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By using a random version of the theory of contractor introduced by Altman, we introduce and
study a system of nonlinear operator equations for a mixed family of fuzzy and crisp operators
in probabilistic normed spaces. We construct some new iterative algorithms for solving this kind
of nonlinear operator equations. We also prove some new existence theorems of solutions of a
new system of nonlinear operator equations for a mixed family of fuzzy and crisp operators and
some new convergence results of sequences generated by iterative algorithms under joint orbitally
complete conditions.

1. Introduction

Altman [1, 2] introduced the theory of contractor and contractor direction, which has a very
strong significant for the study of existence and uniqueness for solving nonlinear operator
equations in Banach spaces. The theory of contractor offers a unified approach to a very
large class of iterative methods including the most important ones. Chang [3] introduced
the concept of probabilistic contractor and studied the existence and uniqueness of solution
for nonlinear operator equations with probabilistic contractor inMenger PN-spaces. By using
the theory of countable extension of t-norms [4–6] and the results from [7, 8], many results
for the more general classes of t-norms have been proved (see [9] and the references therein).

On the other hand, since then, several kinds of variational inequalities, variational
inclusions, complementarity problems, and nonlinear equations with fuzzy mappings were
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introduced and studied by many authors (see, e.g., [8–15]). Sharma et al. [15] considered
two nonfuzzy mappings and a sequence of fuzzy mappings to define a hybridD-compatible
condition. They also showed the existence of common fixed points under such condition,
where the range of the one of the two nonfuzzy mappings is joint orbitally complete.
Furthermore, Cho et al. [10] introduced the concept of probabilistic contractor couple in
probabilistic normed spaces and discuss the solution for nonlinear equations of fuzzy
mappings and the convergence of sequences generated by the algorithms in Menger
probabilistic normed spaces. Very recently, Hadžić and Pap [16] introduced some new classes
of probabilistic contractions in probabilistic metric spaces. They also obtained a new fixed
point theorem for the ψ-probabilistic contraction and gave some applications to random
operators.

Motivated and inspired by the above works, in this paper, by using a random version
of the theory of contractor introduced by Altman, we introduce and study a system of
nonlinear operator equations for a mixed family of fuzzy and crisp operators in probabilistic
normed spaces. We construct some new iterative algorithms for solving this kind of nonlinear
operator equations. We also prove some new existence theorems of solution for the system
of nonlinear operator equations for a mixed family of fuzzy and crisp operators and
new convergence results of sequences generated by the iterative algorithms under joint
orbitally complete condition. The results presented in this paper improve and generalize
corresponding results of [9, 15–17].

2. Preliminaries

Let Δ+ be the set of all distribution functions F such that F(0) = 0 (F is a nondecreasing, left
continuous mapping from R into [0, 1] such that supx∈RF(x) = 1). The special distribution
function H is defined by

H(t) =

⎧
⎨

⎩

1, t > 0,

0, t ≤ 0.
(2.1)

The ordered pair (S,F) is said to be a probabilistic metric space if S is a nonempty set
and F : S × S → Δ+ (F(p, q) is written by Fp,q for all (p, q) ∈ S × S) satisfying the following
conditions:

(i) Fu,v(x) = 1 for all x > 0 ⇔ u = v for all u, v ∈ S;

(ii) Fu,v = Fv,u for all u, v ∈ S;

(iii) Fu,v(x) = 1 and Fv,w(y) = 1 ⇒ Fu,w(x + y) = 1 for all u, v,w ∈ S and x, y ∈ R
+.

A Menger space (see [18]) is a triple (S,F, T), where (S,F) is a probabilistic metric
space, T is a triangular norm (abbreviated t-norm), and the following inequality holds:

Fu,v

(
x + y

) ≥ T
(
Fu,w(x), Fw,v

(
y
))
, ∀u, v,w ∈ S, x, y > 0. (2.2)
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Recall that a mapping T : [0, 1]×[0, 1] → [0, 1] is a triangular norm (shortly, a t-norm)
if the following conditions are satisfied:

(i) T(a, 1) = a for all a ∈ [0, 1];

(ii) T(a, b) = T(b, a) for all a, b ∈ [0, 1];

(iii) if a ≥ b and c ≥ d, then T(a, c) ≥ T(b, d) for all a, b, c, d ∈ [0, 1];

(iv) T(a, T(b, c)) = T(T(a, b), c) for all a, b, c ∈ [0, 1].

Example 2.1. The following are the four basic examples.

(1) The minimum t-norm TM is defined by

TM
(
x, y
)
= min

(
x, y
)
. (2.3)

(2) The product t-norm TP is defined by

TP
(
x, y
)
= x · y. (2.4)

(3) The Lukasiewicz t-norm TL is defined by

TL
(
x, y
)
= max

(
x + y − 1, 0

)
. (2.5)

(4) The weakest t-norm, the drastic product TD, is defined by

TD
(
x, y
)
=

⎧
⎨

⎩

min
(
x, y
)
, if max

(
x, y
)
= 1,

0, otherwise.
(2.6)

The (ε, λ)-topology in S is introduced by the family of neighbourhoods U =
{Uv(ε, λ)}(v,ε,λ)∈S×R+×(0,1), where

Uv(ε, λ) = {u; Fu,v(ε) > 1 − λ}. (2.7)

If a t-norm T is such that supx<1T(x, x) = 1, then S is a metrizable topological space
under the (ε, λ)-topology.

LetX be a vector space over the real or complex number fieldK, F : X → Δ+, and T a
t-norm. The ordered triple (X,F, T) is a Menger probabilistic normed space (briefly, aMenger
PN-space) if and only if the following conditions are satisfied, where F(x) = Fx for all x ∈ S:

(i) Fx(0) = 0 for all x ∈ S and Fx = H ⇔ x = θ (θ is a neutral element for + in X);

(ii) Fλx(t) = Fx(t/|λ|) for all x ∈ X and λ ∈ K (λ/= 0);

(iii) Fx+y(t1 + t2) ≥ T(Fx(t1), Fy(t2)) for all x, y ∈ X and t1, t2 > 0.
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If (X,F, T) is a Menger PN-space and, for all x, y ∈ X, F : X ×X → Δ+ is defined by

F(x, y) = Fx−y, (2.8)

then (X,F, T) is a Menger space.

The following definition can be found in [7].

Definition 2.2 (see [7]). (X,F, T) is called a non-Archimedean Menger PN-space (briefly, an
N.A. Menger PN-space) if (X,F, T) is a Menger PN-space satisfying the following condition:

Fx+y(max{t1, t2}) ≥ T
(
Fx(t1), Fy(t2)

)
, ∀x, y ∈ X, t1, t2 ≥ 0. (2.9)

If (X,F, T) is a Menger PN-space and T is a t-norm which satisfies the condition:

sup
a<1

T(a, a) = 1, (2.10)

then (X,F, T) is a Hausdorff topological vector space in the topology τ induced by the base
of neighborhoods of θ

{U(ε, λ) | ε > 0, λ ∈ (0, 1]}, (2.11)

where U(ε, λ) = {x ∈ X : Fx(ε) > 1 − λ}.

Example 2.3 (see [9]). It is easy to see that an ultra-metric space (M,d) belongs to the class
of N.A. Menger PN-spaces, where M/= ∅ and d : M ×M → [0,∞) satisfying the following
conditions:

(i) d(x, y) = 0 ⇔ x = y for all x, y ∈ M;

(ii) d(x, y) = d(y, x) for all x, y ∈ M;

(iii) d(x, z) ≤ max{(x, y), d(y, z)} for all x, y, z ∈ M.

A fuzzy set A in X is a function from X into [0, 1]. If x ∈ X, then the function value
A(x) is called the grade of membership of x in A. The α-level set of A, denoted by Aα, is
defined by

Aα = {x : A(x) ≥ α}, ∀α ∈ (0, 1]. (2.12)

Let W(X) denote the collection of all fuzzy sets A in X such that Aα is compact and
convex for all α ∈ (0, 1] and supx∈XA(x) = 1. For anyA,B ∈ W(X),A ⊂ B meansA(x) ≤ B(x)
for all x ∈ X.

Let M be an arbitrary set and X any linear metric space. A function S̃ : M → W(X)
is called fuzzy operator. Now, we define an orbit for mixed operators (S̃n, f, g) and a joint
orbitally complete space as follows.
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Definition 2.4 (see [15]). Let f, g be two operators fromX into itself and {S̃n}∞n=1 a sequence of
fuzzy operators from X into W(X). If, for some x0 ∈ X, there exist sequences {xn} and {yn}
in X such that

⎧
⎨

⎩

{
y2n+1

}
=
{
f(x2n+1)

} ⊂ S̃2n+1(x2n),
{
y2n+2

}
=
{
g(x2n+2)

} ⊂ S̃2n+2(x2n+1), ∀n ≥ 0,
(2.13)

then ϑ(S̃n, f, g, x0) = {yn : n ≥ 1} is called an orbit for the mixed operators (S̃n, f, g).

Definition 2.5 (see [15]). X is called x0-joint orbitally complete if every Cauchy sequence of
each orbit at x0 is convergent in X.

Remark 2.6 (see [15]). Clearly, if X is an any complete space and x0 ∈ X, then X is x0-joint
orbitally complete, while the converse is not necessarily true.

3. Some Countable t-Norms

Let T be a t-norm and, for each n ≥ 1, and a mapping Tn : [0, 1] → [0, 1] let defined in the
following way:

T1(x) = T(x, x), Tn+1(x) = T(Tn(x), x), ∀n ≥ 1, x ∈ [0, 1]. (3.1)

A t-norm T is of H-type if the family {Tn(x)}n≥1 is equicontinuous at x = 1 (see [19]).
Each t-norm T can be extended (by the associativity) in a unique way to the n-ary

operation taking the values T(x1, x2, . . . , xn) = Tn
i=1xi for any (x1, . . . , xn) ∈ [0, 1]n, which is

defined by

T0
i=1xi = 1, Tn

i=1xi = T
(
Tn−1
i=1 xi, xn

)
. (3.2)

A t-norm T can be extended to countable infinitely operations taking the value

T∞
i=1xi = lim

n→∞
Tn
i=1xi (3.3)

for any sequence {xn}n≥1 in [0, 1]. Also, the sequence {Tn
i=1xi}n≥1 is nonincreasing and

bounded from below and hence the limit T∞
i=1xi exists.

By (3.3) and fixed point theory in the book by Hadžić and Pap [4], it is interested
to investigate the classes of t-norms T and sequences {xn} in the interval [0, 1] such that
limn→∞xn = 1 and

lim
n→∞

T∞
i=nxi � lim

n→∞
lim
m→∞

Tm
i=nxi

= lim
n→∞

lim
m→∞

Tm−n+1
i=1 xi+n−1

= lim
n→∞

T∞
i=nxi+n−1

= lim
n→∞

T∞
i=1xn+i−1 = 1.

(3.4)
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It is obvious that

lim
n→∞

T∞
i=nxi = 1 ⇐⇒

∞∑

i=1

(1 − xi) < ∞ (3.5)

for T = TL and T = TP .
The important classes of t-norms are given in the following example.

Example 3.1 (see [16]). (1) The Dombi family of t-norms (TD
λ )λ∈[0,∞] is defined by

TD
λ

(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

TD
(
x, y
)
, λ = 0,

TM
(
x, y
)
, λ = ∞,

1

1 +
(
((1 − x)/x)λ +

(
(1 − y)/y

)λ
)1/λ

, λ ∈ (0,∞).
(3.6)

(2) The Aczél-Alsina family of t-norms (TAA
λ )λ∈[0,∞] is defined by

TAA
λ

(
x, y
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TD
(
x, y
)
, λ = 0,

TM
(
x, y
)
, λ = ∞,

e−((− logx)λ+(− logy)λ)1/λ , λ ∈ (0,∞).

(3.7)

(3) The family (TSW
λ

)λ∈[−1,∞] of Sugeno-Weber t-norms is given by

TSW
λ

(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

TD
(
x, y
)
, λ = −1,

TP
(
x, y
)
, λ = ∞,

max
(

0,
x + y − 1 + λxy

1 + λ

)

, λ ∈ (−1,∞).

(3.8)

(4) The Schweizer-Sklar family of t-norms (TSS
λ
)λ∈[−∞,∞] is defined by

TSS
λ

(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

TM
(
x, y
)
, λ = −∞,

TP
(
x, y
)
, λ = 0,

(
max
(
xλ + yλ − 1, 0

))1/λ
, λ ∈ (−∞, 0) ∪ (0,∞),

TD
(
x, y
)
, λ = ∞.

(3.9)

The condition T ≥ TL is fulfilled by the families (TSS
λ )λ∈(−∞,1), (T

SW
λ )λ∈[0,∞].

There exists a member of the family (TD
λ )λ∈(0,∞) which is incomparable with TL and

there exists a member of the family (TAA
λ

)λ∈(0,∞) which is incomparable with TL.
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In [4], the following results and proposition are obtained.

(1) If (TD
λ
)λ∈(0,∞) is the Dombi family of t-norms and {xn}n∈N is a sequence of elements

from (0, 1] such that limn→∞xn = 1, then we have the following equivalence:

∞∑

n=1

(1 − xn)λ < ∞ ⇐⇒ lim
n→∞

(
TD
λ

)∞

i=n
xi = 1. (3.10)

(2) If (TSW
λ )λ∈(−1,∞] is the Sugeno-Weber family of t-norms and {xn}n∈N is a sequence

of elements from (0, 1] such that limn→∞xn = 1, then we have the following
equivalence:

∞∑

n=1

(1 − xn) < ∞ ⇐⇒ lim
n→∞

(
TSW
λ

)∞

i=n
xi = 1. (3.11)

(3) The equivalence (3.10) holds also for the family (TAA
λ )λ∈(0,∞), that is,

∞∑

n=1

(1 − xn)λ < ∞ ⇐⇒ lim
n→∞

(
TAA
λ

)∞

i=n
xi = 1. (3.12)

Proposition 3.2. Let {xn}n∈N be a sequence of numbers from [0, 1] such that limn→∞xn = 1 and T
a t-norm of H-type. Then limn→∞T∞

i=nxi = limn→∞T∞
i=1xn+i = 1.

4. The Main Results

Let (X,F, T) be a Menger PN-space with the t-norm T satisfying condition supa<1T(a, a) = 1
and A a nonempty subset of X. If supt>0DA(t) = 1, where

DA(t) = sup
s<t

inf
p,q∈A

Fp−q(s), ∀s, t ∈ R, (4.1)

then A is called a probabilistically bounded set. Let ΩX be the collection of all nonempty
closed probabilistically bounded subsets of X. For any A,B ∈ ΩX , define the distribution
functions FA,B and FA by

FA,B(t) = sup
s<t

T

(

inf
a∈A

sup
b∈B

Fa−b(s), inf
b∈B

sup
a∈A

Fa−b(s)

)

, ∀s, t ∈ R, (4.2)

FA(t) = sup
s<t

sup
a∈A

Fa(s), ∀s, t ∈ R, (4.3)

respectively.
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Let S̃i, S̃j : X → W(Y ) be two fuzzy operators satisfying the following condition (I).

(I) There exist twomappings a, b : X → (0, 1] such that, for all x ∈ X, the set (S̃ix)a(x) ∈
ΩY and (S̃jx)b(x) ∈ ΩY .

We note that

(
S̃ix

)

a(x)
=
{
y | S̃ix

(
y
) ≥ a(x)

}
∈ ΩY , (4.4)

where a(x) ∈ (0, 1) is a real number and S̃ix ∈ W(Y ) is a fuzzy set in Y decided by the fuzzy
operator S̃i at x ∈ X. By using each pair of fuzzy operators S̃i and S̃j , we can define two
set-valued mappings Si and Sj as follows:

⎧
⎪⎨

⎪⎩

Si : X −→ ΩY , x �−→
(
S̃ix

)

a(x)
, ∀x ∈ X,

Sj : X −→ ΩY , x �−→
(
S̃jx

)

b(x)
, ∀x ∈ X.

(4.5)

In the sequel, for some i, j ∈ N, Si and Sj are called the set-valued mappings induced
by the fuzzy mappings P̃ and S̃j , respectively.

We need the following lemma and definitions.

Lemma 4.1 (see [7]). Let (X,F, T) be a Menger PN-space with a t-norm T satisfying
supa<1T(a, a) = 1 and let A,B ∈ ΩX . Then we have the following.

(1) FA(0) = 0.

(2) FA(t) = 1 for all t > 0 if and only if θ ∈ A.

(3) FαA(t) = FA(t/|α|) for all α ∈ R with α/= 0.

(4) If θ ∈ B, then we have FA(t) ≥ FA,B(t) for all t ∈ R.

Definition 4.2. Let (X, F̂, T) and (Y,F, T) be two Menger PN-spaces. A set-valued mapping
P : D(P) ⊂ X → ΩY is said to be τ-closed if, for any xn ∈ D(P) and yn ∈ P(xn), whenever
xn

τX→ x and yn
τY→ y, we have x ∈ D(P) and y ∈ P(x).

Definition 4.3. A function Ψ : [0, 1] → [0, 1] is said to satisfy the condition (Ψ) if it is
nondecreasing and limn→∞Ψn(t) = 1 for all t ∈ [0, 1].

It is easy to prove that ifΨ : [0, 1] → [0, 1] satisfies the condition (Ψ), thenΨ(t) > t for
all t ∈ [0, 1).

Definition 4.4 (see [7]). Let (X, F̂, T) and (Y,F, T) be two Menger PN-spaces and P : D(P) ⊂
X → 2Y , Q : D(Q) ⊂ X → 2Y be two set-valued mappings. Let Γ1,Γ2 : X → L(Y,X) be
two mappings, where L(Y,X) denotes the space of all linear operators from Y to X. (Γ1,Γ2)
is called a probabilistic Ψ-contractor couple of P and Q if there exists a function Ψ : [0, 1] →
[0, 1] satisfying the condition (Ψ) such that

FP(x+Γ1(x)y),Q(x)+y(t) ≥ Ψ
(
min
{
Fy(t), FQ(x)(t), FP(x+Γ1(x)y)(t)

})
(4.6)
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for all x ∈ D(Q), y ∈ {y ∈ Y : x + Γ1(x)y ∈ D(P)}, t ≥ 0, and

FQ(x+Γ2(x)y),P(x)+y(t) ≥ Ψ
(
min
{
Fy(t), FP(x)(t), FQ(x+Γ2(x)y)(t)

})
(4.7)

for all x ∈ D(P), y ∈ {y ∈ Y : x + Γ2(x)y ∈ D(Q)}, and t ≥ 0.

Now, we introduce two algorithms for our main results as follows.

Algorithm 1. Let (X, F̂, T) be an N.A. Menger PN-space with a t-norm T and (Y,F, TY ) be a
Menger PN-space with a t-norm TY . Let f , g be two operators from X into itself, {S̃n}∞n=1 a
sequence of fuzzy operators from X into W(X) satisfying the condition (I), and Sn the τ-
closed set-valued operators induced by the fuzzy operators S̃n for all n ∈ N. Let Γ1,Γ2 : X →
L(Y,X) and Ψ : [0, 1] → [0, 1] satisfy the condition (Ψ). Suppose that

(i) Si(x) ⊂ f(X) and Sj(x) ⊂ g(X) for all x ∈ X;

(ii) x + Γ1(x)y ∈ D(Si) for all x ∈ D(Sj) and y ∈ Y , x + Γ2(x)y ∈ D(Sj) for all x ∈ D(Si)
and y ∈ Y ;

(iii) (Γ1,Γ2) is a probabilistic Ψ-contractor couple of Si and Sj ;

(iv) for all x ∈ D(Sj) and y ∈ Sj(x), there exists v ∈ Si(x + Γ1(x)y) such that

Fv(t) ≥ FSi(x+Γ1(x)y),Sj (x)−y(t), ∀t ≥ 0, (4.8)

and, for all x ∈ D(Si) and y ∈ Si(x), there exists w ∈ Sj(x + Γ2(x)y) such that

Fw(t) ≥ FSj (x+Γ2(x)y),Si(x)−y(t), ∀t ≥ 0. (4.9)

For any x0 ∈ D(Sj) and y0 ∈ Sj(x0), put x1 = (1 − α0)x0 + α0(x0 − Γ1(x0)y0), where
α0 ∈ (0, 1] is a real number. It follows from the assumption (ii) that x1 ∈ D(Si). Replacing x
and y by x0 and −y0 in (4.6), respectively, from (3.11) of Lemma 4.1, the assumption (iii), and
θ ∈ Sj(x0) − y0, it follows that

FSi(x1)(t) = FSi((1−α0)x0+α0(x0−Γ1(x0)y0))(t)

≥ FSi((1−α0)x0+α0(x0−Γ1(x0)y0)),Sj (x0)−y0(t)

≥ Ψ
(
min
{
Fy0(t), FSj (x0)(t), FSi(x1)(t)

})
, ∀t ≥ 0.

(4.10)

Since y0 ∈ Sj(x0) and FSj (x0)(t) = sups<tsupa∈Sj (x0)Fa(s), it follows that supa∈Sj (x0)Fa(s) ≥
Fy0(s) and so

FSj (x0)(t) ≥ sup
s<t

Fy0(s) = Fy0(t), ∀t ≥ 0. (4.11)

Since Fy0 is left continuous, now we have

FSi(x1)(t) ≥ Ψ
(
min
{
Fy0(t), FSi(x1)(t)

})
, ∀t ≥ 0, (4.12)
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and so FSi(x1)(t) ≥ Fy0(t) for all t > 0. In fact, if there exists t0 > 0 such that FSi(x1)(t0) < Fy0(t0),
then it follows from (4.12) that

FSi(x1)(t0) ≥ Ψ
(
FSi(x1)(t0)

)
> FSi(x1)(t0), (4.13)

which is a contradiction. Therefore, FSi(x1)(t) ≥ Fy0(t) for all t > 0. Thus, from (4.12), we have

FSi(x1)(t) ≥ FSi(x1),Sj (x0)−y0(t) ≥ Ψ
(
Fy0(t)

)
, ∀t ≥ 0. (4.14)

By the assumption (iv) and (4.14), for any θ ∈ Sj(x0) − y0, there exists y1 ∈ Si(x1) such that

Fy1(t) ≥ FSi(x1),Sj (x0)−y0(t) ≥ Ψ
(
Fy0(t)

)
, ∀t > 0. (4.15)

Let x2 = (1−α1)x1+α1(x1−Γ2(x1)y1), where α1 is a real number which satisfies inequality 0 <
α1 ≤ α0 ≤ 1. By the assumption (ii), we know that x2 ∈ D(Sj). Similarly, since θ ∈ Si(x1) − y1,
it follows from (4.6) that

FSj (x2)(t) = FSj ((1−α1)x1+α1(x1−Γ2(x1)y1)(t)

≥ FSj ((1−α1)x1+α1(x1−Γ2(x1)y1)),Si(x1)−y1(t)

≥ Ψ
(
min
{
Fy1(t), FSi(x1)(t), FSj (x2)(t)

})

≥ Ψ
(
min
{
Fy1(t), FSj (x2)(t)

})
, ∀t ≥ 0.

(4.16)

It is easy to check that Fy1(t) ≤ FSj (x2)(t) for all t > 0 and so it follows from (4.15) that

FSj (x2)(t) ≥ FSj (x2),Si(x1)−y1(t) ≥ Ψ
(
Fy1(t)

) ≥ Ψ2(Fy0(t)
)
, ∀t > 0. (4.17)

Now, for any θ ∈ Si(x1) − y1, the assumption (iv) implies that there exists y2 ∈ Sj(x2)
such that

Fy2(t) ≥ FSj (x2),Si(x1)−y1(t) ≥ Ψ2(Fy0(t)
)
, ∀t > 0. (4.18)

Inductively, we can get two sequences {xn} in X and {yn} in Y , respectively, as follows:

⎧
⎨

⎩

x2n+1 = (1 − α2n)x2n + α2n
(
x2n − Γ1(x2n)y2n

)
,

x2n+2 = (1 − α2n+1)x2n+1 + α2n+1
(
x2n+1 − Γ2(x2n+1)y2n+1

)
, ∀n ≥ 0,

(4.19)

where {αn} is a real monotone decreasing sequence in (0, 1] and αn → α ∈ (0, 1] as n → ∞;
the sequence {yn} in Y is defined by (2.13) and satisfies the following:

Fyn(t) ≥ Ψn(Fy0(t)
)
, ∀t > 0. (4.20)
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Algorithm 2. Let (X, F̂, T) be a N.A. Menger PN-space with a t-norm T , (Y,F, TY ) a Menger
PN-space with a t-norm TY , and A,V : X → X be two operators. Let {S̃n}∞n=1 a sequence
of fuzzy operators from X into W(X) satisfying the condition (I) and Sn the set-valued
operators induced by the fuzzy operators S̃n for all n ≥ 1. Let Γ1,Γ2 : X → L(Y,X)
and Ψ : [0, 1] → [0, 1] satisfy the condition (Ψ). Suppose that the conditions (ii)–(iv) in
Algorithm 1 are satisfied. If

(i)′ Si(x) ⊂ X −A(X) and Sj(x) ⊂ X − V (X) for all x ∈ X, then, for any x0 ∈ D(Sj) and
y0 ∈ Sj(x0), we have two sequences {xn} in X and {yn} in Y , respectively, defined
as follows:

⎧
⎨

⎩

x2n+1 = x2n − Γ1(x2n)y2n,

x2n+2 = x2n+1 − Γ2(x2n+1)y2n+1, ∀n ≥ 0,
(4.21)

where the sequence {yn} in Y is defined by (2.13).

Now, we state our main results by using the similar ideas as in [9].

Theorem 4.5. Let (X, F̂, T) be an N.A. Menger PN-space with a t-norm T and (Y,F, TY ) be a
Menger PN-space with a t-norm TY . Let f , g, {S̃n}∞n=1, Sn, Γ1, Γ2, and Ψ be the same as in
Algorithm 1. Suppose that the conditions (i)–(iv) in Algorithm 1 hold and the following conditions
are satisfied:

(v) g(X) is x0-joint orbitally complete for some x0 ∈ X;

(vi) there exists a constant M > 0 such that, for any constant λ1 > λ2 > 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̂λ1Γ1(x)y(t) ≥ Fy

(
t

λ2M

)

, ∀x ∈ D
(
Sj

)
, y ∈ Y, t ≥ 0,

F̂λ1Γ2(x)y(t) ≥ Fy

(
t

λ2M

)

, ∀x ∈ D(Si), y ∈ Y, t ≥ 0;

(4.22)

(vii) there exist x0 ∈ D(Sj) and y0 ∈ Sj(x0) such that the t-norm T satisfies the following
condition:

lim
n→∞

T∞
i=nΨ

i

(

Fy0

(
t

λM

))

= 1, ∀t ≥ 0, (4.23)

where λ is a real nonnegative number.

Then the following system of nonlinear operator equations:

⎧
⎨

⎩

θ = f(x),

θ = g(x)
(4.24)

has a solution z such that {f(z)} = {g(z)} ⊂ ⋂∞
i=1 Si(z). Further, {xn} τ-converges to a solution of

(4.24) and {yn} τ-converges to θ, where {xn} in X and {yn} in Y are two sequences generated by
Algorithm 1.
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Proof. By (4.19), (4.20), and the assumption (vi), since {αn} ⊂ (0, 1] is a monotone decreasing
sequence with αn → α ∈ (0, 1], we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̂x2n+1−x2n(t) = F̂α2nΓ1(x2n)y2n(t) ≥ Fy2n

(
t

αM

)

≥ Ψ2n
(

Fy0

(
t

αM

))

,

F̂x2n+2−x2n+1(t) = F̂α2n+1Γ2(x2n+1)y2n+1(t) ≥ Fy2n+1

(
t

αM

)

≥ Ψ2n+1
(

Fy0

(
t

αM

))

, ∀t ≥ 0,

(4.25)

which imply that

F̂xn+1−xn(t) ≥ Ψn

(

Fy0

(
t

αM

))

, ∀t > 0, n ≥ 1. (4.26)

Since (X, F̂, T) is N.A. Menger PN-space, it follows from (4.26) that, for any positive integers
m,n(m > n),

F̂xn−xm(t)

≥ T
(
F̂xn−xn+1(t), F̂xn+1−xm(t)

)

≥ T
(
F̂xn−xn+1(t), T

(
F̂xn+1−xn+2(t), F̂xn+2−xm(t)

))

≥ T

⎛

⎜
⎜
⎝F̂xn−xn+1(t), T

⎛

⎜
⎜
⎝F̂xn+1−xn+2(t), T

(
· · · , T

(
F̂xm−2−xm−1(t), F̂xm−1−xm(t)

)
· · ·
)

︸ ︷︷ ︸
(m−n)−3

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

≥ T

⎛

⎜
⎝ Ψn

(

Fy0

(
t

αM

))

, T

⎛

⎜
⎝Ψn+1

(

Fy0

(
t

αM

))

,

T

(

· · · , T
(

Ψm−2
(

Fy0

(
t

αM

))

,Ψm−1
(

Fy0

(
t

αM

)))

· · ·
)

︸ ︷︷ ︸
(m−n)−3

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

= Tm−1
i=n Ψi

(

Fy0

(
t

αM

))

≥ T∞
i=nΨ

i

(

Fy0

(
t

αM

))

, ∀t ≥ 0.

(4.27)
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Since limn→∞T∞
i=nΨ

i(Fy0(t/αM)) = 1, it follows that, for all λ ∈ (0, 1) and t > 0, there exists a
positive integer n(t, λ) such that, for all n ≥ n(t, λ) and m > n,

T∞
i=nΨ

i

(

Fy0

(
t

αM

))

> 1 − λ (4.28)

and so

F̂xn−xm(t) ≥ Tm−1
i=n Ψi

(

Fy0

(
t

αM

))

≥ T∞
i=nΨ

i

(

Fy0

(
t

αM

))

> 1 − λ. (4.29)

Hence {xn} is a τ-Cauchy sequence in X. Since g(X) is x0-joint orbitally complete, we can
assume that xn

τX→ z ∈ X. Moreover, by (4.20), it is easy to see that limn→∞Fyn(t) = 1 for all
t > 0 and so yn

τY→ θ. Since Si and Sj are τ-closed, it follows from (4.19) and the assumption
(i) that

⎧
⎨

⎩

θ ∈ Si(z),

θ ∈ Sj(z), ∀i, j ≥ 1,
(4.30)

that is, z is a solution of (4.24) and {f(z)} = {g(z)} ⊂ ⋂∞
i=1 Si(z). This completes the proof.

From Theorem 4.5, we have the following.

Corollary 4.6. Let (X, F̂, T) be an N.A. Menger PN-space with a t-norm T and (Y,F, TY ) a Menger
PN-space with a t-norm TY . Let f , g be two operators from X into itself, {S̃n}∞n=1 a sequence of fuzzy
operators from X into W(X) satisfying the condition (I), and Sn the τ-closed set-valued operators
induced by the fuzzy operators S̃n for all n ≥ 1. Let Γ1,Γ2 : X → L(Y,X) and Ψ : [0, 1] →
[0, 1] satisfy the condition (Ψ). Suppose that the conditions (i)-(iv) in Algorithm 1 and (v)-(vi) in
Theorem 4.5 are satisfied. If t-norm T is of H-type, then the conclusions of Theorem 4.5 still hold.

Proof. By Proposition 3.2, we know that all the conditions of Theorem 4.5 are satisfied. Thus
the conclusions of Theorem 4.5 still hold.

Corollary 4.7. Let (X, F̂, (TD
λ
)) for some λ > 0 be a N.A. Menger PN-space and (Y,F, TY ) be

a Menger PN-space. Let f , g be two operators from X into itself, {S̃n}∞n=1 be a sequence of fuzzy
operators from X into W(X) satisfying the condition (I) and Sn be the τ-closed set-valued operators
induced by the fuzzy operators S̃n for all n ≥ 1. Let Γ1,Γ2 : X → L(Y,X) and Ψ : [0, 1] →
[0, 1] satisfy the condition (Ψ). Suppose that the conditions (i)–(iv) in Algorithm 1 and (v)-(vi) of
Theorem 4.5 are satisfied. If there exist x0 ∈ D(Sj) and y0 ∈ Sj(x0) for some j ∈ N such that
∑∞

n=1(1 − Ψn(Fy0(t/μM)))λ < ∞ for all t ≥ 0, where μ > 0 is a constant, then the conclusions of
Theorem 4.5 still hold.
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Proof. From the equivalence (3.10), we have

∞∑

n=1

(

1 −Ψn

(

Fy0

(
t

μM

)))λ

< ∞ ⇐⇒ lim
n→∞

(
TD
λ

)∞

i=n
Ψi

(

Fy0

(
t

μM

))

= 1. (4.31)

Corollary 4.8. Let (X, F̂, (TSW
λ

)) for some λ > −1 be an N.A. Menger PN-space. Let (Y,F, TY ), f ,
g, {S̃n}∞n=1, Sn, Γ1, Γ2, and Ψ be the same as in Theorem 4.5. Suppose that the conditions (i)–(iv) in
Algorithm 1 and (v)-(vi) in Theorem 4.5 are satisfied. If there exist x0 ∈ D(Sj) and y0 ∈ Sj(x0) for
some j ∈ N such that

∑∞
n=1(1 − Ψn(Fy0(t/μM))) < ∞ for all t ≥ 0, where μ > 0 is a constant, then

the conclusions of Theorem 4.5 still hold.

Proof. From the equivalence (3.11), we have

∞∑

n=1

(

1 −Ψn

(

Fy0

(
t

μM

)))

< ∞ ⇐⇒ lim
n→∞

(
TSW
λ

)∞

i=n
Ψi

(

Fy0

(
t

μM

))

= 1. (4.32)

Remark 4.9. Since

TL ∈
⋃

λ∈(−1,∞)

TSW
λ , (4.33)

it is easy to see that Corollary 4.8 is a generalization of the corresponding result in Fang [9].

Corollary 4.10. Let (X, F̂, (TAA
λ

)) for some λ > 0 be an N.A. Menger PN-space with a t-norm
T . Let (Y,F, TY ), f , g, {S̃n}∞n=1,Sn, Γ1, Γ2, and Ψ be the same as in Theorem 4.5. Suppose that the
conditions (i)–(iv) in Algorithm 1 and (v)-(vi) of Theorem 4.5 are satisfied. If there exist x0 ∈ D(Sj)
and y0 ∈ Sj(x0) for some j ≥ 1 such that

∑∞
n=1(1−Ψn(Fy0(t/μM)))λ < ∞ for all t ≥ 0, where μ > 0

is a constant, then the conclusions of Theorem 4.5 still hold.

Proof. From the equivalence (3.12), we have

∞∑

n=1

(

1 −Ψn

(

Fy0

(
t

μM

)))λ

< ∞ ⇐⇒ lim
n→∞

(
TAA
λ

)∞

i=n
Ψi

(

Fy0

(
t

μM

))

= 1. (4.34)

Corollary 4.11. Let (X, F̂, T) be an N.A. Menger PN-space and L : X → ΩX satisfy the following
condition:

FLx,Ly(t) ≥ Ψ
(
min
{
Fx−y(t), Fx−L(x)(t), Fy−L(y)(t)

})
, ∀t ≥ 0, x, y ∈ X, (4.35)

where a mapping Ψ : [0, 1] → [0, 1] satisfies the condition (Ψ). Suppose that the conditions (i) in
Algorithm 1 and (v) in Theorem 4.5 are satisfied and there exists x0 ∈ X and y0 ∈ x0 − L(x0) such
that t-norm T satisfies the following condition:

lim
n→∞

T∞
i=nΨ

i(Fy0(t)
)
= 1, ∀t ≥ 0, (4.36)
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and, for all x ∈ X and y ∈ x − L(x), there exists v ∈ x + y − L(x + y) such that

Fv(t) ≥ Fx+y−L(x+y),x−L(x)−y(t), ∀t ≥ 0. (4.37)

Then there exists a point x∗ ∈ X such that x∗ ∈ Lx∗, that is, x∗ is a fixed point of L.

Proof. Putting Si(x) = Sj(x) = x − L(x) for any fixed i, j ≥ 1 and Γ1(x) = Γ2(x) = IX , the
mappings Si, Sj ,Γ1 and Γ2 satisfy all the hypotheses of Theorem 4.5. Therefore, there exists a
point x∗ ∈ X such that θ ∈ Si(x∗) = Sj(x∗) = x∗ − L(x∗), which means that x∗ is a fixed point
of T . This completes the proof.

Theorem 4.12. Let (X, F̂, T) be an N.A. Menger PN-space with a t-norm T and (Y,F, TY ) be
a Menger PN-space with a t-norm TY . Let A, V , {S̃n}∞n=1, Sn, Γ1, Γ2, and Ψ be the same as in
Algorithm 2. Suppose that the conditions (ii)–(iv) in Algorithm 1 and (i)′ in Algorithm 2 are satisfied.
If

(v)′ X − V (X) is x0-joint orbitally complete for some x0 ∈ X,

(vi)′ there exists a constant M > 0 such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̂Γ1(x)y(t) ≥ Fy

(
t

M

)

, ∀x ∈ D
(
Sj

)
, y ∈ Y, t ≥ 0,

F̂Γ2(x)y(t) ≥ Fy

(
t

M

)

, ∀x ∈ D(Si), y ∈ Y, t ≥ 0,

(4.38)

(vii)′ there exist x0 ∈ D(Sj) and y0 ∈ Sj(x0) such that the t-norm T satisfies the following
condition:

lim
n→∞

T∞
i=nΨ

i

(

Fy0

(
t

M

))

= 1, ∀t ≥ 0, (4.39)

then the following system of nonlinear operator equations:

⎧
⎨

⎩

x = A(x),

x = V (x)
(4.40)

has a solution z such that {z − A(z)} = {z − V (z)} ⊂ ⋂∞
i=1 Si(z). Further, {xn} τ-converges to

a solution of (4.40) and {yn} τ-converges to θ, where the sequences {xn} in X and {yn} in Y are
defined by Algorithm 2.

Proof. Let f(x) = x − A(x) and g(x) = x − V (x) for all x ∈ X. It is obvious that all the
conditions of Theorem 4.5 are satisfied. Therefore, the conclusion of Theorem 4.12 follows
from Theorem 4.5 immediately.

Remark 4.13. Similarly, we can obtain the conclusions of Theorem 4.12 if we replace the
condition (iii) in Theorem 4.12 by the corresponding condition in Proposition 3.2 and the
equivalences (3.10)–(3.12), respectively.
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[5] O. Hadžić, E. Pap, and M. Budinčević, “Countable extension of triangular norms and their
applications to the fixed point theory in probabilistic metric spaces,” Kybernetika, vol. 38, no. 3, pp.
363–381, 2002.

[6] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, vol. 8 of Trends in Logic—Studia Logica Library,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

[7] S.-S. Chang, Y. J. Cho, and S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova
Science, Huntington, NY, USA, 2001.
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