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Using the idea of Tikhonov’s regularization, we present properties of the approximating curve for
the split feasibility problem (SFP) and obtain the minimum-norm solution of SFP as the strong
limit of the approximating curve. It is known that in the infinite-dimensional setting, Byrne’s CQ
algorithm (Byrne, 2002) has only weak convergence. We introduce a modification of Byrne’s CQ
algorithm in such a way that strong convergence is guaranteed and the limit is also the minimum-
norm solution of SFP.

1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. The problem under consideration in this article is formulated as finding a point
x satisfying the property:

x ∈ C, Ax ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator. Problem (1.1), referred to by Censor and
Elfving [1] as the split feasibility problem (SFP), attracts many authors’ attention due to its
application in signal processing [1]. Various algorithms have been invented to solve it (see
[2–7] and reference therein).

In particular, Byrne [2] introduced the so-called CQ algorithm. Take an initial guess
x0 ∈ H1 arbitrarily, and define (xn)n≥0 recursively as

xn+1 = PC

(
I − γA∗(I − PQ

)
A
)
xn, (1.2)

mailto:xuhk@math.nsysu.edu.tw


2 Journal of Inequalities and Applications

where 0 < γ < 2/ρ(A∗A) and where PC denotes the projector onto C and ρ(A∗A) is the
spectral radius of the self-adjoint operatorA∗A. Then the sequence (xn)n≥0 generated by (1.2)
converges strongly to a solution of SFP whenever H1 is finite-dimensional and whenever
there exists a solution to SFP (1.1).

However, the CQ algorithm need not necessarily converge strongly in the case when
H1 is infinite dimensional. Let us mention that the CQ algorithm can be regarded as a
special case of the well-knownKrasnosel’skii-Mann algorithm for approximating fixed points
of nonexpansive mappings [3]. This iterative method is introduced in [8] and defined as
follows. Take an initial guess x0 ∈ C arbitrarily, and define (xn)n≥0 recursively as

xn+1 = αnxn + (1 − αn)Txn, (1.3)

where αn ∈ [0, 1] satisfying
∑∞

n=0 αn(1 − αn) = ∞. If T is nonexpansive with a nonempty fixed
point set, then the sequence (xn)n≥0 generated by (1.3) converges weakly to a fixed point of
T . It is known that Krasnosel’skii-Mann algorithm is in general not strongly convergent (see
[9, 10] for counterexamples) and neither is the CQ algorithm.

It is therefore the aim of this paper to construct a new algorithm so that strong
convergence is guaranteed. The paper is organized as follows. In the next section, some
useful lemmas are given. In Section 3, we define the concept of the minimal norm solution of
SFP (1.1). Using Tikhonov’s regularization, we obtain a continuous curve for approximating
such minimal norm solution. Together with some properties of this approximating curve, we
introduce, in Section 4, a modification of Byrne’s CQ algorithm so that strong convergence is
guaranteed and its limit is the minimum-norm solution of SFP (1.1).

2. Preliminaries

Throughout the rest of this paper, I denotes the identity operator onH1, Fix(T) the set of the
fixed points of an operator T and∇f the gradient of the functional f : H1 → R. The notation
“→ ” denotes strong convergence and “⇀” weak convergence.

Recall that an operator T from H1 into itself is called nonexpansive if

∥
∥Tx − Ty

∥∥ ≤ ∥∥x − y
∥∥, x, y ∈ H1; (2.1)

contractive if there exists 0 < α < 1 such that

∥∥Tx − Ty
∥∥ ≤ α

∥∥x − y
∥∥, x, y ∈ H1; (2.2)

monotone if

〈
Tx − Ty, x − y

〉 ≥ 0, x, y ∈ H1. (2.3)

Obviously, contractions are nonexpansive, and if T is nonexpansive, then I − T is monotone
(see [11]).
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Let PC denote the projection from H1 onto a nonempty closed convex subset C of H1;
that is,

PCx = argmin
y∈C

∥
∥x − y

∥
∥, x ∈ H1. (2.4)

It is well known that PCx is characterized by the inequality

〈x − PCx, c − PCx〉 ≤ 0, c ∈ C. (2.5)

Consequently, PC is nonexpansive.
The lemma below is referred to as the demiclosedness principle for nonexpansive

mappings (see [12]).

Lemma 2.1 (demiclosedness principle). Let C be a nonempty closed convex subset of H1 and
T : C → C a nonexpansive mapping with Fix(T)/= ∅. If (xn)n≥1 is a sequence in C weakly converging
to x and if the sequence ((I −T)xn) converges strongly to y, then (I −T)x = y. In particular, if y = 0,
then x ∈ Fix(T).

Let f : H1 → R be a a functional. Recall that

(i) f is convex if

f
(
λx + (1 − λ)y

) ≤ λf(x) + (1 − λ)f
(
y
)
, ∀0 < λ < 1, ∀x, y ∈ H1; (2.6)

(ii) f is strictly convex if the strict less than inequality in (2.6) holds for all distinct
x, y ∈ H1.

(iii) f is strongly convex if there exists a constant α > 0 such that

f
(
λx + (1 − λ)y

) ≤ λf(x) + (1 − λ)f
(
y
) − α

∥∥x − y
∥∥2

, ∀0 < λ < 1, ∀x, y ∈ H1; (2.7)

(iv) f is coercive if f(x) → ∞ whenever ‖x‖ → ∞. It is easily seen that if f is strongly
convex, then it is coercive. See [13] for more details about convex functions.

The following lemma gives the optimality condition for the minimizer of a convex
functional over a closed convex subset.

Lemma 2.2 (see [14]). Let f be a convex and differentiable functional and let C be a closed convex
subset of H1. Then x ∈ C is a solution of the problem

minimize
x∈C

f(x) (2.8)

if and only if x ∈ C satisfies the following optimality condition:

〈∇f(x), v − x〉 ≥ 0, ∀v ∈ C. (2.9)

Moreover, if f is, in addition, strictly convex and coercive, then problem (2.8) has a unique solution.
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The following is a sufficient condition for a real sequence to converge to zero.

Lemma 2.3 (see [15]). Let (an)n≥0 be a nonnegative real sequence satisfying

an+1 ≤ (1 − rn)an + rnμn, (2.10)

where the sequences (rn)n≥0 ⊂ (0, 1) and (μn)n≥0 satisfy the conditions:

(1)
∑∞

n=0 rn = ∞;

(2) limn→∞rn = 0;

(3) either
∑∞

n=0 |rnμn| < ∞ or lim supn→∞μn ≤ 0.

Then limn→∞an = 0.

3. Approximating Curves

The convexly constrained linear problem requires to solve the constrained linear system (cf.
[16, 17])

Ax = b,

x ∈ C,
(3.1)

where b ∈ H2. A classical way to deal with such a possibly ill-posed problem is the well-
known Tikhonov regularization, which approximates a solution of problem (3.1) by the
unique minimizer of the regularized problem

min
x∈C

‖Ax − b‖2 + α‖x‖2, (3.2)

where α > 0 is known as the regularization parameter.
We now try to transfer this idea of Tikhonov’s regularization method for solving the

constrained linear inverse problem (3.1) to the case of SFP (1.1).
It is not hard to find that SFP (1.1) is equivalent to the minimization problem

min
x∈C

∥∥(I − PQ

)
Ax

∥∥. (3.3)

Motivated by Tikhonov’s regularization, we consider the minimization problem

min
x∈C

∥∥(I − PQ)Ax
∥∥2 + α‖x‖2, (3.4)

where α > 0 is the regularization parameter. Denote by xα the unique solution of (3.4); namely,

xα := argmin
x∈C

{∥∥(I − PQ

)
Ax

∥∥2 + α‖x‖2
}
. (3.5)
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Proposition 3.1. For any α > 0, the minimizer xα given by (3.5) is uniquely defined. Moreover, xα

is characterized by the inequality

〈
A∗(I − PQ

)
Axα + αxα, c − xα

〉 ≥ 0, c ∈ C. (3.6)

Proof. Let

f(x) =
∥
∥(I − PQ

)
Ax

∥
∥2

, fα(x) = f(x) + α‖x‖2. (3.7)

Since f is convex and differentiable with gradient (see [13])

∇f(x) = 2A∗(I − PQ

)
Ax, (3.8)

fα is strictly convex, coercive, and differentiable with gradient

∇fα(x) = 2A∗(I − PQ

)
Ax + 2αx. (3.9)

Thus, applying Lemma 2.2 gets the assertion (3.6), as desired.

The next result collects some useful properties of (xα)α>0.

Proposition 3.2. The following assertions hold.

(a) ‖xα‖ is decreasing for α ∈ (0,∞).

(b) ‖(I − PQ)Axα‖ is increasing for α ∈ (0,∞).

(c) α �→ xα defines a continuous curve from (0,∞) toH1.

Proof. Let α > β > 0 be fixed. Since xα and xβ are the (unique) minimizers of fα and fβ,
respectively, we get

∥∥(I − PQ)Axα

∥∥2 + α‖xα‖2 ≤
∥∥(I − PQ)Axβ

∥∥2 + α
∥∥xβ

∥∥2, (3.10)

∥∥(I − PQ)Axβ

∥∥2 + β
∥∥xβ

∥∥2 ≤ ∥∥(I − PQ)Axα

∥∥2 + β‖xα‖2. (3.11)

Adding up (3.10) and (3.11) yields

α‖xα‖2 + β
∥∥xβ

∥∥2 ≤ α
∥∥xβ

∥∥2 + β‖xα‖2, (3.12)

which implies that ‖xα‖ ≤ ‖xβ‖. Hence (a) holds.
It follows from (3.11) that

∥∥(I − PQ)Axβ

∥∥2 ≤ ∥∥(I − PQ)Axα

∥∥2 + β
(
‖xα‖2 −

∥∥xβ

∥∥2
)
, (3.13)
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which together with (a) implies

∥
∥(I − PQ

)
Axβ

∥
∥ ≤ ∥

∥(I − PQ

)
Axα

∥
∥, (3.14)

and therefore (b) holds.
By Proposition 3.1, we have that

〈
A∗(I − PQ

)
Axα + αxα, xβ − xα

〉 ≥ 0, (3.15)

and also that

〈
A∗(I − PQ

)
Axβ + βxβ, xα − xβ

〉 ≥ 0. (3.16)

Adding up (3.15) and (3.16), we get

〈
αxα − βxβ, xα − xβ

〉 ≤ 〈(
I − PQ

)
Axα −

(
I − PQ

)
Axβ,Axβ −Axα

〉
. (3.17)

Since I − PQ is monotone, we obtain from the last relation

α
∥∥xα − xβ

∥∥2 ≤ (
β − α

)〈
xβ, xα − xβ

〉
. (3.18)

It turns out that

∥∥xα − xβ

∥∥ ≤
∣∣α − β

∣∣

α

∥∥xβ

∥∥. (3.19)

Thus (c) holds.

Let F = C ∩A−1(Q), where A−1(Q) = {x ∈ H1 : Ax ∈ Q}. In what follows, we assume
thatF /= ∅; that is, the solution set of SFP (1.1) is nonempty. The fact thatF is nonempty closed
convex set thus allows us to introduce the concept of minimum-norm solution of SFP (1.1).

Definition 3.3. An element x̃ ∈ F is said to be the minimal norm solution of SFP (1.1) if
‖x̃‖ = infx∈F‖x‖. In other words, x̃ is the projection of the origin onto the solution set F of SFP
(1.1). Thus the minimum-norm solution x̃ for SFP (1.1) exists and is unique.

Theorem 3.4. Let xα be given as (3.5). Then xα converges strongly as α → 0 to the minimum-norm
solution x̃ of SFP (1.1).

Proof. We first show that the inequality

‖xα‖ ≤ ‖x̃‖ (3.20)

holds for any 0 < α < ∞. To this end, observe that

∥∥(I − PQ)Axα

∥∥2 + α‖xα‖2 ≤
∥∥(I − PQ)Ax̃

∥∥2 + α‖x̃‖2. (3.21)
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Since x̃ ∈ C ∩A−1(Q), (I − PQ)Ax̃ = 0. It follows from (3.21) that

‖xα‖2 ≤ ‖x̃‖2 −
∥
∥(I − PQ

)
Axα

∥
∥2

α
≤ ‖x̃‖2, (3.22)

and (3.20) is proven.
Let now (αn)n≥0 be a sequence such that αn → 0 as n → ∞ and let xαn be abbreviated

as xn. All we need to prove is that (xn)n≥0 contains a subsequence converging strongly to
x̃. Since (xn)n≥0 is bounded and since C is bounded convex, by passing to a subsequence if
necessary, wemay assume that (xn)n≥0 converges weakly to a pointw ∈ C. By Proposition 3.1,
we deduce that

〈
A∗(I − PQ

)
Axn + αnxn, x̃ − xn

〉 ≥ 0. (3.23)

It turns out that

〈(
I − PQ

)
Axn,A(x̃ − xn)

〉 ≥ αn〈xn, xn − x̃〉. (3.24)

Since Ax̃ ∈ Q, the characterizing inequality (2.5) gives

〈(
I − PQ

)
Axn,Ax̃ − PQAxn

〉 ≤ 0, (3.25)

and this implies that

∥∥(I − PQ)Axn

∥∥2 ≤ 〈(I − PQ

)
Axn,A(xn − x̃)〉. (3.26)

Now by combining (3.26) and (3.24), we get

∥∥(I − PQ)Axn

∥∥2 ≤ αn〈xn, x̃ − xn〉 ≤ 2αn‖x̃‖2, (3.27)

where the last inequality follows from (3.20). Consequently, we get

lim
n→∞

∥∥(I − PQ

)
Axn

∥∥ = 0. (3.28)

Note that A is also weakly continuous and hence Axn ⇀ Aw. Now due to (3.28), we can use
the demiclosedness principle (Lemma 2.1) to conclude that (I − PQ)Aw = 0. That is, Aw ∈ Q
or w ∈ A−1(Q); therefore, w ∈ F.We next prove that w = x̃ and this finishes the proof. To see
this, we have that the weak convergence to w of {xn} together with (3.20) implies that

‖w‖ ≤ lim inf
n→∞

‖xn‖ ≤ ‖x̃‖ = min{‖x‖ : x ∈ F}. (3.29)

This shows that w is also a point in F which assumes minimum norm. Due to uniqueness of
minimum-norm element, we must have w = x̃.
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Remark 3.5. The above argument shows that if the solution set F of SFP (1.1) is empty, then
the net of norms, (‖xα‖), diverges to∞ as α → 0.

4. A Modified CQ Algorithm

It is a standard way to use contractions to approximate nonexpansive mappings. We follow
this idea and use contractions to approximate the nonexpansive mapping I − γA∗(I − PQ)A
in order to modify Byrne’s CQ algorithm. More precisely, we introduce the following
algorithm which is viewed as a modification of Byrne’s CQ algorithm. The purpose for such
a modification lies in the hope of strong convergence.

Algorithm 4.1. For an arbitrary guess x0, the sequence (xn)n≥0 is generated by the iterative
algorithm

xn+1 = PC

[
(1 − αn)

(
I − γA∗(I − PQ

)
A
)]
xn, (4.1)

where (αn)n≥0 is a sequence in (0, 1) such that

(1) limn→∞αn = 0;

(2)
∑∞

n=0 αn = ∞;

(3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞|αn+1 − αn|/αn = 0.

Note that a prototype of (αn) is αn = (1 + n)−1 for all n ≥ 0.

To prove the convergence of algorithm (4.1) (see Theorem 4.3 below), we need a
lemma below.

Lemma 4.2. Set U = I − γA∗(I − PQ)A, where 0 < γ < 2/ρ(A∗A) with ρ(A∗A) being the spectral
radius of the self-adjoint operator A∗A.

(i) U is an averaged mapping; namely, U = (1 − β)I + βV , where β ∈ (0, 1) is a constant and
V is a nonexpansive mapping fromH1 into itself.

(ii) Fix(U) = A−1(Q); consequently, Fix(PCU) = Fix(PC) ∩ Fix(U) = F = C ∩A−1(Q).

Proof. (i) That U which is averaged is actually proved in [3].
To see (ii), we first observe that the inclusion A−1(Q) ⊂ Fix(U) holds trivially. It

remains to prove the implication: x = Ux ⇒ Ax ∈ Q. To see this, we notice that the
relation x = Ux is equivalent to the relation x = x − γA∗(I − PQ)Ax. It turns out that

A∗(I − PQ

)
Ax = 0. (4.2)

Since the solution set F = C ∩A−1(Q)/= ∅, we can take z ∈ F. Now since Az ∈ Q, we have by
(2.5),

〈(
I − PQ

)
Ax,Az − PQAx

〉 ≤ 0. (4.3)



Journal of Inequalities and Applications 9

It follows from (4.2) and (4.3) that

∥
∥(I − PQ)Ax

∥
∥2 = 〈(I − PQ

)
Ax,Ax −Az〉 + 〈(I − PQ

)
Ax,Az − PQAx〉

≤ 〈(I − PQ

)
Ax,Ax −Az〉

= 〈A∗(I − PQ

)
Ax, x − z〉

= 0.

(4.4)

This shows that Ax = PQ(Ax) ∈ Q; that is, x ∈ A−1(Q).
Finally, since Fix(PC) ∩ Fix(U) = C ∩A−1(Q) = F /= ∅, and both PC andU are averaged,

we have Fix(PCU) = Fix(PC) ∩ Fix(U) = F.

Theorem 4.3. The sequence (xn)n≥0 generated by algorithm (4.1) converges strongly to the
minimum-norm solution x̃ of SFP (1.1).

Proof. Define operators Tn and T on H1 by

Tnx := PC

[
(1 − αn)

(
I − γA∗(I − PQ

)
A
)]
x = PC[(1 − αn)U]x, x ∈ H1,

Tx := PC

[(
I − γA∗(I − PQ

)
A
)]
x = PCUx, x ∈ H1,

(4.5)

where U = I − γA∗(I − PQ)A is averaged by Lemma 4.2.
It is readily seen that Tn is a contraction with contractive constant 1 − αn. Namely,

∥∥Tnx − Tny
∥∥ ≤ (1 − αn)

∥∥x − y
∥∥, x, y ∈ H1. (4.6)

Also we may rewrite algorithm (4.1) as

xn+1 = Tnxn = PC[(1 − αn)U]xn. (4.7)

We first prove that (xn) is a bounded sequence. Indeed, since F/= ∅, we can take any x̂ ∈ F
(thus x̂ = Ux̂ by Lemma 4.2) to deduce that

‖xn+1 − x̂‖ = ‖Tnxn − x̂‖ ≤ ‖Tnxn − Tnx̂‖ + ‖Tnx̂ − x̂‖. (4.8)

Note that

‖Tnx̂ − x̂‖ = ‖PC[(1 − αn)U]x̂ − PCUx̂‖
≤ ‖(1 − αn)Ux̂ −Ux̂‖
= αn‖Ux̂‖ = αn‖x̂‖.

(4.9)
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Substituting (4.9) into (4.8), we get

‖xn+1 − x̂‖ ≤ (1 − αn)‖xn − x̂‖ + αn‖x̂‖
≤ max{‖xn − x̂‖, ‖x̂‖}.

(4.10)

By induction, we can easily show that, for all n ≥ 0,

‖xn − x̂‖ ≤ max{‖x0 − x̂‖, ‖x̂‖}. (4.11)

In particular, (xn) is bounded.
We now claim that

lim
n→∞

‖xn+1 − xn‖ = 0. (4.12)

To see this, we compute

‖xn+1 − xn‖ = ‖Tnxn − Tn−1xn−1‖
≤ ‖Tnxn − Tnxn−1‖ + ‖Tnxn−1 − Tn−1xn−1‖
≤ (1 − αn)‖xn − xn−1‖ + ‖Tnxn−1 − Tn−1xn−1‖.

(4.13)

Letting M > 0 be a constant such that M > ‖Uxn‖ for all n ≥ 0, we find

‖Tnxn−1 − Tn−1xn−1‖ = ‖PC[(1 − αn)Uxn−1] − PC[(1 − αn−1)Uxn−1]‖
≤ ‖(1 − αn)Uxn−1 − (1 − αn−1)Uxn−1‖
= ‖(αn − αn−1)Uxn−1‖
≤ M|αn − αn−1|.

(4.14)

Substituting (4.14) into (4.13), we arrive at

‖xn+1 − xn‖ ≤ (1 − αn)‖xn − xn−1‖ +M|αn − αn−1|. (4.15)

By virtue of the assumptions (a)–(c), we can apply Lemma 2.3 to (4.15) to obtain (4.12).
Consequently we also have

lim
n→∞

‖xn − Txn‖ = 0. (4.16)
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This follows from the following computations:

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖Tnxn − Txn‖
≤ ‖xn − xn+1‖ + ‖(1 − αn)Uxn −Uxn‖
≤ ‖xn − xn+1‖ +Mαn −→ 0.

(4.17)

Therefore, the demiclosedness principle (Lemma 2.1) ensures that each weak limit point of
(xn) is a fixed point of the nonexpansive mapping T = PCU, that is, a point of the solution set
F of SFP (1.1).

One of the key ingredients of the proof is the following conclusion:

lim sup
n→∞

〈Uxn − x̃,−x̃〉 ≤ 0, (4.18)

where x̃ is the minimum-norm element of F (i.e., the projection PF(0)). Since

〈Uxn − x̃,−x̃〉 = 〈Uxn − xn,−x̃〉 + 〈xn − x̃,−x̃〉, (4.19)

to prove (4.18), it suffices to prove that

lim
n→∞

‖Uxn − xn‖ = 0, (4.20)

lim sup
n→∞

〈xn − x̃,−x̃〉 ≤ 0. (4.21)

To prove (4.20), we use Lemma 4.2 to get x̃ ∈ Fix(U) andU is averaged.WriteU = (1−β)I+βV
for some β ∈ (0, 1) and nonexpansive mapping V . Then we derive, by taking a point z ∈ F,
that

‖xn+1 − z‖2 = ‖PC[(1 − αn)U]xn − z‖2

≤ ‖(1 − αn)Uxn − z‖2

= ‖(1 − αn)(Uxn − z) + αn(−z)‖2

≤ (1 − αn)‖Uxn − z‖2 + αn‖z‖2

≤ ∥∥(1 − β)(xn − z) + β(Vxn − z)
∥∥2 + αn‖z‖2

=
(
1 − β

)‖xn − z‖2 + β‖Vxn − z‖2

− β
(
1 − β

)‖xn − Vxn‖2 + αn‖z‖2

≤ ‖xn − z‖2 − β
(
1 − β

)‖xn − Vxn‖2 + αn‖z‖2 (as z = Vz).

(4.22)
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It turns out that (for some constant M > ‖xn − z‖ for all n)

β
(
1 − β

)‖xn − Vxn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αn‖z‖2

≤ 2M|‖xn − z‖ − ‖xn+1 − z‖| + αn‖z‖2

≤ 2M‖xn − xn+1‖ + αn‖z‖2

−→ 0 by (4.12).

(4.23)

Now since I −U = β(I − V ), (4.23) implies (4.20).
To prove (4.21), we take a subsequence (xn′) of (xn) so that

lim sup
n→∞

〈xn − x̃,−x̃〉 = lim
n′ →∞

〈xn′ − x̃,−x̃〉. (4.24)

Since (xn) is bounded, we may further assume with no loss of generality that (xn′) converges
weakly to a point x̂. Noticing that x̂ ∈ Fix(T) = F and that x̃ is the projection of the origin
onto F, and applying (2.5), we arrive at

lim sup
n→∞

〈xn − x̃,−x̃〉 = lim
n′ →∞

〈xn′ − x̃,−x̃〉 = 〈−x̃, x̂ − x̃〉 ≤ 0. (4.25)

This is (4.21).
Finally we prove xn → x̃ in norm. To see this, we compute

‖xn+1 − x̃‖2 = ‖PC[(1 − αn)Uxn] − PC[Ux̃]‖2

≤ ‖(1 − αn)Uxn −Ux̃‖2

≤ ‖(1 − αn)Uxn − x̃‖2 (as x̃ = Ux̃)

= ‖(1 − αn)(Uxn − x̃) + αn(−x̃)‖2

= (1 − αn)2‖Uxn − x̃‖2

+ 2αn(1 − αn)〈Uxn − x̃,−x̃〉 + α2
n‖x̃‖2

≤ (1 − αn)‖xn − x̃‖2

+ 2αn(1 − αn)〈Uxn − x̃,−x̃〉 + α2
n‖x̃‖2

≤ (1 − αn)‖xn − x̃‖2 + αnδn,

(4.26)

where

δn := 2(1 − αn)〈Uxn − x̃,−x̃〉 + αn‖x̃‖2 (4.27)
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satisfies the property (due to (4.18))

lim sup
n→∞

δn ≤ 0. (4.28)

We therefore can apply Lemma 2.3 to (4.26) to conclude that ‖xn − x̃‖2 → 0. This completes
the proof.
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