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Copyright q 2009 E. Savaş and H. Şevli. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Quite recently, Savaş [1] obtained sufficient conditions for
∑

anλn to be summable |A, δ|k,
k ≥ 1, 0 ≤ δ < 1/k. The purpose of this paper is to obtain the corresponding result for quasi-
f-increasing sequence. Our result includes and moderates the conditions of his theorem with
the special case μ = 0.

A sequence {λn} is said to be of bounded variation (bv) if
∑

n |Δλn| < ∞. Let bv0 =
bv ∩ c0, where c0 denotes the set of all null sequences.

The concept of absolute summability of order k ≥ 1 was defined by Flett [2] as follows.
Let

∑
an denote a series with partial sums {sn}, andA a lower triangular matrix. Then

∑
an is

said to be absolutelyA-summable of order k ≥ 1,written that
∑

an is summable |A|k, k ≥ 1, if

∞∑

n=1

nk−1|Tn−1 − Tn|k < ∞, (1.1)

where

Tn =
n∑

v=0

anvsv. (1.2)
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In [3], Flett considered further extension of absolute summability in which he
introduced a further parameter δ. The series

∑
an is said to be summable |A, δ|k, k ≥ 1, δ ≥ 0,

if

∞∑

n=1

nδk+k−1|Tn−1 − Tn|k < ∞. (1.3)

A positive sequence {bn} is said to be an almost increasing sequence if there exist an
increasing sequence {cn} and positive constants A and B such that Acn ≤ bn ≤ Bcn (see [4]).
Obviously, every increasing sequence is almost increasing. However, the converse need not
be true as can be seen by taking the example, say bn = e(−1)

n

n.
A positive sequence γ := {γn} is said to be a quasi-β-power increasing sequence if there

exists a constant K = K(β, γ) ≥ 1 such that

Knβγn ≥ mβγm (1.4)

holds for all n ≥ m ≥ 1. It should be noted that every almost increasing sequence is a quasi-β-
power increasing sequence for any nonnegative β, but the converse need not be true as can be
seen by taking an example, say γn = n−β for β > 0 (see [5]). If (1.4) stays with β = 0, then γ is
simply called a quasi-increasing sequence. It is clear that if {γn} is quasi-β-power increasing,
then {nβγn} is quasi-increasing.

A positive sequence γ = {γn} is said to be a quasi-f-power increasing sequence, if there
exists a constant K = K(γ, f) ≥ 1 such that Kfnγn ≥ fmγm holds for all n ≥ m ≥ 1, [6].

We may associate A two lower triangular matrices A and Â as follows:

anv =
n∑

r=v
anr , n, v = 0, 1, . . . ,

ânv = anv − an−1,v, n = 1, 2, . . . ,

(1.5)

where

â00 = a00 = a00. (1.6)

Given any sequence {xn}, the notation xn � O(1) means xn = O(1) and 1/xn = O(1).
For any matrix entry anv,Δvanv := anv − an,v+1.

Quite recently, Savaş [1] obtained sufficient conditions for
∑

anλn to be summable
|A, δ|k, k ≥ 1, 0 ≤ δ < 1/k as follows.
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Theorem 1.1. Let A be a lower triangular matrix with nonnegative entries satisfying

an−1,v ≥ anv for n ≥ v + 1, (1.7)

an0 = 1, n = 0, 1, . . . , (1.8)

nann � O(1), n −→ ∞, (1.9)

n−1∑

v=1

avvân,v+1 = O(ann), (1.10)

m+1∑

n=v+1

nδk|Δvânv| = O
(
vδkavv

)
, (1.11)

m+1∑

n=v+1

nδkân,v+1 = O
(
vδk

)
, (1.12)

and let {βn} and {λn} be sequences such that

|Δλn| ≤ βn, (1.13)

βn −→ 0, n −→ ∞. (1.14)

If {Xn} is a quasi-β-power increasing sequence for some 0 < β < 1 such that

|λn|Xn = O(1), n −→ ∞, (1.15)

∞∑

n=1

nXn

∣
∣Δβn

∣
∣ < ∞, (1.16)

m∑

n=1

nδk−1|sn|k = O(Xm), m −→ ∞, (1.17)

then the series
∑

anλn is summable |A, δ|k, k ≥ 1, 0 ≤ δ < 1/k.

Theorem 1.1 enhanced a theorem of Savas [7] by replacing an almost increasing
sequence with a quasi-β-power increasing sequence for some 0 < β < 1. It should be
noted that if {Xn} is an almost increasing sequence, then (1.15) implies that the sequence
{λn} is bounded. However, when {Xn} is a quasi-β-power increasing sequence or a quasi-f-
increasing sequence, (1.15) does not imply |λm| = O(1), m → ∞. For example, sinceXm = m−β

is a quasi-β-power increasing sequence for 0 < β < 1 and if we take λm = mδ, 0 < δ < β < 1,
then |λm|Xm = mδ−β = O(1), m → ∞ holds but |λm| = mδ /=O(1) (see [8]). Therefore, we
remark that condition {λn} ∈ bv0 should be added to the statement of Theorem 1.1.

The goal of this paper is to prove the following theorem by using quasi-f-increasing
sequences. Our main result includes the moderated version of Theorem 1.1. We will show
that the crucial condition of our proof, {λn} ∈ bv0, can be deduced from another condition
of the theorem. Also, we shall eliminate condition (1.15) in our theorem; however we shall
deduce this condition from the conditions of our theorem.
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2. The Main Results

We now shall prove the following theorems.

Theorem 2.1. Let A satisfy conditions (1.7)–(1.12), and let {βn} and {λn} be sequences satisfying
conditions (1.13) and (1.14) of Theorem 1.1 and

m∑

n=1

λn = o(m), m −→ ∞. (2.1)

If {Xn} is a quasi-f-increasing sequence and conditions (1.17) and

∞∑

n=1

nXn

(
β, μ

)∣
∣Δβn

∣
∣ < ∞ (2.2)

are satisfied, then the series
∑

anλn is summable |A, δ|k, k ≥ 1, 0 ≤ δ < 1/k, where {fn} :=
{nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1, and Xn(β, μ) := (nβ(logn)μXn).

Theorem 2.1 includes the following theorem with the special case μ = 0. Theorem 2.2
moderates the hypotheses of Theorem 1.1.

Theorem 2.2. Let A satisfy conditions (1.7)–(1.12), and let {βn} and {λn} be sequences satisfying
conditions (1.13), (1.14), and (2.1). If {Xn} is a quasi-β-power increasing sequence for some 0 ≤ β < 1
and conditions (1.17) and

∞∑

n=1

nXn

(
β
)∣
∣Δβn

∣
∣ < ∞ (2.3)

are satisfied, whereXn(β) := (nβXn), then the series
∑

anλn is summable |A, δ|k, k ≥ 1, 0 ≤ δ < 1/k.

Remark 2.3. The crucial condition, {λn} ∈ bv0, and condition (1.15) do not appear among the
conditions of Theorems 2.1 and 2.2. By Lemma 3.3, under the conditions on {Xn}, {βn}, and
{λn} as taken in the statement of Theorem 2.1, also in the statement of Theorem 2.2 with the
special case μ = 0, conditions {λn} ∈ bv0 and (1.15) hold.

3. Lemmas

We shall need the following lemmas for the proof of our main Theorem 2.1.

Lemma 3.1 (see [9]). Let {ϕn} be a sequence of real numbers and denote

Φn :=
n∑

k=1

ϕk, Ψn :=
∞∑

k=n

∣
∣Δϕk

∣
∣. (3.1)
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If Φn = o(n), then there exists a natural number N such that

∣
∣ϕn

∣
∣ ≤ 2Ψn (3.2)

for all n ≥ N.

Lemma 3.2 (see [8]). If {Xn} is a quasi-f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥
0, 0 ≤ β < 1, then conditions (2.1) of Theorem 2.1,

m∑

n=1

|Δλn| = o(m), m −→ ∞, (3.3)

∞∑

n=1

nXn

(
β, μ

)|Δ|Δλn|| < ∞, (3.4)

where Xn(β, μ) = (nβ(logn)μXn), imply conditions (1.15) and

λn −→ 0, n −→ ∞. (3.5)

Lemma 3.3. If {Xn} is a quasi-f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1,
then, under conditions (1.13), (1.14), (2.1), and (2.2), conditions (1.15) and (3.5) are satisfied.

Proof. It is clear that (1.13) and (1.14)⇒(3.3). Also, (1.13) and (2.2)⇒(3.4). By Lemma 3.2,
under conditions (1.13)-(1.14) and (2.1)–(2.2), we have (1.15) and (3.5).

Lemma 3.4. Let {Xn} be a quasi-f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥ 0, 0 ≤ β <
1. If conditions (1.13), (1.14), and (2.2) are satisfied, then

nβnXn = O(1), (3.6)

∞∑

n=1

βnXn < ∞. (3.7)

Proof. It is clear that if {Xn} is quasi-f-increasing, then {nβ(logn)μXn} is quasi-increasing.
Since βn → 0, n → ∞, from the fact that {n1−β(logn)−μ} is increasing and (2.2), we have

nβnXn = nXn

∞∑

k=n

∣
∣Δβk

∣
∣

= O(1)n1−β(logn
)−μ ∞∑

k=n

kβ(log k
)μ
Xk

∣
∣Δβk

∣
∣

= O(1)
∞∑

k=n

kXk

∣
∣Δβk

∣
∣ = O(1).

(3.8)
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Again using (2.2),

∞∑

n=1

βnXn = O(1)
∞∑

n=1

Xn

∞∑

k=n

∣
∣Δβk

∣
∣

= O(1)
∞∑

k=1

∣
∣Δβk

∣
∣

k∑

n=1

nβ(logn
)μ
Xnn

−β(logn
)−μ

= O(1)
∞∑

k=1

kβ(log k
)μ
Xk

∣
∣Δβk

∣
∣

k∑

n=1

n−β(logn
)−μ

= O(1)
∞∑

k=1

kXk

(
β, μ

)∣
∣Δβk

∣
∣ = O(1).

(3.9)

4. Proof of Theorem 2.1

Let yn denote the nth term of the A-transform of the series
∑

anλn. Then, by definition, we
have

yn =
n∑

i=0

anisi =
n∑

v=0

anvλvav. (4.1)

Then, for n ≥ 1, we have

Yn := yn − yn−1 =
n∑

v=0

ânvλvav. (4.2)

Applying Abel’s transformation, we may write

Yn =
n−1∑

v=1

Δv(ânvλv)
v∑

r=1

ar + ânnλn
n∑

v=1

av. (4.3)

Since

Δv(ânvλv) = λvΔvânv + Δλvân,v+1, (4.4)

we have

Yn= annλnsn +
n−1∑

v=1

Δvânvλvsv +
n−1∑

v=1

ân,v+1Δλvsv

= Yn,1 + Yn,2 + Yn,3, say.

(4.5)
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Since

|Yn,1 + Yn,2 + Yn,3|k ≤ 3k
(
|Yn,1|k + |Yn,2|k + |Yn,3|k

)
, (4.6)

to complete the proof, it is sufficient to show that

∞∑

n=1

nδk+k−1|Yn,r |k < ∞, for r = 1, 2, 3. (4.7)

Since {λn} is bounded by Lemma 3.3, using (1.9), we have

I1 =
m∑

n=1

nδk+k−1|Yn,1|k =
m∑

n=1

nδk+k−1|annλnsn|k

≤
m∑

n=1

nδk(nann)k−1ann|λn|k−1|λn||sn|k

= O(1)
m∑

n=1

nδkann|λn||sn|k.

(4.8)

Using properties (1.15), in view of Lemma 3.3, and (3.7), from (1.9), (1.13), and (1.17),

I1 = O(1)
m−1∑

n=1

|Δλn|
n∑

v=1

vδkavv|sv|k +O(1)|λm|
m∑

v=1

vδkavv|sv|k

= O(1)
m−1∑

n=1

|Δλn|
n∑

v=1

vδk−1|sv|k +O(1)|λm|
m∑

v=1

vδk−1|sv|k

= O(1)
m−1∑

n=1

βnXn +O(1)|λm|Xm = O(1) as m −→ ∞.

(4.9)

Applying Hölder’s inequality,

I2 =
m+1∑

n=2

nδk+k−1|Yn,2|k = O(1)
m+1∑

n=2

nδk+k−1
(

n−1∑

v=1

|Δvânv||λv||sv|
)k

= O(1)
m+1∑

n=2

nδk+k−1
n−1∑

v=1

|Δvânv||λv|k|sv|k
(

n−1∑

v=1

|Δvânv|
)k−1

.

(4.10)
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Using (1.9) and (1.11) and boundedness of {λn},

I2 = O(1)
m+1∑

n=2

nδk(nann)k−1
n−1∑

v=1

|Δvânv||sv|k|λv|k−1|λv|

= O(1)
m∑

v=1

|λv||sv|k
m+1∑

n=v+1

nδk|Δvânv|

= O(1)
m∑

v=1

vδkavv|λv||sv|k = O(1), as m −→ ∞,

(4.11)

as in the proof of I1.
Finally, again using Hölder’s inequality, from (1.9), (1.10), and (1.12),

I3 =
m+1∑

n=2

nδk+k−1|Yn,3|k = O(1)
m+1∑

n=2

nδk+k−1
(

n−1∑

v=1

ân,v+1|Δλv||sv|
)k

= O(1)
m+1∑

n=2

nδk+k−1
n−1∑

v=1

ân,v+1|Δλv|k|sv|ka1−k
vv

(
n−1∑

v=1

avvân,v+1

)k−1

= O(1)
m+1∑

n=2

nδk
n−1∑

v=1

ân,v+1|Δλv|k|sv|ka1−k
vv

= O(1)
m∑

v=1

|Δλv|k|sv|ka1−k
vv

m+1∑

n=v+1

nδkân,v+1

= O(1)
m∑

v=1

(v|Δλv|)kvδkavv|sv|k.

(4.12)

By Lemma 3.1, condition (3.3), in view of Lemma 3.3, implies that

n|Δλn| ≤ 2n
∞∑

k=n

|Δ|Δλk|| ≤ 2
∞∑

k=n

k|Δ|Δλk|| (4.13)

holds. Thus, by Lemma 3.3, (3.4) implies that {n|Δλn|} is bounded. Therefore, from (1.9) and
(1.13),

I3 = O(1)
m∑

v=1

(v|Δλv|)k−1v|Δλv|vδkavv|sv|k

= O(1)
m∑

v=1

vβvv
δk−1|sv|k.

(4.14)
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Using Abel transformation and (1.17),

I3 = O(1)
m−1∑

v=1

∣
∣Δ

(
vβv

)∣
∣

(
v∑

r=1

rδk−1|sr |k
)

+O(1)mβm
m∑

v=1

vδk−1|sv|k

= O(1)
m−1∑

v=1

∣
∣Δ

(
vβv

)∣
∣Xv +O(1)mβmXm.

(4.15)

Since

Δ
(
vβv

)
= vβv − (v + 1)βv+1 = vΔβv − βv+1, (4.16)

we have

I3 = O(1)
m−1∑

v=1

vXv

∣
∣Δβv

∣
∣ +O(1)

m−1∑

v=1

Xv+1βv+1 +O(1)mXmβm

= O(1), as m −→ ∞,

(4.17)

by virtue of (2.2) and properties (3.6) and (3.7) of Lemma 3.4.
So we obtain (4.7). This completes the proof.

5. Corollaries and Applications to Weighted Means

Setting δ = 0 in Theorems 2.1 and 2.2 yields the following two corollaries, respectively.

Corollary 5.1. Let A satisfy conditions (1.7)–(1.10), and let {βn} and {λn} be sequences satisfying
conditions (1.13), (1.14), and (2.1). If {Xn} is a quasi-f-increasing sequence, where {fn} :=
{nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1, and conditions (2.2) and

m∑

n=1

1
n
|sn|k = O(Xm), m −→ ∞, (5.1)

are satisfied, then the series
∑

anλn is summable |A|k, k ≥ 1.

Proof. If we take δ = 0 in Theorem 2.1, then condition (1.17) reduces condition (5.1). In this
case conditions (1.11) and (1.12) are obtained by conditions (1.7)–(1.10).

Corollary 5.2. Let A satisfy conditions (1.7)–(1.10), and let {βn} and {λn} be sequences satisfying
conditions (1.13), (1.14), and (2.1). If {Xn} is a quasi-β-power increasing sequence for some 0 ≤ β < 1
and conditions (2.3) and (5.1) are satisfied, then the series

∑
anλn is summable |A|k, k ≥ 1.

Aweighted mean matrix, denoted by (N,pn), is a lower triangular matrix with entries
anv = pv/Pn, where {pn} is nonnegative sequence with p0 > 0 and Pn :=

∑n
v=0 pv → ∞, as

n → ∞.
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Corollary 5.3. Let {pn} be a positive sequence satisfying

npn � O(Pn), as n −→ ∞, (5.2)

m+1∑

n=v+1

nδk pn
PnPn−1

= O

(
vδk

Pv

)

, (5.3)

and let {βn} and {λn} be sequences satisfying conditions (1.13), (1.14), and (2.1). If {Xn} is a quasi-
f-increasing sequence, where {fn} := {nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1, and conditions (1.17) and (2.2)
are satisfied, then the series,

∑
anλn is summable |N,pn, δ|k for k ≥ 1 and 0 ≤ δ < 1/k.

Proof. In Theorem 2.1 set A = (N,pn). It is clear that conditions (1.7), (1.8), and (1.10) are
automatically satisfied. Condition (1.9) becomes condition (5.2), and conditions (1.11) and
(1.12) become condition (5.3) for weighted mean method.

Corollary 5.3 includes the following result with the special case μ = 0.

Corollary 5.4. Let {pn} be a positive sequence satisfying (5.2) and (5.3), and let {Xn} be a quasi-β-
power increasing sequence for some 0 ≤ β < 1. Then under conditions (1.13), (1.14), (1.17), (2.1),
and (2.3),

∑
anλn is summable |N,pn, δ|k, k ≥ 1, 0 ≤ δ < 1/k.

References
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