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We first prove a generalized Wirtinger’s inequality. Then, applying the inequality, we study esti-
mates for lower bounds of periods of periodic solutions for a class of delay differential equations
ẋ(t) = −∑n

k=1f(x(t − kr)), and ẋ(t) = −∑n
k=1g(t, x(t − ks)), where x ∈ R

p, f ∈ C(Rp,Rp), and
g ∈ C(R×Rp,Rp) and r > 0, s > 0 are two given constants. Under some suitable conditions on f and
g, lower bounds of periods of periodic solutions for the equations aforementioned are obtained.
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1. Introduction and Statement of Main Results

In the present paper, we are concerned with a generalized Wirtinger’s inequality and
estimates for lower bounds of periods of periodic solutions for the following autonomous
delay differential equation:

ẋ(t) = −
n∑

k=1

f(x(t − kr)), (1.1)

and the following nonautonomous delay differential equation

ẋ(t) = −
n∑

k=1

g(t, x(t − ks)), (1.2)

where x ∈ R
p, f ∈ C(Rp,Rp), and g ∈ C(R × R

p,Rp), and r > 0, s > 0 are two given constants.
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For the special case that n = 1 and p = 1, various problems on the solutions of (1.1),
such as the existence of periodic solutions, bifurcations of periodic solutions, and stability
of solutions, have been studied by many authors since 1970s of the last century, and a lot of
remarkable results have been achieved. We refer to [1–6] for reference.

The delay equation (1.1)with more than one delay and p = 1 is also considered by a lot
of researchers (see [7–13]). Most of the work contained in literature on (1.1) is the existence
and multiplicity of periodic solutions. However, except the questions of the existence of
periodic solutions with prescribed periods, little information was given on the periods of
periodic solutions. Moreover, few work on the nonautonomous delay differential equation
(1.2) has been done to the best of the author knowledge. Motivated by these cases, as a part
of this paper, we study the estimates of periods of periodic solutions for the differential delay
equation (1.1) and the nonautonomous equation (1.2). We first give a generalizedWirtinger’s
inequality. Then we turn to consider the problems on (1.1) and (1.2) by using the inequality.

In order to state our main results, we make the following definitions.

Definition 1.1. For a positive constant κ, f(x) ∈ C(Rp,Rp) is called κ-Lipschitz continuous, if
for all x, y ∈ R

p,

∣
∣f(x) − f(y)

∣
∣ ≤ κ|x − y|, (1.3)

where | · | denotes the norm in R
p.

Definition 1.2. For a positive constant κ, g(t, x) ∈ C(R × R
p,Rp) is called κ-Lipschitz

continuous uniformly in t, if for all x, y ∈ R
p, and any t ∈ R,

∣
∣g(t, x) − g(t, y)

∣
∣ ≤ κ|x − y|. (1.4)

Then our main results read as follows.

Theorem 1.3. Let x be a nontrivial T -periodic solution of the autonomous delay differential equation
(1.1) with the second derivative. Suppose that the function f : Rp → R

p is κ-Lipschitz continuous.
Then one has T ≥ 2π/nκ.

Theorem 1.4. Let x be a nontrivial T -periodic solution of the nonautonomous delay differential
equation (1.2) with the second derivative. Suppose that the function g ∈ C(R × R

p,Rp) is T -periodic
with respect to t and κ-Lipschitz continuous uniformly in t. If the following limit

lim
u→ 0

∣
∣g(t + u, x) − g(t, x)

∣
∣

|u| = h(t, x) (1.5)

exists for all t and x and h(t, x) is uniformly bounded, then one has T ≥ 2π/nκ.

2. Proof of the Main Results

We will apply Wirtinger’s inequality to prove the two theorems. Firstly, let us recall some
notation concerning the Sobolev space. It is well known that H1

T (R,R
p) is a Hilbert space

consisting of the T -periodic functions x on R which together with weak derivatives belong



Journal of Inequalities and Applications 3

to L2(0, T ;Rp). For all x, y ∈ L2(0, T ;Rp), let 〈x, y〉 =
∫T
0 (x, y)dt and ‖x‖ =

√
〈x, x〉 denote the

inner product and the norm in L2(0, T ;Rp), respectively, where (·, ·) is the inner product inR
p.

Then according to [14], we give Wirtinger’s inequality and its proof.

Lemma 2.1. If x ∈ H1
T and

∫T
0x(t)dt = 0, then

∫T

0

∣
∣x(t)

∣
∣2dt ≤ T2

4π2

∫T

0

∣
∣ẋ(t)

∣
∣2dt. (2.1)

Proof. By the assumptions, x has the following Fourier expansion:

x(t) =
+∞∑

m=−∞,m/= 0

xm exp
(
2iπmt

T

)

. (2.2)

Then Parseval equality yields that

∫T

0

∣
∣ẋ(t)

∣
∣2dt =

+∞∑

m=−∞,m/= 0

T
(
4π2m2/T2)∣∣xm

∣
∣2

≥ 4π2

T2

+∞∑

m=−∞, m/= 0

T
∣
∣xm

∣
∣2

=
4π2

T2

∫T

0

∣
∣x(t)

∣
∣2dt.

(2.3)

This completes the proof.

Now, we generalizeWirtinger’s inequality to amore general formwhich includes (2.1)
as a special case. We prove the following lemma.

Lemma 2.2. Suppose that z ∈ H1
T and y ∈ L2(0, T ;Rp) with

∫T
0y(t)dt = 0. Then

∣
∣〈z, y〉∣∣2 ≤ T2

4π2

∥
∥ż

∥
∥2‖y‖2. (2.4)

Proof. Since
∫T
0y(t)dt = 0, by Lemma 2.1, we have

∫T

0

∣
∣y(t)

∣
∣2dt ≤ T2

4π2

∫T

0

∣
∣ẏ(t)

∣
∣2dt, (2.5)
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that is,

2π‖y‖ ≤ T
∥
∥ẏ

∥
∥. (2.6)

Let c denote the average of z ∈ L2(0, T ;Rp), that is, c = (1/T)
∫T
0z(t)dt. This means that

∫T
0 (z(t) − c)dt = 0. Hence, Schwarz inequality, together with (2.6) and

∫T
0y(t)dt = 0 implies

that

∣
∣〈z, y〉∣∣ = ∣

∣〈z − c, y〉∣∣

≤ ‖z − c‖‖y‖

≤ T

2π
∥
∥ż − ċ

∥
∥‖y‖

=
T

2π
∥
∥ż

∥
∥‖y‖.

(2.7)

Then the proof is complete.

Corollary 2.3. Under the conditions of Lemma 2.1, the inequality (2.4) implies Wirtinger’s
inequality (2.1).

Proof. If x ∈ H1
T and

∫T
0x(t)dt = 0, then (2.1) follows (2.4) on taking z = x = y.

We call (2.4) a generalized Wirtinger’s inequality. For other study of Wirtinger’s
inequality, one may see [15] and the references therein. Now, we are ready to prove our main
results. We first give the proof of Theorem 1.3.

Proof of Theorem 1.3. From (1.1) and Definition 1.1, for all t, u ∈ R, one has

∣
∣ẋ(t + u) − ẋ(t)

∣
∣ =

∣
∣
∣
∣
∣

n∑

k=1

f
(
x(t − kr + u)

) − f
(
x(t − kr)

)
∣
∣
∣
∣
∣

≤
n∑

k=1

∣
∣f
(
x(t − kr + u)

) − f
(
x(t − kr)

)∣
∣

≤ κ
n∑

k=1

∣
∣x(t − kr + u) − x(t − kr)

∣
∣.

(2.8)

Hence, since x has the second derivative,

∣
∣ẍ(t)

∣
∣ ≤ κ

(∣
∣ẋ(t − r)

∣
∣ + · · · + ∣

∣ẋ(t − nr)
∣
∣
)
. (2.9)
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Noting that ẋ is also T -periodic,
∫T
0 |ẋ(t−kτ)|2dt = ∫T

0 |ẋ(t)|2dt, for k = 1, 2, . . . , n. Hence,
by Hölder inequality, one has

∫T

0

∣
∣ẍ(t)

∣
∣2dt ≤ κ2

∫T

0

(∣
∣ẋ(t − r)

∣
∣ + · · · + ∣

∣ẋ(t − nr)
∣
∣
)2
dt

= κ2

(
n∑

k=1

∫T

0

∣
∣ẋ(t − kr)

∣
∣2dt + 2

n∑

k=2

∫T

0

∣
∣ẋ(t − r)

∣
∣
∣
∣ẋ(t − kr)

∣
∣dt

+ · · · +
∫T

0

∣
∣ẋ
(
t − (n − 1)r

)∣
∣
∣
∣ẋ(t − nr)

∣
∣dt

)

≤ κ2

(
n∑

k=1

∫T

0
|ẋ(t − kr)

∣
∣2dt + 2

n∑

k=2

(∫T

0

∣
∣ẋ(t − r)

∣
∣2dt

)1/2(∫T

0

∣
∣ẋ(t − kr)

∣
∣2dt

)1/2

+ · · · + 2
(∫T

0

∣
∣ẋ
(
t − (n − 1)r

)∣
∣2dt

)1/2(∫T

0

∣
∣ẋ(t − nr)

∣
∣2dt

)1/2)

= κ2(n + 2
(
1 + 2 + · · · + (n − 1)

))
∫T

0

∣
∣ẋ(t)

∣
∣2dt = n2κ2

∫T

0

∣
∣ẋ(t)

∣
∣2dt,

(2.10)

that is,

∥
∥ẍ

∥
∥ ≤ nκ

∥
∥ẋ

∥
∥ =⇒ T

∥
∥ẍ

∥
∥ ≤ nκT

∥
∥ẋ

∥
∥. (2.11)

From (2.1) and
∫T
0 |ẋ(t)|2dt = 0, we have

2π
∥
∥ẋ

∥
∥ ≤ T

∥
∥ẍ

∥
∥. (2.12)

Combining (2.11) and (2.12), one has T ≥ 2π/nκ.

Now, we prove Theorem 1.4.

Proof of Theorem 1.4. From (1.2), Definition 1.2 and the assumptions of Theorem 1.4, for all
t, u ∈ R, one has

∣
∣ẋ(t + u) − ẋ(t)

∣
∣ =

∣
∣
∣
∣
∣

n∑

k=1

g
(
t + u, x(t − ks + u)

) − g
(
t, x(t − ks)

)
∣
∣
∣
∣
∣

≤
n∑

k=1

∣
∣g
(
t + u, x(t − ks + u)

) − g
(
t + u, x(t − ks)

)∣
∣

+
n∑

k=1

∣
∣g
(
t + u, x(t − ks)

) − g
(
t, x(t − ks)

)∣
∣

≤ κ
n∑

k=1

∣
∣x(t + u − ks) − x(t − ks)

∣
∣ +

n∑

k=1

∣
∣g
(
t + u, x(t − ks)

) − g
(
t, x(t − ks)

)∣
∣.

(2.13)
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Since h(t, x) is nonnegative and uniformly bounded (for all t and x), there is M ∈ R
+ such

that h(t, x) ≤ M. Together with the fact that x has the second derivative, our estimates imply
that

∣
∣ẍ(t)

∣
∣ ≤ κ

n∑

k=1

∣
∣ẋ(t − ks)

∣
∣ + nh(t, x) ≤ κ

n∑

k=1

∣
∣ẋ(t − ks)

∣
∣ + nM. (2.14)

As in the proof of Theorem 1.3, we get

∫T

0

∣
∣ẍ(t)

∣
∣2dt ≤ κ2

∫T

0

(
n∑

k=1

∣
∣ẋ(t − ks)

∣
∣

)2

dt + 2κnM
n∑

k=1

∫T

0

∣
∣ẋ(t − ks)

∣
∣dt + n2M2T

≤ κ2n2
∫T

0

∣
∣ẋ(t)

∣
∣2dt + 2κn2M

(∫T

0
1dt

)1/2(∫T

0

∣
∣ẋ(t)

∣
∣2dt

)1/2

+ n2M2T

= κ2n2∥∥ẋ
∥
∥2 + 2κn2M

√
T
∥
∥ẋ

∥
∥ + n2M2T,

(2.15)

that is,

T2∥∥ẍ
∥
∥2 ≤ T2(κ2n2∥∥ẋ

∥
∥2 + 2κn2M

√
T
∥
∥ẋ

∥
∥ + n2M2T

)
. (2.16)

Thus, (2.1) together with (2.16) yields that

ϕ
(∥
∥ẋ

∥
∥
)
=
(
T2κ2n2 − 4π2)∥∥ẋ

∥
∥2 + 2T2

√
Tκn2M

∥
∥ẋ

∥
∥ + T3n2M2 ≥ 0. (2.17)

By an argument of Viete theorem with respect to the quadratic function ϕ(‖ẍ‖), we have that

T2κ2n2 − 4π2 ≥ 0 =⇒ T ≥ 2π
nκ

. (2.18)

Remark 2.4. Roughly speaking, the period T can reach the lower bound (2π)/(nκ). Let us
take an example for (1.1). Take p = 2 and n = 1. For each z ∈ R

2 ∼= C, we define a function f
by

f(z) = −i exp(−ir)z. (2.19)

Then one can check easily that f is κ-Lipschitz continuous with κ = 1. Let z(t) =
exp(−it). One has

ż = −i exp(−it) = −i exp ( − i(t − r)
)
exp(−ir) = −f(z(t − r)

)
. (2.20)

This means that z(t) = exp(−it) is a periodic solution of (1.2)with period T = 2π .
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