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We show how A-harmonic equations arise as components of Dirac systems. We generalize A-
harmonic equations to A-Dirac equations. Removability theorems are proved for solutions to A-
Dirac equations.

1. Introduction

This paper explains how A-harmonic equations arise from Dirac systems. Indeed the main
purpose of this paper is to elucidate the connection between the theories of A-harmonic
functions and Dirac analysis. An A-harmonic equation divA(x,∇u) = 0 is a component of a
Dirac system

D ˜A(x,Du) = 0. (1.1)

This component is the scalar (real) part of the Dirac system, under appropriate identifications.
Hence any real-valued solution to the Dirac system is an A-harmonic function. As such,
the class of A-harmonic functions which are also solutions of the Dirac system are a special
class of A-harmonic functions. See Section 3 for a detailed discussion. As an application, we
show that a result concerning removable singularities for A-harmonic functions satisfying
a Lipschitz condition or of bounded mean oscillation extends to Clifford valued solutions
to corresponding Dirac equations. The result also holds for functions of a certain order of
growth. This seems to be new even in the case of an A-harmonic function.

In Section 2, we present preliminaries about Clifford algebra along with definitions
and notations. In Section 3, we introduce A-Dirac equations and show the correspondence
with A-harmonic equations. The Caccioppoli estimate for solutions to A-Dirac equations
appears in Section 4 and the removability theorems are in Section 5 along with references.
For other recent work on nonlinear Dirac equations, see [1–6].
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2. Preliminaries

We write Un for the real universal Clifford algebra over Rn. The Clifford algebra is generated
over R by the basis of reduced products

{e1, e2, . . . , en, e1e2, . . . , e1 · · · en}, (2.1)

where {e1, e2, . . . , en} is an orthonormal basis of Rn with the relation eiej + ejei = −2δij . We
write e0 for the identity. The dimension of Un is R2n . We have an increasing tower R ⊂ C ⊂
H ⊂ U3 ⊂ · · ·. The Clifford algebra Un is a graded algebra as Un =

⊕

lUl
n, where Ul

n are those
elements whose reduced Clifford products have length l.

ForA ∈ Un, Sc(A) denotes the scalar part ofA, that is, the coefficient of the element e0.
Throughout,Ω ⊂ R

n is a connected and open set with boundary ∂Ω. A Clifford-valued
function u : Ω → Un can be written as u = Σαuαeα where each uα is real-valued and eα
are reduced products. The norm used here is given by |Σαuαeα| = (Σαu

2
α)

1/2. This norm is
submultiplicative, |AB| ≤ C|A‖B|.

The Dirac operator used here is as follows:

D = Σn
j=1ej

∂

∂xj
. (2.2)

AlsoD2 = −Δ.HereΔ is the Laplace operator which operates only on coefficients. A function
is monogenic when Du = 0.

Throughout,Q is a cube inΩwith volume |Q|. We write σQ for the cube with the same
center asQ and with sidelength σ times that ofQ. For q > 0, we write Lq(Ω,Un) for the space
of Clifford-valued functions in Ω whose coefficients belong to the usual Lq(Ω) space. Also,
W1,q(Ω,Un) is the space of Clifford valued functions in Ω whose coefficients as well as their
first distributional derivatives are in Lq(Ω). We also write Lq

loc(Ω,Un) for ∩Lq(Ω′,Un), where

the intersection is over all Ω′ compactly contained in Ω. We similarly write W
1,q
loc (Ω,Un).

Moreover, we write MΩ = {u : Ω → Un | Du = 0} for the space of monogenic functions
in Ω.

Furthermore, we define the Dirac Sobolev space

WD,p(Ω) =
{

u ∈ Un |
∫

Ω
|u|p +

∫

Ω
|Du|p < ∞

}

. (2.3)

The local spaceWD,p

loc is similarly defined. Notice that if u is monogenic, then u ∈ Lp(Ω)
if and only if u ∈ WD,p(Ω). Also it is immediate that W1,p(Ω) ⊂ WD,p(Ω).

3. Correspondence and the A-Dirac Equation

We first define the A-harmonic equation. We define operators

A(x, ξ) : Ω × R
n −→ R

n. (3.1)
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Here x → A(x, ξ) is measurable for all ξ, and ξ → A(x, ξ) is continuous for a.e. x ∈ Ω.
We assume the structure conditions with p > 1:

〈A(x, ξ), ξ〉 ≥ |ξ|p,

|A(x, ξ)| ≤ a|ξ|p−1,
(3.2)

for some a > 0. The exponent p will represent this exponent throughout.
An A-harmonic function, u ∈ W

1,p
loc (Ω), is a weak solution to divA(x,∇u) = 0, when

∫

Ω

〈

A(x,∇u),∇φ
〉

= 0 (3.3)

for all φ ∈ W1,p(Ω)with compact support.
See [7] for the theory of A-harmonic equations.
To connect these equations with Dirac systems, we define the linear isomorphism θ :

R
n → U1

n by

θ(w1, . . . , wn) = Σn
i=1wiei. (3.4)

It follows that for a real-valued function φ, we have θ(∇φ) = Dφ, and for x, y ∈ R
n,

we have

−Sc(θ(x)θ(y)) = 〈x, y〉. (3.5)

|θ(x)| = |x|. (3.6)

Next we define ˜A(x, ξ) : Ω × U1 → U1 by

˜A(x, ξ) = θA
(

x, θ−1ξ
)

. (3.7)

In this way, we see that (3.3) is equivalent to

∫

Ω
Sc(θA(x,∇u)θ(∇u)) =

∫

Ω
Sc
(

˜A(x,Du)Dφ
)

= 0. (3.8)

This motivates the following definition for Dirac systems of higher-order Clifford
valued functions. We use the Clifford conjugation (ej1 · · · ejl) = (−1)lejl · · · ej1. The product
αβ defines a Clifford-valued inner product.

Moreover, the scalar part of this Clifford inner product Sc(αβ) is the usual inner
product in R

2n , 〈α, β〉,when α and β are identified as vectors. We continue to use the Clifford
notation for this scalar product. This conjugation compensates for the minus sign in (3.5)
and in higher-order Clifford products. Moreover, the conjugation can be incorporated into an
integration by parts formula.
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To this purpose (we are replacing ˜A with A for convenience) we recast the structure
equations above and define operators:

A(x, ξ) : Ω × Un −→ Un. (3.9)

We assume that A preserves the grading of the Clifford algebra. Here x → A(x, ξ) is
measurable for all ξ, and ξ → A(x, ξ) is continuous for a.e. x ∈ Ω. We assume the structure
conditions with p > 1:

Sc
(

A(x, ξ)ξ
)

≥ |ξ|p, (3.10)

|A(x, ξ)| ≤ a|ξ|p−1, (3.11)

for some a > 0.

Definition 3.1. A Clifford valued function u ∈ W
D,p

loc (Ω,Uk
n), for k = 0, 1, . . . , n, is a weak

solution to

DA(x,Du) = 0 (3.12)

if for all φ ∈ W1,p(Ω,Uk
n)with compact support we have

∫

Ω
A(x,Du)Dφ = 0. (3.13)

Notice that whenA is the identity, then (3.13) is the Clifford Laplacian. Moreover these
equations generalize the important case of the p-Dirac equation:

D
(

|Du|p−2Du
)

= 0. (3.14)

Here A(x, ξ) = |ξ|p−2ξ.
These equations were introduced and their conformal invariance was studied in [8].
In the case of the p-Dirac equation, |x|(p−n)/(p−1), when p /=n, and log |x|, p /=n, are

solutions to (3.13). Notice that a monogenic function uΩ ∈ MΩ is trivially a solution to (3.13)
and if u is a solution to (3.13), then so is u + uΩ for any monogenic function uΩ.

In the case that u is a real-valued function DA(x,Du) = 0 also implies that

Σi<j

∫

Ω

(

Ai(x,Du)
∂φ

∂xj
−Aj(x,Du)

∂φ

∂xi

)

eij = 0, (3.15)

where A = (A1, . . . , An). So in this case (3.13) can be identified with the two equations

divA(x,∇u) = 0,

curlA(x,∇u) = 0.
(3.16)
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Hence when u is a function, (3.13) implies thatA(x,∇u) is a harmonic field and locally
there exists a harmonic function H such that A(x,∇u) = ∇H. If A(x, ξ) is invertible, then
∇u = A−1(x,∇H). Hence regularity of A implies regularity of the solution u. Notice that if
A(x, ξ) = |ξ|p−2ξ, then A−1(x, ξ) = |ξ|q−2ξ, where 1/p + 1/q = 1.

In general, A-harmonic functions do not have such regularity. This suggests the study
of the scalar part of the system equation (3.13) in general. Indeed a Caccioppoli estimate
holds for solutions to the scalar part of (3.13). This is the topic of the next section.

Hence we see a special class ofA-harmonic functions, namely, real-valued solutions to
the system (3.13). This class should have special properties.

On the other hand, results about A-harmonic functions suggest possible properties of
general solutions to (3.13). In this paper, we present one such extension, that of removable
sets. The essential ingredient in the proof is the Caccioppoli estimate.

4. A Caccioppoli Estimate

Next is a Caccioppoli estimate for solutions to (3.13). This result appears in [9]. We give the
short proof here for completeness.

Theorem 4.1. Let u be a solution to scalar part of (3.13) and η ∈ C∞
0 (Ω), η > 0. Then

(∫

Ω
|Du|pηp

)1/p

≤ pa

(∫

Ω
|u|p∣∣∇η

∣

∣

p
)1/p

. (4.1)

Proof. Choose φ = −uηp. Then Dφ = −pηp−1(Dη)u − ηpDu.Hence using (3.13) and (3.10),

0 =
∫

Ω
Sc
(

A(x,Du)Dφ
)

=
∫

Ω
Sc
(

A(x,Du)
(

−pηp−1(Dη
)

u − ηpDu
))

≤ −
∫

Ω
|Du|pηp + p

∫

Ω

∣

∣

∣A(x,Du)
∣

∣

∣|u|
∣

∣Dη
∣

∣

∣

∣η
∣

∣

p−1
.

(4.2)

Using Hölder’s inequality and (3.11), we have

∫

Ω
|Du|pηp ≤ pa

∫

Ω

∣

∣u
∥

∥∇η
∥

∥Du
∣

∣

p−1∣
∣η
∣

∣

p−1 ≤ C

(∫

Ω
|u|p∣∣∇η

∣

∣

p
)1/p(∫

Ω
|Du|pηp

)(p−1)/p
.

(4.3)

Corollary 4.2. Suppose that u is a solution to (3.13). Let Q be a cube with σQ ⊂ Ω where σ > 1.
Then there is a constant C, independent of u, such that

(

∫

Q

|Du|p
)1/p

≤ paC|Q|−1/n
(

∫

σQ

|u|p
)1/p

. (4.4)

Proof. Choose η ∈ C∞
0 (σQ), η > 0, η = 1 in Q and |∇η| ≤ C|Q|−1/n.
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5. Removability

For monogenic functions with modulus of continuityω(r), sets of rnω(r)-Hausdorffmeasure
are removable [1]. For Hölder continuous analytic functions, see [10]. Sets satisfying a certain
geometric condition related to Minkowski dimension are shown to be removable for A-
harmonic functions in Hölder and bounded mean oscillation classes in [11]. In the case of
Hölder continuity, this was sharped in [12] to a precise condition for removable sets for A-
harmonic functions in terms of Hausdorff dimension.

We show here that sets satisfying a generalized Minkowski-type inequality, similar
to that in [11], are removable for solutions to the A-Dirac equation which satisfy a certain
oscillation condition. The following definition is motivated by the fact that real-valued
functions satisfying various regularity properties are characterized by this definition. We
explain below.

Definition 5.1. Assume that u ∈ L1
loc(Ω,Un), q > 0 and that −∞ < k ≤ 1.

We say that u is of q, k-oscillation in Ωwhen

sup
2Q⊂Ω

|Q|−(qk+n)/qn inf
uQ∈MQ

(

∫

Q

∣

∣u − uQ

∣

∣

q

)1/q

< ∞. (5.1)

The infimum over monogenic functions is natural since they are trivially solutions
to an A-Dirac equation just as constants are solutions to an A-harmonic equation. If u is a
function and q = 1, then (5.1) is equivalent to the usual definition of the bounded mean
oscillation when k = 0 and (5.1) is equivalent to the usual local Lipschitz condition when
0 < k ≤ 1 [13]. Moreover, at least when u is a solution to an A-harmonic equation, (5.1) is
equivalent to a local order of growth condition when −∞ < k < 0; see [9, 14]. In these cases,
the supremum is finite if we choose uQ to be the average value of the function u over the
cube Q. It is easy to see that in condition (5.1) the expansion factor “2” can be replaced by
any factor greater than 1.

If the coefficients of an A-Dirac solution u are of bounded mean oscillation, local
Hölder continuous, or of a certain local order of growth, then u is in an appropriate oscillation
class; see [9].

Notice that monogenic functions satisfy (5.1) just as the space of constants is a
subspace of the bounded mean oscillation and Lipschitz spaces of real-valued functions.

We remark that it follows from Hölder’s inequality that if s ≤ q and if u is of q, k-
oscillation, then u is of s, k-oscillation.

The following lemma shows that Definition 5.1 is independent of the expansion factor
of the cube.

Lemma 5.2. Suppose that F ∈ L1
loc(Ω,R), F > 0 a.e., γ ∈ R, and σ1, σ2 > 1. If

sup
σ1Q⊂Ω

|Q|γ
∫

Q

F < ∞, (5.2)

then

sup
σ2Q⊂Ω

|Q|γ
∫

Q

F < ∞. (5.3)
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Proof. If σ1 ≤ σ2, then the implication is immediate. Assume σ1 > σ2. Let Q be a cube with
σ2Q ⊂ Ω. Dyadically subdivide Q into a finite number of subcubes {Qi} with l(Qi) ≤ ((σ2 −
1)/σ1)l(Q). Then σ1Qi ⊂ Ω for all i. Moreover,

|Q|γ
∫

Q

F ≤ |Q|γΣi

∫

Qi

F = C
(

σ1, σ2, γ, n
)

Σi|Qi|γ
∫

Qi

F. (5.4)

We use a Whitney decompositionW = {Q} ofΩ. The decomposition consists of closed
dyadic cubes with disjoint interiors which satisfy

(a) Ω =
⋃

Q∈W Q,

(b) |Q|1/n ≤ d(Q, ∂Ω) ≤ 4|Q|1/n,
(c) (1/4)|Q1|1/n ≤ |Q2|1/n ≤ 4|Q1|1/n when Q1 ∩Q2 is not empty.

Here d(Q, ∂Ω) is the Euclidean distance between Q and the boundary of Ω; see [15].
We use the following definition. If A ⊂ R

n and r > 0, then we define the r-inflation of
A as

A(r) =
⋃

x∈A
B(x, r). (5.5)

We now state the removability result.

Theorem 5.3. Let E be a relatively closed subset of Ω. Suppose that u ∈ L
p

loc(Ω) has distributional
first derivatives in Ω, u is a solution to the scalar part of the A-Dirac equation (3.13) in Ω \ E, and u
is of p, k-oscillation in Ω \ E. If for each compact subset K of E

∫

K(1)\K
d(x,K)p(k−1)−k < ∞, (5.6)

then u extends to a solution of the A-Dirac equation in Ω.

Proof. LetQ be a cube in the Whitney decomposition ofΩ\E. Using the Caccioppoli estimate
and the p, k-oscillation condition, we have

∫

Q

|Du|p ≤ C inf
uQ∈MσQ

|Q|−p/n
∫

σQ

∣

∣u − uσQ

∣

∣

p ≤ C|Q|a. (5.7)

Here a = (n + pk − p)/n. Since the problem is local (use a partition of unity), we show
that (3.13) holds whenever φ ∈ W

1,p
0 (B(x0, r))with x0 ∈ E and r > 0 sufficiently small. Choose

r = (1/5
√
n)min{1, d(x0, ∂Ω)} and let K = E ∩ B(x0, 4r). Then K is a compact subset of E.

Also let W0 be those cubes in the Whitney decomposition of Ω \ E which meet B = B(x0, r).
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Notice that each cube Q ∈ W0 lies in K(1) \ K. Let γ = p(k − 1) − k. First, since γ ≥ −1, it
follows that m(K) = m(E) = 0; see [11]. Also since a − n ≥ γ using (5.6) and (5.7), we obtain

∫

B(x0,r)
|Du|p ≤ CΣQ∈W0 |Q|a/n ≤ CΣQ∈W0d(Q,K)a

≤ CΣQ∈W0

∫

Q

d(x,K)a−n ≤ C

∫

K(1)\K
d(x,K)a−n

≤ C

∫

K(1)\K
d(x,K)γ < ∞.

(5.8)

Hence u ∈ W
D,p

loc (Ω).
Next let B = B(x0, r) and assume that ψ ∈ C∞

0 (B). Also let Wj, j = 1, 2, . . . , be those
cubes Q ∈ W0 with l(Q) ≤ 2−j .

Consider the scalar functions

φj = max
{(

2−j − d(x,K)
)

2j , 0
}

. (5.9)

Thus each φj , j = 1, 2, . . . , is Lipschitz, equal to 1 onK and as such ψ(1−φj) ∈ W1,p(B \
E)with compact support. Hence

∫

B

A(x,Du)Dψ =
∫

B\E
A(x,Du)D

(

ψ
(

1 − φj

))

+
∫

B

A(x,Du)D
(

ψφj

)

= I ′ + I ′′. (5.10)

Since u is a solution in B \ E, I ′ = 0.
Also we have

I ′′ =
∫

B

A(x,Du)ψDφj +
∫

B

φjA(x,Du)Dψ = I1 + I2. (5.11)

Now there exists a constant c such that |ψ| ≤ c < ∞.Hence using Hölder’s inequality,

|I1| ≤ CΣQ∈Wj

∫

Q

|A(x,Du)|∣∣Dφj

∣

∣ ≤ CΣQ∈Wj

∫

Q

|Du|p−1∣∣Dφj

∣

∣

≤ CΣQ∈Wj

(

∫

Q

|Du|p
)(p−1)/p(∫

Q

∣

∣Dφj

∣

∣

p

)1/p

.

(5.12)

Next using (4.4), the above is

≤ CΣQ∈Wj |Q|(p(k−1)+n)(p−1)/np2j |Q|1/p. (5.13)
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Now for x ∈ Q ∈ Wj, d(x,K) is bounded above and below by a multiple of |Q|1/n and for
Q ∈ Wj, |Q|1/n ≤ 2−j . Hence

|I1| ≤ CΣQ∈Wj |Q|−1/n+1/p+(p(k−1)+n)(p−1)/np ≤ C

∫

∪Wj

d(x,K)p(k−1)−k. (5.14)

Since ∪Wj ⊂ K(1) \K and | ∪Wj | → 0 as j → ∞, it follows that I1 → 0 as j → ∞.
Next again using Hölder’s inequality,

|I2| ≤ C sup
B

∣

∣Dψ
∣

∣

(

∫

∪Wj

|Du|p
)(p−1)/p

∣

∣∪Wj

∣

∣

1/p

≤ C

(

∫

K\K(1)
|Du|p

)(p−1)/p
∣

∣∪Wj

∣

∣

1/p
.

(5.15)

Since u ∈ W1,D
loc (Ω) and | ∪ Wj | → 0 as j → ∞, we have that I2 → 0 as j → ∞. Hence

I ′′ → 0.
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