of this paper carry over trivially to the so-called viscosity iteration
method; see [28] for more details.
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