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1. Introduction

Integrodifferential equations (IDEs) arise from many areas of science (from physics, biology,
medicine, etc.), which have extensive scientific backgrounds and realistic mathematical
models, and hence have been emerging as an important area of investigation in recent years,
see [1–6]. Correspondingly, the stability of impulsive delay integrodifferential equations has
been studied quite well, for example, [7–9]. However, besides delay and impulsive effects,
singular perturbation likewise exists in a wide models for physiological processes or diseases
[10]. And many good results on the stability of singularly perturbed delay differential
equations have been reported, see, for example, [11–14]. Therefore, it is necessary to consider
delay, impulse and singular perturbation on the stability of integrodifferential equations.
However, to the best of our knowledge, there are no results on the problems of the exponential
stability of solutions for SPIDIDEs due to some theoretical and technical difficulties. Based on
this, this article is devoted to the discussion of this problem.

Applying differential inequalities, in [14–17], authors investigated the stability of
impulsive differential equations. In [14], Zhu et al. established a delay differential inequality
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with impulsive initial conditions and derived some sufficient conditions ensuring the
exponential stability of solutions for the singular perturbed impulsive delay differential
equations (SPIDDEs). In this paper, we will improve the inequality established in [14]
such that it is effective for SPIDIDEs. By establishing an IDIDI, some sufficient conditions
ensuring the exponential stability of any solution of SPIDIDEs for sufficiently small ε > 0
are obtained. The results extend and improve the earlier publications, and which will be
shown by the Remarks 3.2 and 3.5 provided later. An example is given to illustrate the
theory.

2. Preliminaries

Throughout this letter, unless otherwise specified, let Rn be the space of n-dimensional real

column vectors and Rm×n be the set of m × n real matrices. N Δ= {1, 2, . . . , n}. For A,B ∈ Rm×n

or A,B ∈ Rn, A ≥ B(A ≤ B,A > B,A < B) means that each pair of corresponding elements
ofA and B satisfies the inequality “≥ (≤, >, <)”. Especially, A is called a nonnegative matrix if
A ≥ 0, and z is called a positive vector if z > 0.

C[X,Y ] denotes the space of continuous mappings from the topological space X to

the topological space Y . In particular, let C Δ= C[(−∞, 0], Rn] denote the family of all bounded
continuous Rn-valued functions φ defined on (−∞, 0] with the norm ‖φ‖ = sup−∞<θ≤0|φ(θ)|,
where | · | is Euclidean norm of Rn.

PC[I, Rn] Δ= {ϕ : I → Rn | ϕ(t+) = ϕ(t) for t ∈ I, ϕ(t−) exist for t ∈ I, ϕ(t−) = ϕ(t) for all
but points tk ∈ I}, where I ⊂ R is an interval, ϕ(t+) and ϕ(t−) denote the left limit and right

limit of scalar function ϕ(t), respectively. Especially, let PC Δ= PC[(−∞, 0], Rn].
For x ∈ Rn and ϕ ∈ C or ϕ ∈ PC, we define

[x]+ = (|x1|, . . . , |xn|)T , [A]+ =
(∣∣aij

∣∣)
n×n, [ϕ(t)]τ =

([
ϕ1(t)

]
τ , . . . , [ϕn(t)]τ

)T
,

[ϕ(t)]+τ =
[[
ϕ(t)

]+]

τ
, [ϕi(t)]τ = sup

−τ≤s≤0

{
ϕi(t + s)

}
, i ∈ N,

D+ϕ(t) = lim
s→ 0+

sup
ϕ(t + s) − ϕ(t)

s
.

(2.1)

In this paper, we consider a class of SPIDIDEs described by

εẋ(t) = A(t)x(t) + f(t, x(t − τ(t))) +
∫ t

−∞
R(t − s)G(x(s))ds, t ≥ t0, t /= tk,

x(tk) = Jk
(
tk, x

(
t−k
))
, k = 1, 2, . . . ,

(2.2)

with the initial conditions

x(t0 + θ) = φ(θ) ∈ PC, θ ∈ (−∞, 0], (2.3)
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where 0 ≤ τ(t) ≤ τ , x(t) = (x1(t), . . . , xn(t))
T ∈ PC[R,Rn], A(t) = (aij(t))n×n ∈ PC[R,Rn×n],

Jk ∈ C[R × Rn, Rn], R(t) = (rij(t))n×n ∈ PC[R+, Rn×n], ε ∈ (0, ε0] is a small parameter, and
t1 < t2 < · · · is a strictly increasing sequence such that limk→∞tk = ∞.

Definition 2.1. The solution of (2.2) is said to be exponentially stable for sufficiently small ε
if there exist finite constant vectors K > 0 and σ > 0, which are independent of ε ∈ (0, ε0]
for some ε0, and a constant λ > 0 such that [x(t) − y(t)]+ ≤ Ke−λ(t−t0) for t ≥ t0 and for any
initial perturbation satisfying sups∈(−∞,0][φ(s) − ϕ(s)]+ < σ. Here y(t) is the solution of (2.2)
corresponding to the initial condition ϕ.

3. Main Results

In order to prove the main result in this paper, we first need the following technique lemma.

Lemma 3.1. Assume that 0 ≤ u(t) = (u1(t), . . . , un(t))
T ∈ Rn, t ≥ t0 satisfy

D+u(t) ≤ P(t)u(t) +Q(t)[u(t)]τ +
∫∞

0
W(s)u(t − s)ds, t ≥ t0,

u(t0 + θ) = ϕ(θ) ∈ PC, θ ∈ (−∞, 0],

(3.1)

where P(t) = (pij(t))n×n ≥ 0 for t ≥ t0 and i /= j, Q(t) = (qij(t))n×n ≥ 0 for t ≥ t0, W(s) =
(wij(s))n×n ≥ 0.

If there exist a positive constant ξ and a positive vector z = (z1, . . . , zn)
T ∈ Rn and two positive

diagonal matrices L = diag{L1, . . . , Ln},H = diag{h1, . . . , hn} with 0 < hi < 1 such that

(
Q(t) +HP(t) + L +

∫∞

0
W(s)eξsds

)
z < 0, t ≥ t0. (3.2)

Then one has

u(t) ≤ ze−λ(t−t0), t ≥ t0, (3.3)

where the positive constant λ is defined as

0 < λ < λ0 = min
1≤i≤n

⎧
⎨

⎩
inf
t≥t0

λi(t) : λi(t)zi +
n∑

j=1

(
pij(t) + qij(t)eλi(t)τ +

∫∞

0
wij(s)eλi(t)sds

)
zj = 0

⎫
⎬

⎭
,

(3.4)

for the given z.



4 Journal of Inequalities and Applications

Proof. Note that the result is trivial if τ = 0. In the following, we assume that τ > 0. Denote

F(λi(t)) = λi(t)zi +
n∑

j=1

(
pij(t) + qij(t)eλi(t)τ +

∫∞

0
wij(s)eλi(t)sds

)
zj , t ≥ t0, i ∈ N, (3.5)

then for any given t ≥ t0, we have

F(0) =
n∑

j=1

(
pij(t) + qij(t) +

∫∞

0
wij(s)ds

)
zj

≤
n∑

j=1

pij(t)zj − hi

n∑

j=1

pij(t)zj

= (1 − hi)
n∑

j=1

pij(t)zj

≤ −(1 − hi)
Li

hi
zi

< 0,

(3.6)

the first inequality and the second inequality are from (3.2), the last inequality is because
0 < hi < 1, Li > 0, zi > 0, i ∈ N.

We also have

lim
λi(t)→∞

F(λi(t)) = ∞, F ′(λi(t)) = zi +
n∑

j=1

(
qij(t)τeλi(t)τ +

∫∞

0
wij(s)seλi(t)sds

)
zj > 0.

(3.7)

So by (3.6) and (3.7), for any t ≥ t0, there is a unique positive λi(t) such that

λi(t)zi +
n∑

j=1

(
pij(t) + qij(t)eλi(t)τ +

∫∞

0
wij(s)eλi(t)sds

)
zj = 0, i ∈ N. (3.8)

Therefore, from the definition of λ0, one can know that λ0 ≥ 0.
Next, we will show that λ0 /= 0.
If this is not true, fix vi satisfying 0 < hi < vi < 1 and 1 − hi/vi − hi > 0, i ∈ N,

there exist a t∗ ≥ t0 and some integer l such that λl(t∗) < δ, where 0 < δ < min{(1 − hl/vl −
hl)(Ll/hl), (l/τ) ln (1/vl), ξ}, such that

λl(t∗)zl +
n∑

j=1

(
plj(t) + qlj(t)eλl(t

∗)τ +
∫∞

0
wij(s)eλl(t

∗)sds

)
zj = 0. (3.9)
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Then, we have

0 = λl(t∗)zl +
n∑

j=1

(
plj(t) + qlj(t)eλl(t

∗)τ +
∫∞

0
wlj(s)eλl(t

∗)sds

)
zj

< δzl +
n∑

j=1

(
plj(t) + qlj(t)eδτ

)
zj +

n∑

j=1

∫∞

0
wlj(s)zjeδsds

< δzl +
n∑

j=1

(
plj(t) +

1
vl
qlj(t)

)
zj +

n∑

j=1

∫∞

0
wlj(s)zjeξsds

≤ δzl +
n∑

j=1

plj(t)zj − hl

vl

n∑

j=1

plj(t)zj − hl

n∑

j=1

plj(t)zj

= δzl +
(
1 − hl

vl
− hl

) n∑

j=1

plj(t)zj

≤ δzl −
(
1 − hl

vl
− hl

)
Ll

hl
zl

< 0,

(3.10)

this contradiction shows that λ0 > 0, so there at least exists a positive constant λ0 such that
0 < λ < λ0, that is, the definition of λ for (3.3) is reasonable.

Since ϕ(t) ∈ PC is bounded, we always can choose a sufficiently large z > 0 such
that

u(t) ≤ ze−λ(t−t0), −∞ < t ≤ t0. (3.11)

In order to prove (3.3), we first prove for any given k > 1,

ui(t) < kzie
−λ(t−t0) ≡ vi(t), t ≥ t0, i ∈ N. (3.12)

If (3.12) is not true, then by continuity of u(t), there must exist some integerm and t̂ > t0 such
that

um

(
t̂
)
= vm

(
t̂
)
, D+um

(
t̂
)
≥ v′

m

(
t̂
)
, (3.13)

ui(t) ≤ vi(t), −∞ < t ≤ t̂, i ∈ N. (3.14)
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So, by (3.1), the equality of (3.13), (3.14) and pij(t) ≥ 0 and i /= j, qij(t) ≥ 0, for t ≥ t0, and the
definition of λ, we derive that

D+um

(
t̂
)
≤

n∑

j=1

(
pmj

(
t̂
)
uj

(
t̂
)
+ qmj

(
t̂
)
uj

(
t̂ − τ

))
+

n∑

j=1

∫∞

0
wmj(s)uj

(
t̂ − s

)
ds

≤
n∑

j=1

(
pmj

(
t̂
)
kzje

−λ(t̂−t0) + qmj

(
t̂
)
kzje

−λ(t̂−τ−t0)
)
+

n∑

j=1

∫∞

0
wmj(s)kzje−λ(t̂−s−t0)ds

=
n∑

j=1

(
pmj

(
t̂
)
+ qmj

(
t̂
)
eλτ +

∫∞

0
wmj(s)eλsds

)
kzje

−λ(t̂−t0)

<
n∑

j=1

(
pmj

(
t̂
)
+ qmj

(
t̂
)
eλm(t̂)τ +

∫∞

0
wmj(s)eλm(t̂)τds

)
kzje

−λ(t̂−t0)

= −λm
(
t̂
)
zmke

−λ(t̂−t0)

< −λzmke−λ(t̂−t0)

= v′
m

(
t̂
)
,

(3.15)

which contradicts the inequality in (3.13), and so (3.12) holds for all t ≥ t0. Letting k → 1,
then (3.3) holds, and the proof is completed.

Remark 3.2. IfW(s) = (wij(s))n×n = 0 in Lemma 3.1, then we get [14, Lemma 1].

Theorem 3.3. Assume that A(t) = (aij(t))n×n ≥ 0 for t ≥ t0 and i /= j, further suppose the following

(H1) For any x, y ∈ Rn, there exist nonnegative matrices U(t) = (uij(t))n×n and B = (bij)n×n,
t ≥ t0, such that

[f(t, x) − f
(
t, y

)
]+ ≤ U(t)[x − y]+, t ≥ t0,

[G(x) −G
(
y
)
]+ ≤ B[x − y]+, t ≥ t0.

(3.16)

(H2) For any x, y ∈ Rn,there exist nonnegative constant matricesMk such that

[Jk(t, x) − Jk
(
t, y

)
]+ ≤ Mk[x − y]+, t ≥ t0. (3.17)

(H3) There exist a positive constant ξ and a positive vector z = (z1, z2, . . . , zn)
T ∈ Rn and

two positive diagonal matrices V = diag{v1, . . . , vn}, S = diag{s1, s2, . . . , sn}, with
0 < si < 1, i ∈ N such that

(
U(t) + SA(t) + V +

∫∞

0
N(s)eξsds

)
z < 0, t ≥ t0, (3.18)

whereN(s) = (nij(s))n×n ≥ 0, nij(s) = |rij(s)|bij .
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(H4) There exists a positive constant η satisfying

lnηk
tk − tk−1

≤ η < λ(ε), k = 1, 2, . . . , (3.19)

where ηk satisfy

ηk ≥ 1, ηkz ≥ Mkz, (3.20)

and λ(ε) is defined as

0 < λ(ε) < λ0(ε) = min
1≤i≤n

⎧
⎨

⎩
inf
t≥t0

λi(t, ε) : λizi +
n∑

j=1

(
aij(t)
ε

+
uij(t)
ε

eλiτ +
∫∞

0

nij(s)
ε

eλisds

)
zj = 0

⎫
⎬

⎭
.

(3.21)

for the given z.

Then there exists a small ε0 > 0 such that the solution of (2.2) is exponentially stable for sufficiently
small ε ∈ (0, ε0].

Proof. By a similar argument with (3.4), one can know that the λ(ε) defined by (3.21) is
reasonable. For any φ, ϕ ∈ PC, let x(t), y(t) be two solutions of (2.2) through (t0, φ), (t0, ϕ),
respectively. Since φ, ϕ ∈ PC are bounded, we can always choose a positive vector z such that

[x(t) − y(t)]+ ≤ ze−λ(t−t0), t ∈ (−∞, t0]. (3.22)

Calculating the upper right derivativeD+[x(t)−y(t)]+ along the solution of (2.2), by condition
(H1), we have

D+[x(t) − y(t)]+

= Sgn(x(t) − y(t))(x(t) − y(t))′

≤ Sgn
(
x(t) − y(t)

)A(t)
ε

(
x(t) − y(t)

)
+
1
ε
[f(t, x(t − τ(t))) − f

(
t, y(t − τ(t))

)
]+

+
1
ε

∫ t

−∞
R(t − s)[G(x(s)) −G

(
y(s)

)
]+ds

≤ A(t)
ε

[x(t) − y(t)]+ +
U(t)
ε

[x(t) − y(t)]+τ +
1
ε

∫∞

0
[R(s)]+B[x(t − s) − y(t − s)]+ds.

(3.23)

From condition (H3), we have

(
U(t)
ε

+ S
A(t)
ε

+
V

ε
+
∫∞

0

N(s)
ε

eξsds

)
z < 0, t ≥ t0. (3.24)
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Therefore, (3.23) and (3.24) imply that all the assumptions of Lemma 3.1 are true. So we have

[x(t) − y(t)]+ ≤ ze−λ(ε)(t−t0), t ∈ [t0, t1), (3.25)

where λ(ε) is determined by (3.21) and the positive constant vector z is determined by
(3.18).

Using the discrete part of (2.2), condition (H2), (3.20) and (3.25), we can obtain that

[x(t1) − y(t1)]
+ = [J1

(
t1, x

(
t−1
)) − J1

(
t1, y

(
t−1
))
]+

≤ M1[x
(
t−1
) − y

(
t−1
)
]+

≤ M1ze
−λ(ε)(t1−t0)

≤ η1ze
−λ(ε)(t1−t0),

(3.26)

and so, we have

[x(t) − y(t)]+ ≤ η1ze
−λ(ε)(t−t0), t ∈ (−∞, t1]. (3.27)

By a similar argument with (3.25), we can use (3.27) derive that

[x(t) − y(t)]+ ≤ η1ze
−λ(ε)(t−t0), t ∈ [t1, t2). (3.28)

Therefore, by simple induction, we have

[x(t) − y(t)]+ ≤ η1 · · ·ηk−1ze−λ(ε)(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . . (3.29)

From (3.19) and (3.29), we obtain

[x(t) − y(t)]+ ≤ ze−(λ(ε)−η)(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . , ∀ε > 0. (3.30)

For any t ≥ t0, let λi(t, ε) be defined as the unique positive zero of

λizi +
n∑

j=1

(
aij(t)
ε

+
uij(t)
ε

eλiτ +
∫∞

0

nij(s)
ε

eλisds

)
zj = 0. (3.31)
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Differentiate both sides of (3.31)with respect to the variable ε, we have

d

dε
λi(t, ε) =

−λizi
εzi +

∑n
j=1 uij(t)τeλiτzj +

∑n
j=1

∫∞
0 nij(s)szjeλisds

< 0, (3.32)

so λi(t, ε) is monotonically decreasing with respect to the variable ε, which implies that λ0(ε)
is also monotonically decreasing with respect to the variable ε. So we can choose the λ(ε)
in (3.21) satisfying the same monotonicity with λ0(ε), for example, λ(ε) = λ0(ε) − δ, where
0 < δ < λ0(ε)−λ(ε). Hence we can deduce that there exists a small ε0 > 0 such that the solution
of (2.2) is exponentially stable for sufficiently small ε ∈ (0, ε0]. The proof is completed.

Remark 3.4. Suppose that N(s) = (nij(s))n×n = 0 in Theorem 3.3, then we can easily get [14,

Theorem 1]. In fact, “ηk
Δ= max{‖Mk‖, 1}” of condition (H4) in [14, Theorem 1] ensure that

the above (3.20) holds.

Remark 3.5. If Jk(t, x) = x, t ≥ t0, that is there have no impulses in (2.2), then by Theorem 3.3,
we can obtain the following result.

Corollary 3.6. Assume that A(t) = (aij(t))n×n ≥ 0 for t ≥ t0 and i /= j, N(s) = (nij(s))n×n ≥ 0,
further suppose that (H1) and (H3) hold. Then there exists a small ε0 > 0 such that the solution of
(2.2) is exponentially stable for sufficiently small ε ∈ (0, ε0].

Remark 3.7. From Lemma 3.1 and the proof of Theorem 3.3, it is obvious that the results
obtained in this paper still hold for ε = 1. So this type of exponential stability can obviously
be applied to general impulsive delay integrodifferential equations.

Remark 3.8. When ε = 1 and rij(s) = 0, the global exponential stability criteria for (2.2)
have been established in [18] by utilizing the Lyapunov functional method. However, the
additional assumption that fj is bounded is required in [18].

4. An Illustrative Example

In this section, we will give an example to illustrate the exponential stability of (2.2).

Example 4.1. Consider the following SPIDIDEs:

εẋ1(t) = (−10 − sin t)x1(t) + (2 + sin t) arctanx1(t − τ(t))

+ (1 + cos t) arctanx2(t − τ(t)) +
∫ t

−∞
e−(t−s)x1(s)ds, t /= tk,

εẋ2(t) = (−8 + 2 cos t)x1(t) + sin2t arctanx1(t − τ(t))

+ (1 − cos t) arctanx2(t − τ(t)) +
∫ t

−∞
e−2(t−s)x2(s)ds, t /= tk,

x1(tk) = α1kx1
(
t−k
) − β1kx2

(
t−k
)
,

x2(tk) = β2kx1
(
t−k
)
+ α2kx2

(
t−k
)
,

(4.1)

where αik, βik ≥ 0 are constants, τ(t) = e−t ≤ 1 Δ= τ , t ≥ t0, tk = tk−1 + 3k, k = 1, 2, . . ..
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We can easily find that conditions (H1) and (H2) are satisfied with

A(t) =

(−10 − sin t 0

0 −8 + 2 cos t

)

, U(t) =

(
2 + sin t 1 + cos t

sin2t 1 − cos t

)

,

N(s) =

(
e−s 0

0 e−2s

)

, Mk =

(
α1k β1k

β2k α2k

)

.

(4.2)

So there exist ξ = 0.5, z = (1, 1)T , V = diag{1, 1/3} and S = diag{0.8, 0.5} such that

(
U(t) + SA(t) + V +

∫∞

0
N(s)eξsds

)
z =

(
−2 + 0.2 sin t + cos t,−2 + sin2t

)
< 0, t ≥ t0. (4.3)

Let ηk = max{α1k + β1k, α2k + β2k}, we can obtain ηk satisfy ηkz ≥ Mkz.

Case 1. Let α1k = 0.2e0.3k, α2k = 0.7e0.3k, β1k = 0.5e0.3k, β2k = 0.3e0.3k, then we obtain that there
exists an η = 0.1 > 0 such that

ηk = e0.3k ≥ 1,
lnηk

tk − tk−1
=

0.3k
3k

= 0.1 = η, (4.4)

and for ε > 0, the positive constant λ(ε) is determined by the following equations:

λ1(t) +
1
ε

(
−10 − sin t + (3 + sin t + cos t)eλ1(t) +

∫∞

0
e−seλ1(s)ds

)
= 0,

λ2(t) +
1
ε

(
−8 + 2 cos t +

(
1 + sin2t − cos t

)
eλ2(t) +

∫∞

0
e−2seλ2(s)ds

)
= 0.

(4.5)

So for a given ε, we can obtain the corresponding λ by (4.5). By the proof of Theorem 3.3, we
know that λ is monotonically decreasing with respect to the variable ε, then there exists an
ε0 > 0 such that for any ε ∈ (0, ε0], we have λ > η. Therefore, all the conditions of Theorem 3.3
are satisfied, we conclude that the solution of (4.1) is exponentially stable for sufficiently
small ε > 0.

Case 2. Let α1k = α2k = 1 and β1k = β2k = 0, then (4.1) becomes the singularly perturbed delay
integrodifferential equations without impulses. So by Corollary 3.6, the solution of (4.1) is
exponentially stable for sufficiently small ε > 0.

Remark 4.2. Obviously, the delay differential inequality which established in [14] is ineffective
for studing the stability of SPIDIDEs (4.1).
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