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1. Introduction

Tsumura and Young treated the interpolation functions of the Bernoulli and Euler
polynomials in [1, 2]. Kim and Simsek studied on p-adic interpolation functions of these
numbers and polynomials [3–48]. In [49], Carlitz originally constructed q-Bernoulli numbers
and polynomials. Many authors studied these numbers and polynomials [4, 28, 38, 41,
50]. After that, twisted (h, q)-Bernoulli and Euler numbers(polynomials) were studied by
several authors [1–32, 32–65]. In [62], Whashington constructed one-variable p-adic-L-
function which interpolates generalized classical Bernoulli numbers at negative integers.
Fox introduced the two-variable p-adi L-functions [53]. Young defined p-adic integral
representation for the two-variable p-adic L-functions [64]. Furthermore, Kim constructed
the two-variable p-adic q-L-function, which is interpolation function of the generalized
q-Bernoulli polynomials [8]. This function is the q-extension of the two-variable p-adic
L-function. Kim constructed q-extension of the generalized formula for two-variable of
Diamond and Ferrero and Greenberg formula for two-variable p-adic L-function in the terms
of the p-adic gamma and log-gamma functions [8]. Kim and Rim introduced twisted q-Euler
numbers and polynomials associated with basic twisted q-�-functions [28]. Also, Jang et al.
investigated the p-adic analogue twisted q-�-function, which interpolates generalized twisted
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q-Euler numbers En,q,ξ,χ attached to Dirichlet’s character χ [55]. Kim et al. have studied
two-variable p-adic L-functions, which interpolate the generalized Bernoulli polynomials at
negative integers. In this paper, we will construct two-variale p-adic twisted Euler (h, q)-
L-functions. This functions interpolation functions of the generalized twisted (h, q)-Euler
polynomials.

Let p be a fixed odd prime number. Throughout this paper Z, Zp, Qp and Cp will
respectively denote the ring of rational integers, the ring of p-adic rational integers, the field
of p-adic rational numbers and the completion of the algebraic closure of Qp. Let vp be the
normalized exponential valuation of Cp such that |p|p = p−vp(p) = p−1. If s ∈ C, then |q| < 1.
If q ∈ Cp, we normally assume |1 − q|p < p−(1/(p−1)), so that qx = exp(log q) for |x|p ≤ 1.
Throughout this paper we use the following notations (cf. [1–32, 32–48, 50, 51, 54–65]):

[x]q = [x : q] =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

Hence, limq→ 1[x]q = x, for any x with |x|p ≤ 1 in the present p-adic case.
For d a fixed positive integer with (p, d) = 1, set

X = Xd = lim
←
N

Z

dpNZ
, X1 = Zp,

X∗ =
⋃

0<a<dp,
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.2)

where a ∈ Z satisfies the condition 0 ≤ a < dpN . The distribution is defined by

μq

(
a + dpNZp

)
=

qa

[dpN]q
. (1.3)

We say that f is uniformly differential function at a point a ∈ Zp, and we write f ∈
UD(Zp), if the difference quotients, Ff(x, y) = (f(x) − f(y))/(x − y) have a limit f ′(a) as
(x, y) → (a, a).

For f ∈ UD(Zp), the p-adic invariant q-integral on Zp is defined as [4, 18]

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[pN]q

pN−1∑

x=0

f(x)qx. (1.4)

The fermionic p-adic q-measures on Zp is defined as (cf. [14–16, 18, 22, 28])

μ−q
(
a + dpNZp

)
=

(−q)a
[dpN]−q

, (1.5)
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for f ∈ UD(Zp). For f ∈ UD(Zp), the ferminoic p-adic invariant q-integral on Zp is defined
as

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[pN]−q

pN−1∑

x=0

f(x)(−q)x, (1.6)

which has a sense as we see readily that the limit is convergent. For f ∈ UD(Zp,Cp), we note
that (cf. [14, 16, 18, 22, 28])

∫

Zp

f(x)dμ−1(x) =
∫

X

f(x)dμ−1(x). (1.7)

From the fermionic invariant integral on Zp, we derive the following integral equation
(cf. [14, 35]):

I−1
(
f1
)
+ I−1(f) = 2f(0), (1.8)

where f1(x) = f(x + 1).

2. Twisted (h, q)-Euler Numbers and Polynomials

In this section, we will treat some properties of twisted (h, q)-Euler numbers and polynomials
associated with p-adic invariant integral on Zp. From now on, we take h ∈ Z and q ∈ Cp with
|q − 1|p < p−(1/(p−1)). Let Cpn be the space of primitive pnth root of unity,

Cpn =
{
w ∈ Cpn | wpn = 1

}
. (2.1)

Then, we denote

Tp = lim
n→∞

Cpn =
⋃

n≥0
Cpn . (2.2)

Hence Tp is a p-adic locally constant space. For ξ ∈ Tp, we denote by φξ : Zp → Cp defined by
φξ(x) = ξx, the locally constant function. If we take f(x) = ξxext, then we have (cf. [35])

En,ξ =
∫

Zp

xnξndμ−1(x). (2.3)

By induction in (1.8), Kim constructed the following useful identity (cf. [14, 28]):

I−1
(
fn
)
+ (−1)n−1I−1(f) = 2

n−1∑

�=0

(−1)n−1−�f(�), (2.4)



4 Journal of Inequalities and Applications

where n ∈ N, fn = f(x + n). From (2.4), if n is odd, then we have

I−1
(
fn
)
+ I−1(f) = 2

n−1∑

�=0

(−1)�f(�). (2.5)

If we replace n by d (= odd) into (2.5), we obtain

I−1
(
fd
)
+ I−1(f) = 2

d−1∑

�=0

(−1)�f(�). (2.6)

Let ξ ∈ Tp. Let χ be a Dirichlet’s character of conductor d, which d is any multiple of p
with p ≡ 1 (mod 2). By substituting f(x) = χ(x)ξxext into (2.6), we have

I−1
(
χ(x)ξxext

)
=

∞∑

n=0

En,ξ,χ
tn

n!
. (2.7)

Remark 2.1. In complex case, the generating function of the Euler numbers En,ξ,χ is given by
(cf. [28])

2
∑d−1

�=0(−1)�χ(�)ξ�e�t
ξdedt + 1

=
∞∑

n=0

En,ξ,χ
tn

n!
, |t| < π

d
. (2.8)

By using Taylor series of ext, then we can define the generalized twisted Euler numbers En,ξ,χ

attached to χ as follows (cf. [55]):

En,ξ,χ =
∫

X

ξnxnχ(x)dμ−1(x). (2.9)

In [8], (h, q)-Euler numbers were defined by

E
(h,1)
n,q (x) =

∫

Zp

q(h−1)y[x + y]nqdμ−q(y), (2.10)

where h ∈ Z and x ∈ Zp. In particular, if we take x = 0, then E
(h,1)
n,q (0) = E

(h,1)
n,q . These numbers

are called (h, q)-Euler numbers.

By using iterative method of p-adic invariant integral on Zp in the sense of fermionic,
we define twisted (h, q)-Euler numbers as follows (cf. [55]):

E
(h,1)
n,q,ξ (x) =

∫

Zp

q(h−1)yφξ(y)[x + y]nqdμ−q(y). (2.11)



Journal of Inequalities and Applications 5

For h ∈ Z and n ∈ N, we have that (cf. [55])

E
(h,1)
n,q,ξ (x) =

1 + q

(1 − q)n
n∑

i=0

(
n
i

)
(−1)iqxi 1

1 + ξqh+i
, (2.12)

E
(h,1)
n,q,ξ

(x) =
1 + q

1 + qd

d−1∑

a=0

(−1)aqhaξaE(h,1)
n,ξd,qd

(
x + a

d

)
[d]nq , (2.13)

where d ∈ Nwith d ≡ 1 (mod 2).
Let F(h,1)

q,ξ
(t, x) be the generating function of E(h,1)

n,q,ξ
(x) in complex plane as follows (cf.

[55]):

F
(h,1)
q,ξ

(t, x) = (1 + q)
∞∑

n=0

(−1)nqhnξnet[n+x]q

=
∞∑

n=0

E
(h,1)
n,q,ξ

(x)
tn

n!
.

(2.14)

Let χ be the Dirichlet’s character with conductor d ∈ N with d ≡ 1 (mod 2). Then the
generalized twisted (h, q)-Euler polynomials attached to χ is given by as follows:

For n ∈ Z+ = N ∪ {0},

E
(h,1)
n,q,ξ,χ

(x) =
∫

X

χ(y)q(h−1)yξy[x + y]nqdμ−q(y), (2.15)

where h ∈ Z, d is any multiple of p with p ≡ 1 (mod 2) and x ∈ Cp.
Then the distribution relation of the generalized twisted (h, q)-Euler polynomials is

given by as follows (cf. [14]):

E
(h,1)
n,q,ξ,χ(x) =

1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaE(h,1)
n,qd,ξd

(
x + a

d

)
[d]nq . (2.16)

3. Two-Variable Twisted (h, q)-Euler-Zeta Function and
(h, q)-L-Function

In this section, we will construct two-variable twisted (h, q)-Euler-zeta function and two-
variable (h, q)-L-function in Complex s-plane. We assume q ∈ C with |q| < 1.

Firstly, we consider twisted q-Euler numbers and polynomials in C as follows (cf.
[55]):

F
(h,1)
q,ξ

(t, x) = (1 + q)
∞∑

n=0

(−1)nqhnξnet[n+x]q

=
∞∑

n=0

E
(h,1)
n,q,ξ

(x)
tn

n!
,

(3.1)
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where q, x ∈ C, r ∈ Z
+ = N ∪ {0} and ξ is rth root of unity. In particular, if we take x = 0,

then we have E
(h,1)
n,q,ξ (0) = E

(h,1)
n,q,ξ . These numbers are called twisted Euler numbers. By using

derivative operator, we have (dk/dtk)Fq,ξ(t, x)|t=0 = E
(h,1)
n,q,ξ

(x).
From (3.1), we can define Hurwitz-type twisted (h, q)-Euler-zeta function as follows

(cf. [55]):

ζ
(h,1)
E,q,ξ

(s, x) = (1 + q)
∞∑

k=0

(−1)kqhkξk
[x + k]sq

, (3.2)

where q ∈ C, |q| < 1, s ∈ C, h ∈ Z and x ∈ R, 0 < x ≤ 1. Note that if x = 1 in (3.2), then we see
that the twisted (h, q)-Euler-zeta function is defined by (cf. [28, 55])

ζ
(h,1)
E,q,ξ

(s) = (1 + q)
∞∑

k=1

(−1)kqhkξk
[k]sq

, s ∈ C, Re (s) > 1. (3.3)

For n ∈ N, we know (cf. [28])

ζ
(h,1)
E,q,ξ(−n, x) = E

(h,1)
n,q,ξ (x). (3.4)

From now on, we will define the two-variable (h, q)-L-functions L(h,1)
E,q,ξ(s, x : χ) which

interpolates the generalized (h, q)-Euler polynomials.

Definition 3.1. Let χ be the Dirichlet’s character with conductor d with d ≡ 1 (mod2). For
s ∈ C, h ∈ Z and x ∈ R, 0 < x ≤ 1, we define

L
(h,1)
E,q,ξ

(s, x : χ) = (1 + q)
∞∑

n=0

χ(n)(−1)nqhnξn
[n + x]sq

. (3.5)

By substituting n = a + jd, d ≡ 1 (mod 2), 1 ≤ a ≤ d and n = 0, 1, 2, . . . into (3.5), then
using (3.2), we have

L
(h,1)
E,q,ξ

(s, x : χ)(1 + q)
d∑

a=1

∞∑

j=0

χ(a + jd)(−1)a+jdqh(a+jd)ξa+jd
[a + jd + x]sq

= (1 + q)
d∑

a=1

χ(a)(−1)aqhaξa
[d]sq

∞∑

j=0

(−1)jdqhjd
[j + ((a + x)/d)]sqd

=
1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaζ(h,1)
E,qd,ξd

(
s,

a + x

d

)
[d]−sq .

(3.6)

Thus, we see the function L
(h,1)
E,q,ξ(s, x : χ)which interpolates the generalized (h, q)-Euler

polynomials as follows.
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Theorem 3.2. For s ∈ C, h ∈ Z, let χ be the Dirichlet’s character with conductor d with d ≡
1 (mod 2). Then one has

L
(h,1)
E,q,ξ

(s, x : χ) =
1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaζ(h,1)
E,qd,ξd

(
s,

a + x

d

)
[d]−sq . (3.7)

By substituting s = −n with n > 0, into (3.7), we obtain

L
(h,1)
E,q,ξ(−n, x : χ) =

1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaζ(h,1)
E,qd,ξd

(
− n,

a + x

d

)
[d]nq

=
1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaE(h,1)
n,qd,ξd

(
a + x

d

)
[d]nq

= E
(h,1)
n,q,ξ,χ

(x),

(3.8)

where d ≡ 1 (mod 2), d ∈ N.
Thus, we have the following theorem.

Theorem 3.3. For n ∈ N, let χ be the Dirichlet’s character with conductor d with d ≡ 1 (mod 2).
Then one has

L
(h,1)
E,q,ξ(−n, x : χ) = E

(h,1)
n,q,ξ,χ(x). (3.9)

Remark 3.4. If we take x = 1 in (3.5), then we have (cf. [28, 55])

L
(h,1)
E,q,ξ

(s, χ) = (1 + q)
∞∑

n=1

χ(n)(−1)nqhnξn
[n]sq

, for s ∈ C. (3.10)

From (3.9) and (3.10), we have the following corollary.

Corollary 3.5. Let χ be the Dirichlet’s character with conductor d with d ≡ 1 (mod2). Then one
has

E
(h,1)
n,q,ξ,χ

(x) =
1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaE(h,1)
n,qd,ξd

(
a + x

d

)
[d]nq . (3.11)

Secondly, we will define two-variable twisted Euler (h, q)-L-function as follows.

Definition 3.6. Let χ be the Dirichlet’s character with conductor d with d ≡ 1 (mod 2), d ∈ N.
For s ∈ C, h ∈ Z, x ∈ R, 0 < x ≤ 1 and ξr = 1 with ξ /= 1, we define

L
(h,1)
E,q,ξ(s, x : χ) = (1 + q)

∞∑

k=0

χ(k)(−1)kqhkξk
[k + x]sq

. (3.12)
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We consider the well-known identity (cf. [44, 65])

1
(1 − x)s

=
∞∑

j=0

(
s + j − 1

j

)
xj . (3.13)

By using (3.12), we define two-variable twisted Euler (h, q)-L-function as follows:

L
(h,1)
E,q,ξ

(s, x : χ) = (1 + q)(1 − q)s
∞∑

j=0

∞∑

k=0

(
s + j − 1

j

)
χ(k)(−1)kξkqhk+j(k+x). (3.14)

We will investigate the relations between L
(h,1)
E,q,ξ

(s, x : χ) and L
(h,1)
E,q,ξ

(s, χ) as follows.

Substituting k = a + jd, a = 1, 2, . . . , d with d ≡ 1 (mod 2), j = 0, 1, 2, . . . , into (3.12),
we have

L
(h,1)
E,q,ξ

(s, x : χ) = (1 + q)
d∑

a=1

∞∑

j=0

χ(a + jd)(−1)a+jdqh(a+jd)ξa+jd
[a + jd + x]sq

, (3.15)

Thus we obtain the following theorem.

Theorem 3.7. For s ∈ C with h ∈ Z, let χ be the Dirichlet character with conductor d with d ≡
1 (mod 2) and x ∈ R, 0 < x ≤ 1, ξr = 1 with ξ /= 1. Then one has

L
(h,1)
E,q,ξ(s, x : χ) =

1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaζ(h,1)
E,qd,ξd

(
s,

a + x

d

)
[d]−sq . (3.16)

By substituting s = −n with n ∈ N into (3.16) and using (3.4), we can obtain

L
(h,1)
E,q,ξ(−n, x : χ) =

1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaζ(h,1)
E,qd,ξd

(
− n,

a + x

d

)
[d]nq

=
1 + q

1 + qd

d∑

a=1

χ(a)(−1)aqhaξaE(h,1)
n,qd,ξd

(
a + x

d

)
[d]nq

= E
(h,1)
n,q,ξ,χ

(x).

(3.17)

Thus, we see that the function L
(h,1)
E,q,w(s, x : χ) interpolates generalized (h, q)-Euler polynomi-

als attached to χ at negative integer values of s as followings.

Theorem 3.8. For n ∈ N, let χ be the Dirichlet’s character with odd conductor d. Then one has

L
(h,1)
E,q,ξ(−n, x : χ) = E

(h,1)
n,q,ξ,χ(x). (3.18)

Note that if we take x = 1, then Theorem 3.8 reduces to Theorem 3.3.
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Let a and F be integers with F ≡ 1 (mod 2) and 0 < a < F. For s ∈ C, we define partial
(h, q)-Hurwitz type zeta function H

(h,1)
E,q,ξ (s, a, x | F) as follows:

H
(h,1)
E,q,ξ

(s, a, x | F) =
∑

m≡a (mod F),
m>0

(−1)mqhmξm
[m + x]sq

. (3.19)

By substituting m = a + jF, we have

H
(h,1)
E,q,ξ

(s, a, x | F) =
∞∑

j=0

(−1)a+jFqh(a+jF)ξa+jF
[a + jF + x]sq

= (−1)aqhaξa[F]−sq
∞∑

j=0

(−1)jF(qF)hj(ξF)j
[((a + x)/F) + j]sqF

= [F]−sq (−1)a(q)haξa 1
1 + qF

∞∑

j=0

(−1)jF(qF)hj(ξF)j
[((a + x)/F) + j]sqF

= [F]−sq
(−1)a(q)haξa

1 + qF
ζ
(h,1)
E,qF ,ξF

(
s,

a + x

F

)
.

(3.20)

By substituting (3.2), for s = −n, we get

H
(h,1)
E,q,ξ (s, a, x | F) = [F]nq

(−1)aqhaξa
1 + qF

E
(h,1)
n,qF ,ξF

(
a + x

F

)
. (3.21)

Equation (3.20) means that the function H
(h,1)
E,q,ξ

(s, a, x | F) interpolates E
(h,1)
n,q,ξ

(s, a, x | F)
polynomials at negative integers.

From (3.16) and (3.20), we have the following theorem.

Theorem 3.9. For s ∈ C, ξr = 1 with ξ /= 1, let χ be the Dirichlet’s character with conductor d ∈ N

with d ≡ 1 (mod 2) and x ∈ R, 0 < x ≤ 1, F is any multiple of d. Then one has

L
(h,1)
E,q,ξ

(s, x : χ) = (1 + q)
F∑

a=1

χ(a)(−1)aH(h,1)
E,q,ξ

(s, a, x | F). (3.22)

Remark 3.10. If we take s = 0 in (3.22), then we have

L
(h,1)
E,q,ξ

(0, x : χ) = (1 + q)
F∑

a=1

χ(a)H(h,1)
E,q,ξ

(0, a, x | F)

=
1 + q

1 + qF

F∑

a=1

χ(a)(−1)aqhaξaE(h,1)
0,qF ,ξF

(
a + x

F

)
.

(3.23)

From (2.12), if we take s = 0, then we have the following corollary.
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Corollary 3.11. For s ∈ C, ξr = 1 with ξ /= 1, let χ be the Dirichlet’s character with conductor d ∈ N

with d ≡ 1 (mod 2) and x ∈ R, 0 < x ≤ 1, F is any multiple of d. Then one has

L
(h,1)
E,q,ξ(0, x : χ) =

(1 + q)2

(1 + qF)(1 + ξqh)

F∑

a=1

χ(a)(−1)aqhaξa. (3.24)

4. p-Adic Twisted Two-Variable Euler (h, q)-L-Functions

In [62], Washington constructed one-variable p-adic-L-function which interpolates gen-
eralized classical Bernoulli numbers negative integers. Kim [22] investigated the p-adic
analogues of two-variables Euler q-L-function. In this section, we will construct p-adic
twisted two-variable Euler-(h, q)-L-functions, which interpolate generalized twisted (h, q)-
Euler polynomials at negative integers. Our notations and methods are essentially due to
Kim and Washington (cf. [22, 62]).

We assume that q ∈ Cp with |1 − q|p < p−(1/(p−1)), so that qx = exp(x log q). Let p be
an odd prime number. Let ω denote the Teichmüller character having conductor p. For an
arbitrary character χ, we define χn = χω−n, where n ∈ Z, in the sense of the product of
characters. Let 〈a〉 = 〈a : q〉 = ω−1(a)[a]q = [a]q/ω(a). Then 〈a〉 ≡ 1 (mod p1+(1/(p−1))).
Hence we see that

〈 a + pt 〉 = ω−1(a + pt)[a + pt]q

= ω−1(a)[a]q +ω−1(a)qa[pt]q

≡ 1
(
mod p1+(1/(p−1))

)
,

(4.1)

where t ∈ Cp with |t|p ≤ 1, (a, p) = 1.
We denote the subset D of C∗

p by (cf. [62])

D = {s ∈ Cp : |s|p ≤ p1−(1/(p−1))}. (4.2)

Let

Aj(x) =
∞∑

j=0

an,jx
n, an,j ∈ Cp, j = 0, 1, 2, . . . , (4.3)

be a sequence of power series, each of which converges in a fixed subset D such that

(1) an,j → an,0 as j → ∞ for all n, j and

(2) for each s ∈ D and ε > 0, there exists n0 = n0(s, ε) such that

∣∣∣∣∣
∑

n≥n0

an,js
n

∣∣∣∣∣
p

< ε, for ∀j. (4.4)

Then limj→∞Aj(s) = A0(s) for all s ∈ D (cf. [2, 22, 50, 51, 60, 62]).
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Let χ be the Dirichlet’s character with conductor d with d ≡ 1 (mod 2) and let F be a
positive multiple of p and d.

Now we set

L
(h,1)
E,p,q,ξ(s, x : χ) =

1 + q

1 + qF

F∑

a=1,
p�a

χ(a)(−1)aξa〈a + pt〉−s

·
∞∑

j=0

(−s
j

)
E
(h,1)
j,qF ,ξF

qj(a+pt)
[

F

a + pt

]j

qa+pt
.

(4.5)

Then L
(h,1)
E,p,q,ξ(s, x : χ) is analytic for t ∈ Cp with |t|p ≤ 1, when s ∈ D. For t ∈ Cp with |t|p ≤ 1,

we have

∞∑

j=0

(−s
j

)
E
(h,1)
j,qF ,ξF

qj(a+pt)
[

F

a + pt

]j

qa+pt
(4.6)

is analytic for s ∈ D. It readily follows that

〈a + pt〉s = ω−s(a)[a + pt]sq = 〈a〉s
∞∑

m=0

(
s
m

)(
qa[a]−1q [pt]q

)m
(4.7)

is analytic for s ∈ Cp with |t|p ≤ 1 when s ∈ D. Thus we see that

L
(h,1)
E,p,q,ξ

(0, x : χ) =
1 + q

2

F∑

a=1

(−1)aχn(a)ξa. (4.8)

Let n ∈ Z+ and fixed t ∈ Cp with |t|p ≤ 1. Then we have that

E
(h,1)
n,q,ξ,χn

(pt) = [F]nq
1 + q

1 + qF

F∑

a=0

χn(a)(−1)aξaE(h,1)
n,qF ,ξF

(
a + pt

F

)
. (4.9)

If χn(p)/= 0, then (p, dχn) = 1, so F/p is a multiple of dχn . Therefore, we have

χn(p)[p]
n
qE

(h,1)
n,qF ,ξF ,χn

(t)

= χn(p)[p]
n
q

{[
F

p

]n

qp

1 + qp

1 + qpF/p

F/p−1∑

a=0

χn(a)(−1)aξaE(h,1)
n,(qp)F/p,(ξp)F/p

(
a + t

F/p

)}

= [F]nq
1 + qp

1 + qF

F∑

a=0
p�a

χn(a)(−1)aξaE(h,1)
n,qF ,ξF

(
a + pt

F

)
.

(4.10)
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Then we note that

1 + q

1 + qp
χn(p)[p]

n
qE

(h,1)
n,qF ,ξF ,χn

(t) =
1 + q

1 + qF
[F]nq

F∑

a=0
p|a

χn(a)(−1)aξaE(h,1)
n,qF ,ξF

(
a + pt

F

)
. (4.11)

The difference of these equations yields

E
(h,1)
n,q,ξ,χn

(pt) − 1 + q

1 + qp
χn(p)[p]

n
qE

(h,1)
n,qF ,ξF ,χn

(t) =
1 + q

1 + qF
[F]nq

F∑

a=0
p�a

χn(a)(−1)aξaE(h,1)
n,qF ,ξF

(
a + pt

F

)
.

(4.12)

Using distribution for (h, q)-Euler polynomials, we easily see that

E
(h,1)
n,qF ,ξF

(
a + pt

F

)
= [F]−nq [a + pt]nq

n∑

k=0

(
n
k

)
q(a+pt)kξa

[
F

a + pt

]k

qa+pt
E
(h,1)
k,qF ,ξF

. (4.13)

Since χn(a) = χ(a)ω−n(a), for (a, p) = 1, and t ∈ Cp, with |t|p ≤ 1, we have

E
(h,1)
n,q,ξ,χn

(pt) − 1 + q

1 + qp
χn(p)[p]

n
qE

(h,1)
n,qF ,ξF ,χn

(t)

=
1 + q

1 + qF

F−1∑

a=0

χn(a)(−1)aξaE(h,1)
n,qF ,ξF

(
a + pt

F

)

=
1 + q

1 + qp

F−1∑

a=0,
p�a

χn(a)(−1)aξa〈a + pt〉n
n∑

k=0

(
n
k

)
q(a+pt)k

[
F

a + pt

]k

qa+pt
E
(h,1)
k,qF ,ξF

.

(4.14)

From (4.5)–(4.14), we can derive that

E
(h,1)
n,q,ξ,χn

(pt) − 1 + q

1 + qp
χn(p)[p]

n
qE

(h,1)
n,qp,ξp,χn

(t) = L
(h,1)
E,p,q,ξ(−n, t : χ). (4.15)

Therefore we obtain the following theorem.

Theorem 4.1. Let F be a positive integral multiple of p and d(= dχ) with F ≡ 1 (mod 2), and let

L
(h,1)
E,p,q,ξ(s, t : χ) =

1 + q

1 + qd

F∑

a=1,
p�a

χ(a)(−1)aξa〈a + pt〉−s
∞∑

m=0

(−s
m

)
q(a+pt)m

[
F

a + pt

]m

qa+pt
E
(h,1)
m,qF ,ξF

.

(4.16)



Journal of Inequalities and Applications 13

Then L
(h,1)
E,p,q,ξ(s, t : χ) is analytic for t ∈ Cp, |t|p ≤ 1, provides s ∈ D when χ = 1.

Furthermore, for each n ∈ Z+, we have

L
(h,1)
E,p,q,ξ(−n, t : χ) = E

(h,1)
n,q,ξ,χn

(pt) − 1 + q

1 + qp
χn(p)[p]

n
qE

(h,1)
n,qp,ξp,χn

(t). (4.17)

Thus we note that L(h,1)
E,p,q,ξ

(s, 0 : χ) = L
(h,1)
E,p,q,ξ

(s, χ) for all s ∈ D, where L
(h,1)
E,p,q,ξ

(s, χ) is twisted
p-adic Euler (h, q)-L-function, (cf. [15, 22]).

We now generalized to two-variable p-adic Euler (h, q)-L-function, L(h,1)
E,p,q,ξ

(s, t : χ)
which is first defined by the interpolation function

H
(h,1)
E,p,q,ξ

(s, a, x | F) = (−1)a
1 + qF

qhaξa〈a + pt〉−s

·
∞∑

j=0

(−s
j

)
qj(a+pt)

( [F]q
[a + pt]q

)j

E
(h,1)
j,qF ,ξF

,

(4.18)

for s ∈ Zp.
From (4.18), we have that

H
(h,1)
E,p,q,ξ(−n, a, x | F) = (−1)a

1 + qF
ξaqha〈a + pt〉n

a∑

j=0

(
n
j

)
q(a+pt)j

(
[F]q
[a]q

)j

E
(h,1)
j,qF ,ξF

=
(−1)a
1 + qF

qhaξaω−n(a)[F]nqEn,qF ,ξF

(
a

F

)

= ω−n(a)H(h,1)
E,q,ξ

(−n, a, x | F).

(4.19)

By using the definition of H(h,1)
E,p,q,ξ

(s, a, x | F), we can express L
(h,1)
E,p,q,ξ

(s, t : χ) for all a ∈
Z, (a, p) = 1 and t ∈ Cp with |t| ≤ 1 as follows:

L
(h,1)
E,p,q,ξ(s, t : χ) =

F∑

a=1,
p�a

χ(a)H(h,1)
E,p,q,ξ(s, a + pt | F). (4.20)

We know that H(h,1)
E,p,q,ξ(s, a + pt | F) is analytic for t ∈ Cp, |t| ≤ 1, when s ∈ D. The value of

(∂/∂s)L(h,1)
E,p,q,ξ

(s, t : χ) is the coefficients of s in the expansion of L(h,1)
E,p,q,ξ

(s, t : χ) at s = 0. Using
the Taylor expansion at s = 0, we see that

〈a + pt〉−s = 1 − s log〈a + pt〉 + · · · ,
(−s
m

)
=

(−1)m
m

s + · · · . (4.21)
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The p-adic logarithmic function, logp, is the unique function C
∗
p → Cp that satisfies

logp(1 + x) =
∞∑

n=1

(−1)n
n

xn, |x|p < 1,

logp(xy) = logp(x) + logp(y), ∀x, y ∈ C
∗
p,

logp(p) = 0.

(4.22)

By employing these expansion and some algebraic manipulations, we evaluate the derivative
(∂/∂s)L(h,1)

E,p,q,ξ
(0, t : χ). It follows from the definition of LE,p,q,ξ(s, t : χ) that

L
(h,1)
E,p,q,ξ

(s, t : χ) =
1 + q

1 + qF

F∑

a=1,
p�a

χ(a)(−1)aξa〈a + pt〉−s

·
∞∑

m=0

(−s
m

)
q(a+pt)m

[
F

a + pt

]m

qa+pt
E
(h,1)
m,qF ,ξF

.

(4.23)

Thus, we have

∂

∂s
L
(h,1)
E,p,q,ξ(s, t : χ)|s=0 =

1 + q

1 + qF

F∑

a=1,
p�a

χ(a)(−1)aξa

·
(
− log(a + pt)E(h,1)

0,qF ,ξF +
∞∑

m=1

(−1)m
m

q(a+pt)m
[

F

a + pt

]m

qa+pt
E
(h,1)
m,qF ,ξF

)
.

(4.24)

Since ω(a) is a root of unity for (a, p) = 1, we have

logp〈a + pt〉 = logp(a + pt) + logpω
−1(a) = logp(a + pt). (4.25)

Thus we have the following theorem.

Theorem 4.2. Let χ be a primitive Dirichlet’s character with odd conductor d, d ∈ N and let F be a
odd positive integral multiple of p and d. Then for any t ∈ Cp with |t| ≤ 1, one has

∂

∂s
L
(h,1)
E,p,q,ξ(s, t : χ) =

1 + q

1 + qF

F∑

a=1,
p�a

χ(a)(−1)aξa
∞∑

m=1

(−1)m
m

q(a+pt)m
( [F]q
[a + pt]q

)m

E
(h,1)
m,qF ,ξF

− 1 + q

2

F∑

a=1
p�a

χ(a)(−1)aξa log(a + pt).

(4.26)
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