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1. Introduction

In the recent years, the A-harmonic equations for differential forms have been widely
investigated, see [1], and many interesting and important results have been found, such as
some weighted integral inequalities for solutions to the A-harmonic equations; see [2–7].
Those results are important for studying the theory of differential forms and both qualitative
and quantitative properties of the solutions to the different versions ofA-harmonic equation.
In the different versions ofA-harmonic equation, the nonhomogeneousA-harmonic equation
A(x, g + du) = h + d�v has received increasing attentions, in [8] Ding has presented
some estimates to such equation. In this paper, we extend some estimates that Ding has
presented in [8] into the two-weight case. Our results are more general, so they can be used
broadly.

It is well-known that the Lipschitz norm supQ⊂Ω|Q|−1−(k/n)‖u − uQ‖1,Q, where the

supremum is over all local cubes Q, as k → 0 is the BMO norm supQ⊂Ω|Q|−1‖u − uQ‖1,Q,
so the natural limit of the space locLipk(Ω) as k → 0 is the space BMO(Ω). In Section 3,
we establish a relation between these two norms and Lp-norm. We first present the local two-
weight Poincaré inequality forA-harmonic tensors. Then, as the application of this inequality
and the result in [8], we prove some weighted Lipschitz norm inequalities and BMO norm
inequalities for differential forms satisfying the different nonhomogeneous A-harmonic
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equations. These results can be used to study the basic properties of the solutions to the
nonhomogeneous A-harmonic equations.

Now, we first introduce related concepts and notations.
Throughout this paper we assume that Ω is a bounded connected open subset of Rn.

We assume that B is a ball in Ω with diameter diam(B) and σB is the ball with the same
center as B with diam(σB) = σ diam(B). We use |E| to denote the Lebesgue measure of
E. We denote w a weight if w ∈ L1

loc(R
n) and w > 0 a.e.. Also in general dμ = wdx.

For 0 < p < ∞, we write f ∈ Lp(E,wα) if the weighted Lp-norm of f over E satisfies
‖f‖p,E,wα = (

∫
E|f(x)|pw(x)αdx)1/p < ∞, where α is a real number. A differential l-form

ω on Ω is a schwartz distribution on Ω with value in Λl(Rn), we denote the space of
differential l-forms by D

′
(Ω,Λl). We write Lp(Ω,Λl) for the l-forms w(x) =

∑
I wI(x)dxI =∑

wi1i2···il(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil withwI ∈ Lp(Ω,R) for all ordered l-tuples I = (i1, i2, . . . , il),
1 ≤ i1 < i2 < · · · < il ≤ n, l = 0, 1, . . . , n. Thus Lp(Ω,Λl) is a Banach space with norm

‖w‖p,Ω = (
∫
Ω|w(x)|pdx)1/p = (

∫
Ω(

∑
I |wI(x)|2)p/2dx)

1/p
. We denote the exterior derivative by

d : D
′
(Ω,Λl) → D

′
(Ω,Λl+1) for l = 0, 1, . . . , n−1. Its formal adjoint operator d� : D

′
(Ω,Λl+1) →

D
′
(Ω,Λl) is given by d� = (−1)nl+1 �d� onD

′
(Ω,Λl+1), l = 0, 1, 2, . . . , n−1. A differential l-form

u ∈ D
′
(Ω,Λl) is called a closed form if du = 0 in Ω. Similarly, a differential (l + 1)-form

v ∈ D
′
(Ω,Λl+1) is called a coclosed form if d�v = 0. The l-form ωB ∈ D

′
(B,Λl) is defined by

ωB = |B|−1∫Bω(y)dy, l = 0 and ωB = d(Tω), l = 1, 2, . . . , n, for all ω ∈ Lp(B,Λl), 1 ≤ p < ∞,
here T is a homotopy operator, for its definition, see [8].

Then, we introduce some A-harmonic equations.
In this paper we consider solutions to the nonhomogeneous A-harmonic equation

A
(
x, g + du

)
= h + d�v (1.1)

for differential forms, where g, h ∈ D
′
(Ω,Λl) and A : Ω × Λl(Rn) → Λl(Rn) satisfies the

following conditions:

|A(x, ξ)| ≤ a|ξ|p−1, 〈A(x, ξ), ξ〉 ≥ |ξ|p, (1.2)

for almost every x ∈ Ω and all ξ ∈ Λl(Rn). Here a > 0 is a constant and 1 < p < ∞ is a fixed
exponent associated with (1.1) and p−1 + q−1 = 1. Note that if we choose g = h = 0 in (1.1),
then (1.1)will reduce to the conjugate A-harmonic equation A(x, du) = d�v.

Definition 1.1. We call u and v a pair of conjugate A-harmonic tensor in Ω if u and v satisfy
the conjugate A-harmonic equation

A(x, du) = d�v (1.3)

in Ω, and A−1 exists in Ω, we call u and v conjugate A-harmonic tensors in Ω.

We also consider solutions to the equation of the form

d�A(x, dw) = B(x, dw), (1.4)
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here A : Ω ×Λl(Rn) → Λl(Rn) and B : Ω ×Λl(Rn) → Λl−1(Rn) satisfy the conditions:

|A(x, ξ)| ≤ a|ξ|p−1, 〈A(x, ξ), ξ〉 ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1, (1.5)

for almost every x ∈ Ω and all ξ ∈ Λl(Rn). Here a, b > 0 are constants and 1 < p < ∞ is a
fixed exponent associated with (1.4). A solution to (1.4) is an element of the Sobolev space
W1

p,loc(Ω,Λl−1) such that

∫

Ω

〈
A(x, dw), dϕ

〉
+
〈
B(x, dw), ϕ

〉
= 0 (1.6)

for all ϕ ∈ W1
p,loc(Ω,Λl−1),with compact support.

Definition 1.2. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic equation
(1.4) in Ω.

2. The Local and Global Ar,λ(Ω)-Weighted Estimates

In this section, we will extend Lemma 2.3, see in [8], to new version withAr,λ(Ω)weight both
locally and globally.

Definition 2.1. We say a pair of weights (w1(x), w2(x)) satisfies the Ar,λ(Ω)-condition in a
domainΩ and write (w1(x), w2(x)) ∈ Ar,λ(Ω) for some λ ≥ 1 and 1 < r < ∞with 1/r + 1/r

′
=

1, if

sup
B⊂Ω

(
1
|B|

∫

B

(w1)
λdx

)1/λr
⎛

⎝ 1
|B|

∫

B

(
1
w2

)λr
′
/r

dx

⎞

⎠

1/λr
′

< ∞, (2.1)

for any ball B ⊂ Ω.

See [9] for properties of Ar,λ(Ω)-weights. We will need the following generalized
Hölder’s inequality.

Lemma 2.2. Let 0 < α < ∞, 0 < β < ∞, and s−1 = α−1 + β−1, if f and g are measurable functions on
R

n, then

∥∥fg
∥∥
s,Ω ≤ ∥∥f

∥∥
α,Ω · ∥∥g∥∥β,Ω, (2.2)

for any Ω ∈ R
n.
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We also need the following lemma; see [8].

Lemma 2.3. Let u and v be a pair of solutions to the nonhomogeneous A-harmonic equation (1.1)
in a domain Ω ⊂ R

n. If g ∈ Lp(B,Λl) and h ∈ Lq(B,Λl), then du ∈ Lp(B,Λl) if and only if
d�v ∈ Lq(B,Λl). Moreover, there exist constants C1 and C2, independent of u and v, such that

‖d�v‖qq,B ≤ C1

(
‖h‖qq,B +

∥
∥g

∥
∥p

p,B + ‖du‖pp,B
)
,

‖du‖pp,B ≤ C2

(
‖h‖qq,B +

∥
∥g

∥
∥p

p,B + ‖d�v‖qq,B
)
,

(2.3)

for all balls B with B ⊂ Ω ⊂ R
n.

Theorem 2.4. Let u and v be a pair of solutions to the nonhomogeneous A-harmonic equation (1.1)
in a domain Ω ⊂ R

n. Assume that (w1(x), w2(x)) ∈ Ar,λ(Ω) for some λ ≥ 1 and 1 < r < ∞ with
1/r + 1/r ′ = 1. Then, there exists a constants C, independent of u and v, such that

‖d�v‖s,B,wα
1
≤ C|B|αr/sλ

(
‖h‖t,B,wαt/s

2
+
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,B,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,B,wαt/s

2

)
, (2.4)

for all balls B with B ⊂ Ω ⊂ R
n. Here α is any positive constant with λ > αr, s = q(λ − α)/λ, and

t = sλ/(λ − αr) = qsλ/(sλ − qα(r − 1)). Note that (2.4) can be written as the following symmetric
form:

|B|−1/s‖d�v‖s,B,wα
1
≤ C|B|−1/t

(
‖h‖t,B,wαt/s

2
+
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,B,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,B,wαt/s

2

)
. (2.5)

Proof. Choose s = q(λ − α)/λ < q, since 1/s = 1/q + (q − s)/qs, using Hölder inequality, we
find that

‖d�v‖s,B,wα
1
=
(∫

B

|d�v|swα
1 (x)dx

)1/s

=
(∫

B

(
|d�v|wα/s

1

)s
dx

)1/s

≤
(∫

B

|d�v|qdx
)1/q(∫

B

(
wα/s

1

)qs/(q−s)
dx

)(q−s)/qs

≤ ‖d�v‖q,B
(∫

B

wλ
1dx

)α/λs

.

(2.6)
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Applying the elementary inequality |∑N
i=1 ti|

T ≤ NT−1 ∑N
i=1 |ti|T and Lemma 2.3, we obtain

‖d�v‖q,B ≤ C1

(
‖h‖q,B +

∥
∥g

∥
∥p/q

p,B + ‖du‖p/qp,B

)
. (2.7)

Choose t = qsλ/(sλ− qα(r − 1)) > q, using Hölder inequality with 1/q = 1/t+ (t− q)/qt again
yields

‖h‖q,B =
(∫

B

(
|h|wα/s

2 w−α/s
2

)q
dx

)1/q

≤
(∫

B

|h|twαt/s
2 dx

)1/t
(∫

B

(
1
w2

)αqt/s(t−q)
dx

)(t−q)/qt

= ‖h‖t,B,wαt/s
2

(∫

B

(
1
w2

)λ/(r−1)
dx

)α(r−1)/λs
.

(2.8)

Then, choosing k = p + αpt(r − 1)/sλ > p, using Hölder inequality once again, we have

∥∥g
∥∥
p,B =

(∫

B

∣∣g
∣∣pwαt/ks

2 w−αt/ks
2 dx

)1/p

≤
(∫

B

∣∣g
∣∣kwαt/s

2 dx

)1/k
(∫

B

(
1
w2

)αtp/s(k−q)
dx

)(k−q)/kp

=
∥∥g

∥∥
k,B,wαt/s

2

(∫

B

(
1
w2

)λ/(r−1)
dx

)k−p/kp
.

(2.9)

We know that

k − p

kp
=

αt(r − 1)
sλ

· sλ

sλp + αpt(r − 1)

=
α(r − 1)

sp
· st

sλ + αt(r − 1)

=
α(r − 1)q

spλ
,

(2.10)

and hence

∥∥g
∥∥p/q

p,B ≤ ∥∥g
∥∥p/q

k,B,wαt/s
2

·
(∫

B

(
1
w2

)λ/(r−1)
dx

)α(r−1)/sλ
. (2.11)
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Note that

∥
∥g

∥
∥p/q

k,B,wαt/s
2

=
(∫

B

∣
∣g
∣
∣kwαt/s

2 dx

)p/kq

=
(∫

B

∣
∣g
∣
∣(psλ+αpt(r−1))/sλwαt/s

2 dx

)psλ/(pqsλ+αpqt(r−1))

=
(∫

B

∣∣g
∣∣p(sλ+αt(r−1))/sλwαt/s

2 dx

)sλ/(qsλ+αqt(r−1))
.

(2.12)

Since

(r − 1)αt + sλ =
sλt

q
, (2.13)

then,

∥∥g
∥∥p/q

k,B,wαt/s
2

=
(∫

B

∣∣g
∣∣pt/qwαt/s

2 dx

)1/t

=
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,B,wαt/s

2

.

(2.14)

Combining (2.11) and (2.14), we obtain

∥∥g
∥∥p/q

p,B ≤
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,B,wαt/s

2

·
(∫

B

(
1
w2

)λ/(r−1)
dx

)α(r−1)/sλ
. (2.15)

Using the similar method, we can easily get that

‖du‖p/qp,B ≤
∥∥∥|du|p/q

∥∥∥
t,B,wαt/s

2

·
(∫

B

(
1
w2

)λ/(r−1)
dx

)α(r−1)/sλ
. (2.16)

Combining (2.6) and (2.7) gives

‖d�v‖s,B,wα
1
≤ C1

(
‖h‖q,B +

∥∥g
∥∥p/q

p,B + ‖du‖p/qp,B

)(∫

B

wλ
1dx

)α/sλ

. (2.17)

Substituting (2.8), (2.15), and (2.16) into (2.17), we have

‖d�v‖s,B,wα
1
≤ C1

(
‖h‖t,B,wαt/s

2
+
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,B,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,B,wαt/s

2

)

·
(∫

B

wλ
1dx

)α/sλ
(∫

B

(
1
w2

)λ/(r−1)
dx

)α(r−1)/sλ
.

(2.18)
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Since (w1, w2) ∈ Ar,λ(Ω), then

(∫

B

wλ
1dx

)α/sλ
(∫

B

(
1
w2

)λ/(r−1)
dx

)α(r−1)/sλ

=

⎛

⎝
(∫

B

wλ
1dx

)(∫

B

(
1
w2

)λ/(r−1)
dx

)(r−1)⎞

⎠

α/sλ

=

⎛

⎜
⎝|B|1/λr

(
1
|B|

∫

B

wλ
1dx

)1/λr

|B|1/λr
′
⎛

⎝ 1
|B|

∫

B

(
1
w2

)λr
′
/r

dx

⎞

⎠

1/λr
′⎞

⎟
⎠

αr/s

≤ C2|B|αr/sλ.

(2.19)

Putting (2.19) into (2.18), we obtain the desired result

‖d�v‖s,B,wα
1
≤ C3|B|αr/sλ

(
‖h‖t,B,wαt/s

2
+
∥∥∥|g|p/q

∥∥∥
t,B,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,B,wαt/s

2

)
. (2.20)

The proof of Theorem 2.4 has been completed.

Using the same method, we have the following two-weighted Ls-estimate for du.

Theorem 2.5. Let u and v be a pair of solutions to the nonhomogeneous A-harmonic equation (1.1)
in a domain Ω ⊂ R

n. Assume that (w1(x), w2(x)) ∈ Ar,λ(Ω) for some λ ≥ 1 and 1 < r < ∞ with
1/r + 1/r

′
= 1. Then, there exists a constants C, independent of u and v, such that

‖du‖s,B,wα
1
≤ C|B|αr/sλ

(∥∥g
∥∥
t,B,wαt/s

2
+
∥∥∥|h|q/p

∥∥∥
t,B,wαt/s

2

+
∥∥∥|d�v|q/p

∥∥∥
t,B,wαt/s

2

)
, (2.21)

for all balls B with B ⊂ Ω ⊂ R
n. Here α is any positive constant with λ > αr, s = p(λ − α)/λ, and

t = sλ/(λ − αr) = psλ/(sλ − pα(r − 1)).
It is easy to see that the inequality (2.21) is equivalent to

|B|−1/s‖du‖s,B,wα
1
≤ C|B|−1/t

(∥∥g
∥∥
t,B,wαt/s

2
+
∥∥∥|h|q/p

∥∥∥
t,B,wαt/s

2

+
∥∥∥|d�v|q/p

∥∥∥
t,B,wαt/s

2

)
. (2.22)

As applications of the local results, we prove the following global norm comparison
theorem.

Lemma 2.6. Each Ω has a modified Whitney cover of cubes V = {Qi} such that
⋃

i

Qi = Ω,

∑

Q∈V
χ√5/4Q ≤ NχΩ,

(2.23)
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for all x ∈ R
n and some N > 1 and if Qi ∩Qj /= ∅, then there exists a cube R (this cube does not need

be a member of V) in Qi ∩Qj such that Qi ∩Qj ⊂ NR .

Theorem 2.7. Let u and v be a pair of solutions to the nonhomogeneous A-harmonic equation (1.1)
in a bounded domain Ω ⊂ R

n. Assume that (w1(x), w2(x)) ∈ Ar,λ(Ω) for some λ ≥ 1 and 1 < r < ∞
with 1/r + 1/r ′ = 1. Then, there exist constants C1 and C2, independent of u and v, such that

‖d�v‖s,Ω,wα
1
≤ C1

(
‖h‖t,Ω,wαt/s

2
+
∥
∥
∥
∣
∣g
∣
∣p/q

∥
∥
∥
t,Ω,wαt/s

2

+
∥
∥
∥|du|p/q

∥
∥
∥
t,Ω,wαt/s

2

)
. (2.24)

Here α is any positive constant with λ > αr, s = q(λ−α)/λ, t = sλ/(λ−αr) = qsλ/(sλ−qα(r−1)),
and

‖du‖s,Ω,wα
1
≤ C2

(∥∥g
∥∥
t,Ω,wαt/s

2
+
∥∥∥|h|q/p

∥∥∥
t,Ω,wαt/s

2

+
∥∥∥|d�v|q/p

∥∥∥
t,Ω,wαt/s

2

)
, (2.25)

for s = p(λ − α)/λ and t = sλ/(λ − αr) = psλ/(sλ − pα(r − 1)).

Proof. Applying Theorem 2.4 and Lemma 2.6, we have

‖d�v‖s,Ω,wα
1
=
(∫

Ω
|d�v|swα

1dx

)1/s

≤
∑

B∈V

(∫

B

|d�v|swα
1dx

)1/s

≤
∑

B∈V

(∫

B

|d�v|swα
1dx

)1/s

χ√5/4B

≤ C1

∑

B∈V
|B|αr/sλ

(
‖h‖t,B,wαt/s

2
+
∥
∥∥
∣
∣g
∣∣p/q

∥∥∥
t,B,wαt/s

2

+
∥
∥∥|du|p/q

∥∥∥
t,B,wαt/s

2

)
χ√5/4B

≤ C1

∑

B∈V
|Ω|αr/sλ

(
‖h‖t,Ω,wαt/s

2
+
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,Ω,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,Ω,wαt/s

2

)
χ√5/4B

≤ C2

(
‖h‖t,Ω,wαt/s

2
+
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,Ω,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,Ω,wαt/s

2

)∑

B∈V
χ√5/4B

≤ C3

(
‖h‖t,Ω,wαt/s

2
+
∥∥∥
∣∣g
∣∣p/q

∥∥∥
t,Ω,wαt/s

2

+
∥∥∥|du|p/q

∥∥∥
t,Ω,wαt/s

2

)
.

(2.26)

Since Ω is bounded. The proof of inequality (2.24) has been completed. Similarly, using
Theorem 2.5 and Lemma 2.6, inequality (2.25) can be proved immediately. This ends the
proof of Theorem 2.7.
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Definition 2.8. We say the weight w(x) satisfies the Ar(Ω)-condition in a domain Ω write
w(x) ∈ Ar(Ω) for some 1 < r < ∞with 1/r + 1/r

′
= 1, if

sup
B⊂Ω

(
1
|B|

∫

B

w dx

)1/r
⎛

⎝ 1
|B|

∫

B

(
1
w

)r
′
/r

dx

⎞

⎠

1/r
′

< ∞, (2.27)

for any ball B ⊂ Ω.

We see that Ar,λ(Ω)-weight reduce to the usual Ar(Ω)-weight if w1(x) = w2(x) and
λ = 1; see [10].

And, if w1(x) = w2(x) and λ = 1 in Theorem 2.7, it is easy to obtain Theorems 4.2 and
4.4 in [8].

3. Estimates for Lipschitz Norms and BMO Norms

In [11] Ding has presented some estimates for the Lipchitz norms and BMO norms. In this
section, we will prove another estimates for the Lipchitz norms and BMO norms.

Definition 3.1. Let ω ∈ L1
loc(Ω,Λl), l = 0, 1, 2, . . . , n. We write ω ∈ locLipk(Ω,Λl), 0 ≤ k ≤ 1, if

‖ω‖locLipk,Ω
= sup

σB⊂Ω
|B|−(n+k)/n‖ω −ωB‖1,B < ∞, (3.1)

for some σ ≥ 1.

Similarly, we write ω ∈ BMO(Ω,Λl) if

‖ω‖�,Ω = sup
σB⊂Ω

|B|−1‖ω −ωB‖1,B < ∞, (3.2)

for some σ ≥ 1. When ω is a o-form, (3.2) reduces to the classical definition of BMO(Ω).
We also discuss the weighted Lipschitz and BMO norms.

Definition 3.2. Let ω ∈ L1
loc(Ω,Λl, wα), l = 0, 1, 2, . . . , n. We write ω ∈ locLipk(Ω,Λl, wα), 0 ≤

k ≤ 1, if

‖ω‖locLipk,Ω,wα = sup
σB⊂Ω

(
μ(B)

)−(n+k)/n‖ω −ωB‖1,B,wα < ∞. (3.3)

Similarly, for ω ∈ L1
loc(Ω,Λl, wα), l = 0, 1, 2, . . . , n. We write ω ∈ BMO(Ω,Λl, wα), if

‖ω‖�,Ω,wα = sup
σB⊂Ω

(
μ(B)

)−1‖ω −ωB‖1,B,wα < ∞, (3.4)

for some σ > 1, where Ω is a bounded domain, the measure μ is defined by dμ = w(x)αdx,w
is a weight, and α is a real number.
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We need the following classical Poincaré inequality; see [10].

Lemma 3.3. Let u ∈ D′(Ω,Λl) and du ∈ Lq(B,Λl+1), then u − uB is in W1
q (B,Λ

l) with 1 < q < ∞
and

‖u − uB‖q,B ≤ C
(
n, q

)|B||B|1/n‖du‖q,B. (3.5)

We also need the following lemma; see [2].

Lemma 3.4. Suppose that u is a solution to (1.4), σ > 1 and q > 0. There exists a constant C,
depending only on σ, n, p, a, b, and q, such that

‖du‖p,B ≤ C|B|(q−p)/pq‖du‖q,σB, (3.6)

for all balls B with σB ⊂ Ω.

We need the following local weighted Poincaré inequality for A-harmonic tensors.

Theorem 3.5. Let u ∈ D′(Ω,Λl) be an A-harmonic tensor in a domain Ω ⊂ R
n and du ∈

Ls(Ω,Λl+1), l = 0, 1, 2, . . . , n. Assume that σ > 1, 1 < s < ∞, and (w1(x), w2(x)) ∈ Ar,λ(Ω)
for some λ ≥ 1 and 1 < r < ∞ with 1/r + 1/r ′ = 1. Then, there exists a constant C, independent of u,
such that

‖u − uB‖s,B,wα
1
≤ C|B||B|1/n‖du‖s,σB,wα

2
, (3.7)

for all balls B with σB ⊂ Ω. Here α is any constant with 0 < α < λ.

Proof. Choose t = λs/(λ−α), since 1/s = 1/t+(t−s)/st, using Hölder inequality, we find that

‖u − uB‖s,B,wα
1
=
(∫

B

|u − uB|swα
1dx

)1/s

=
(∫

B

(
|u − uB|wα/s

1

)s
dx

)1/s

≤
(∫

B

|u − uB|tdx
)1/t(∫

B

(
wα/s

1

)st/(t−s)
dx

)(t−s)/st

= ‖u − uB‖t,B
(∫

B

wλ
1dx

)α/λs

.

(3.8)

Takingm = λs/(λ+α(r − 1)), thenm < s < t, using Lemmas 3.4 and 3.3 and the same method
as [2, Proof of Theorem 2.12], we obtain

‖u − uB‖s,B,wα
1
≤ C2|B|1+1/n|B|(m−t)/mt‖du‖m,σB‖w1‖α/sλ,B

, (3.9)
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where σ > 1. Using Hölder inequality with 1/m = 1/s + (s −m)/sm again yields

‖du‖m,σB =
(∫

σB

|du|mwαm/s
2 w−αm/s

2 dx

)1/m

=
(∫

σB

(
|du|wα/s

2 w−α/s
2

)m
dx

)1/m

≤
(∫

σB

|du|swα
2dx

)1/s
(∫

σB

(
1
w2

)λ/(r−1)
dx

)α(r−1)/λs
.

(3.10)

Substituting (3.10) in (3.9), we have

‖u − uB‖s,B,wα
1
≤ C2|B|1+1/n+(m−t)/mt‖du‖s,σB,wα

2
‖w1‖α/sλ,B

∥
∥∥∥

1
w2

∥
∥∥∥

α/s

λ/(r−1),σB
. (3.11)

Since (w1(x), w2(x)) ∈ Ar,λ(Ω), then

‖w1‖α/sλ,B

∥∥∥∥
1
w2

∥∥∥∥

α/s

λ/(r−1),σB

≤
⎛

⎝
(∫

σB

wλ
1dx

)(∫

σB

(
1
w2

)λ/(r−1)
dx

)r−1⎞

⎠

α/λs

=

⎛

⎜
⎝|σB|1/λ

(
1

|σB|
∫

σB

wλ
1dx

)1/λr
⎛

⎝ 1
|σB|

∫

σB

(
1
w2

)λr
′
/r

dx

⎞

⎠

1/λr
′⎞

⎟
⎠

rα/s

≤ C3|B|rα/λs.

(3.12)

Combining (3.11) and (3.12) gives

‖u − uB‖s,B,wα
1
≤ C4|B|1+1/n+(m−t)/mt+rα/λs‖du‖s,σB,wα

2
. (3.13)

Note that

m − t

mt
+
rα

λs
=

λ − α

λs
− λ + α(r − 1)

λs
+
rα

λs
= 0. (3.14)

Finally, we obtain the desired result

‖u − uB‖s,B,wα
1
≤ C4|B|1+1/n‖du‖s,σB,wα

2
. (3.15)

This ends the proof of Theorem 3.5.
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Similarly, if setting w1(x) = w2(x) and λ = 1 in Theorem 3.5, we obtain Theorem 2.12
in [2]. And we choose w1(x) = w2(x) = 1 in Theorem 3.5, we have the classical Poincaré
inequality (3.5).

Lemma 3.6 (see [8]). Let u and v be a pair of solution to the conjugate A-harmonic tensor in Ω.
Assume w(x) ∈ Ar(Ω) for some r ≥ 1. Then, there exists a constant C, independent of u, such that

‖du‖s,Ω,wα ≤ C‖d�v‖q/p
qt/p,Ω,wαt/s . (3.16)

Here α is any positive constant with 1 > αr, s = (1 − α)p and t = s/(1 − αr) = ps/(s − αp(r − 1)).

Theorem 3.7. Let u ∈ D′(Ω,Λl) be an A-harmonic tensor in a domain Ω ⊂ R
n, and all c ∈

D′(Ω,Λl) with dc = 0, and du ∈ Ls(Ω,Λl+1), l = 0, 1, 2, . . . , n − 1. Assume that 1 < s < ∞
and (w1(x), w2(x)) ∈ Ar,λ(Ω) for some λ ≥ 1 and 1 < r < ∞ with w1(x) ≥ ε > 0 for any x ∈ Ω.
Then, there exist constants C and C′, independent of u, such that

‖u − c‖locLipk,Ω,wα
1
≤ C‖du‖s,Ω,wα

2
, (3.17)

‖u − c‖�,Ω,wα
1
≤ C

′ ‖du‖s,Ω,wα
2
, (3.18)

where k and α are constants with 0 ≤ k ≤ 1 and 0 < α < λ.

Proof. We note that μ1(B) =
∫
Bw

α
1dx ≥ ∫

Bε
αdx = C1|B| implies that

1
μ1(B)

≤ C2

|B| , (3.19)

for any ball B. Using (3.7) and the Hölder inequality with 1 = 1/s + (s − 1)/s, we have

‖u − uB‖1,B,wα
1
=
∫

B

|u − uB|dμ1

≤
(∫

B

|u − uB|sdμ1

)1/s(∫

B

1s/(s−1)dμ1

)(s−1)/s

=
(
μ1(B)

)(s−1)/s‖u − uB‖s,B,wα
1

≤ (
μ1(B)

)1−1/s(
C3|B|1+1/n‖du‖s,σB,wα

2

)
.

(3.20)
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From the definition of the Lipschitz norm (3.3), (3.19), and (3.20), we obtain

‖u − c‖locLipk,Ω,wα
1
= sup

σB⊂Ω

(
μ1(B)

)−(n+k)/n(‖u − c − (u − c)B‖1,B,wα
1

)

= sup
σB⊂Ω

(
μ1(B)

)−1−k/n(‖u − uB‖1,B,wα
1

)

≤ C3 sup
σB⊂Ω

(
μ1(B)

)−1/s−k/n(|B|1+1/n‖du‖s,σB,wα
2

)

≤ C4 sup
σB⊂Ω

(
|B|−1/s−k/n+1+1/n‖du‖s,σB,wα

2

)

≤ C4 sup
σB⊂Ω

(
|Ω|−1/s−k/n+1+1/n‖du‖s,σB,wα

2

)

≤ C5 sup
σB⊂Ω

(
‖du‖s,σB,wα

2

)

≤ C5‖du‖s,Ω,wα
2
.

(3.21)

Since 1 − 1/s + 1/n − k/n > 0 and |Ω| < ∞. The desired result for Lipschitz norm has been
completed.

Then, we prove the theorem for BMO norm

‖u − c‖�,Ω,wα
1
= sup

σB⊂Ω

(
μ1(B)

)−1(‖u − c − (u − c)B‖1,B,wα
1

)

≤ sup
σB⊂Ω

(
μ1(Ω)

)k/n((
μ1(B)

)−(n+k)/n‖u − uB‖1,B,wα
1

)

≤ (
μ1(Ω)

)k/n sup
σB⊂Ω

((
μ1(B)

)−(n+k)/n‖u − uB‖1,B,wα
1

)
.

(3.22)

From (3.21) we find

‖u − c‖�,Ω,wα
1
≤ C1‖u − c‖locLipk,Ω,wα

1
. (3.23)

Using (3.17)we have

‖u − c‖�,Ω,wα
1
≤ C2‖du‖s,Ω,wα

2
. (3.24)

Now, we have completed the proof of Theorem 3.7.

Similarly, if setting w1(x) = w2(x) = w(x) and λ = 1 in Theorem 3.7, we obtain the
following theorem.

Theorem 3.8. Let u ∈ D′(Ω,Λl) be an A-harmonic tensor in a domain Ω ⊂ R
n, and all c ∈

D′(Ω,Λl) with dc = 0, and du ∈ Ls(Ω,Λl+1), l = 0, 1, 2, . . . , n − 1. Assume that 1 < s < ∞
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andw(x) ∈ Ar(Ω) for r > 1 withw(x) ≥ ε > 0 for any x ∈ Ω. Then, there exist constants C and C′,
independent of u, such that

‖u − c‖locLipk,Ω,wα ≤ C‖du‖s,Ω,wα , (3.25)

‖u − c‖�,Ω,wα ≤ C
′ ‖du‖s,Ω,wα , (3.26)

where k and α are constants with 0 ≤ k ≤ 1 and 0 ≤ α ≤ 1.

If w ≡ 1, we have

‖u − c‖locLipk,Ω
≤ C‖du‖s,Ω,

‖u − c‖�,Ω ≤ C
′ ‖du‖s,Ω.

(3.27)

Using Lemma 3.6, we can also obtain the following theorem.

Theorem 3.9. Let u and v be a pair of conjugate A-harmonic tensor in a domain Ω ⊂ R
n, then

du ∈ Lp(Ω,Λl, μ) if and only if d�v ∈ Lq(Ω,Λl, μ)where the measure μ is defined by dμ = w(x)αdx,
and all c ∈ D′(Ω,Λl) with dc = 0. Assume that w(x) ∈ Ar(Ω) for r > 1 with w(x) ≥ ε > 0 for any
x ∈ Ω. Then, there exist constants C and C′, independent of u and v, such that

‖u − c‖locLipk,Ω,wα ≤ C‖d�v‖q/p
qt/p,Ω,wαt/s ,

‖u − c‖�,Ω,wα ≤ C
′ ‖d�v‖q/p

qt/p,Ω,wαt/s ,

(3.28)

where k and α are positive constants with 0 ≤ k ≤ 1 and αr < 1, for s = (1 − α)p, t = s/(1 − αr) =
ps/(s − αp(r − 1)).

Proof. From (3.25), we have

‖u − c‖locLipk,Ω,wα ≤ C1‖du‖s,Ω,wα . (3.29)

Choose s = (1 − α)p, t = s/(1 − αr) = ps/(s − αp(1 − r)), using Lemma 3.6, it is easy to obtain
the desire result

‖u − c‖locLipk,Ω,wα ≤ C2‖d�v‖q/p
qt/p,Ω,wαt/s . (3.30)

Using the similar method for BMO norm, we have

‖u − c‖�,Ω,wα ≤ C3‖du‖s,Ω,wα ≤ C4‖d�v‖q/p
qt/p,Ω,wαt/s . (3.31)



Journal of Inequalities and Applications 15

If w ≡ 1, we have

‖u − c‖locLipk,Ω
≤ C‖d�v‖q/pq,Ω ,

‖u − c‖�,Ω ≤ C‖d�v‖q/pq,Ω .

(3.32)
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