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1. Introduction

Let H be the set of all analytic functions defined in the unit disk U = {z : |z| < 1}. We denote
by A the class of normalized analytic functions f(z) = z +

∑∞
n=2 anz

n defined in U. For two
functions f and g analytic inU, the function f is subordinate to g, written as

f(z) ≺ g(z), (1.1)

if there exists a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 such that
f(z) = g(w(z)). In particular, if the function g is univalent inU, then f(z) ≺ g(z) is equivalent
to f(0) = g(0) and f(U) ⊂ g(U).

A function f ∈ A is starlike if zf ′(z)/f(z) is subordinate to (1+z)/(1−z) and convex if
1+zf ′′(z)/f ′(z) is subordinate to (1+z)/(1−z). Ma andMinda [1] gave a unified presentation
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of these classes and introduced the classes

S∗(h) =
{

f ∈ A
∣
∣
∣
∣
zf ′(z)
f(z)

≺ h(z)
}

,

C(h) =
{

f ∈ A
∣
∣
∣
∣ 1 +

zf ′′(z)
f ′(z)

≺ h(z)
}

,

(1.2)

where h is an analytic function with positive real part, h(0) = 1, and h maps the unit disk U
onto a region starlike with respect to 1.

The convolution or the Hadamard product of two analytic functions f(z) = z +
∑∞

n=2 anz
n and g(z) = z +

∑∞
n=2 bnz

n is given by

(f ∗ g)(z) =
∞∑

n=1

anbnz
n. (1.3)

In term of convolution, a function f is starlike if f ∗ (z/(1 − z)) is starlike, and convex if
f ∗ (z/(1− z)2) is starlike. These ideas led to the study of the class of all functions f such that
f ∗ g is starlike for some fixed function g in A. In this direction, Shanmugam [2] introduced
and investigated various subclasses of analytic functions by using the convex hull method [3–
5] and the method of differential subordination. Ravichandran [6] introduced certain classes
of analytic functions with respect to n-ply symmetric points, conjugate points, and symmetric
conjugate points, and also discussed their convolution properties. Some other related studies
were also made in [7–9], and more recently by Shamani et al. [10].

Let M denote the class of meromorphic functions f of the form

f(z) =
1
z
+

∞∑

n=0

anz
n, (1.4)

which are analytic and univalent in the punctured unit disk U∗ = {z : 0 < |z| < 1}.
For 0 ≤ α < 1, we recall that the classes of meromorphic starlike, meromorphic convex,
meromorphic close-to-convex, meromorphic γ-convex (Mocanu sense), and meromorphic
quasi-convex functions of order α, denoted by Ms, Mk, Mc, Mk

γ , and Mq, respectively, are
defined by

Ms =
{

f ∈ M
∣
∣
∣
∣ −R

zf ′(z)
f(z)

> α

}

,

Mk =
{

f ∈ M
∣
∣
∣
∣ −R

(

1 +
zf ′′(z)
f ′(z)

)

> α

}

,

Mc =
{

f ∈ M
∣
∣
∣
∣ −R

zf ′(z)
g(z)

> α, g ∈ Ms

}

,

Mk
γ =

{

f ∈ M
∣
∣
∣
∣ −R

[

(1 − γ)
zf ′(z)
f(z)

+ γ

(

1 +
zf ′′(z)
f ′(z)

)]

> α

}

,

Mq =
{

f ∈ M
∣
∣
∣
∣ −R

[
zf ′(z)

]′

g ′(z)
> α, g ∈ Mk

}

.

(1.5)
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The convolution of two meromorphic functions f and g, where f is given by (1.4) and g(z) =
1/z +

∑∞
n=0 bnz

n, is given by

(f ∗ g)(z) = 1
z
+

∞∑

n=0

anbnz
n. (1.6)

Motivated by the investigation of Shanmugam [2], Ravichandran [6], and Ali et al.
[7, 11], several subclasses of meromorphic functions defined by means of convolution with
a given fixed meromorphic function are introduced in Section 2. These new subclasses
extend the classical classes of meromorphic starlike, convex, close-to-convex, γ-convex,
and quasi-convex functions given in (1.5). Section 3 is devoted to the investigation of the
class relations as well as inclusion and convolution properties of these newly defined
classes.

We will need the following definition and results to prove our main results.
Let S∗(α) denote the class of starlike functions of order α. The class Rα of prestarlike

functions of order α is defined by

Rα =
{

f ∈ A
∣
∣
∣
∣ f ∗ z

(1 − z)2−2α
∈ S∗(α)

}

(1.7)

for α < 1, and

R1 =
{

f ∈ A
∣
∣
∣
∣ R

f(z)
z

>
1
2

}

. (1.8)

Theorem 1.1 (see [12, Theorem 2.4]). Let α ≤ 1, f ∈ Rα, and g ∈ S∗(α). Then, for any analytic
function H ∈ H(U),

f ∗Hg

f ∗ g (U) ⊂ co
(
H(U)

)
, (1.9)

where co(H(U)) denotes the closed convex hull ofH(U).

Theorem 1.2 (see [13]). Let h be convex in U and β, γ ∈ C with R(βh(z) + γ) > 0. If p is analytic
inU with p(0) = h(0), then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) implies p(z) ≺ h(z). (1.10)

2. Definitions

In this section, various subclasses of M are defined by means of convolution and
subordination. Let g be a fixed function in M, and let h be a convex univalent function with
positive real part inU and h(0) = 1.
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Definition 2.1. The classMs
g(h) consists of functions f ∈ M satisfying (g ∗ f)(z)/= 0 inU∗ and

the subordination

−z(g ∗ f)′(z)
(g ∗ f)(z) ≺ h(z). (2.1)

Remark 2.2. If g(z) = 1/z + 1/(1 − z), then Ms
g(h) coincides withMs(h), where

Ms(h) =
{

f ∈ M
∣
∣
∣
∣ − zf ′(z)

f(z)
≺ h(z)

}

. (2.2)

Definition 2.3. The classMk
g(h) consists of functions f ∈ M satisfying (g ∗ f)′(z)/= 0 inU∗ and

the subordination

−
{

1 +
z(g ∗ f)′′(z)
(g ∗ f)′(z)

}

≺ h(z). (2.3)

Definition 2.4. The class Mc
g(h) consists of functions f ∈ M such that (g ∗ ψ)(z)/= 0 in U∗ for

some ψ ∈ Ms
g(h) and satisfying the subordination

−z
(
g ∗ f)′(z)

(g ∗ ψ)(z) ≺ h(z). (2.4)

Definition 2.5. For γ real, the classMk
g,γ(h) consists of functions f ∈ M satisfying (g∗f)(z)/= 0,

(g ∗ f)′(z)/= 0 inU∗ and the subordination

−
{

γ

(

1 +
z
(
g ∗ f)′′(z)

(
g ∗ f)′(z)

)

+ (1 − γ)
(
z
(
g ∗ f)′(z)

(g ∗ f)(z)
)}

≺ h(z). (2.5)

Definition 2.6. The class Mq
g(h) consists of functions f ∈ M such that (g ∗ ϕ)′(z)/= 0 in U∗ for

some ϕ ∈ Mk
g(h) and satisfying the subordination

[ − z
(
g ∗ f)′(z)]′

(
g ∗ ϕ)′(z)

≺ h(z). (2.6)

3. Main Results

This section is devoted to the investigation of class relations as well as inclusion and
convolution properties of the new subclasses given in Section 2.

Theorem 3.1. Let h be a convex univalent function satisfyingRh(z) < 2−α, 0 ≤ α < 1, and g ∈ M
with z2g ∈ Rα. If f ∈ Ms(h), then f ∈ Ms

g(h). Equivalently, if f ∈ Ms(h), then g ∗ f ∈ Ms(h).
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Proof. Define the function F by

F(z) = −zf
′(z)

f(z)
. (3.1)

For f ∈ Ms(h), it follows that

−R
{
zf ′(z)
f(z)

}

< 2 − α, (3.2)

and therefore,

R

{
z
(
z2f

)′(z)
z2f(z)

}

> α. (3.3)

Hence z2f ∈ S∗(α). A computation shows that

−z
(
g ∗ f)′(z)

(g ∗ f)(z) =

(
g ∗ −zf ′)(z)
(g ∗ f)(z) =

(g ∗ fF)(z)
(g ∗ f)(z) =

(
z2g ∗ z2fF)(z)
(
z2g ∗ z2f)(z) . (3.4)

Theorem 1.1 yields

−z
(
g ∗ f)′(z)

(g ∗ f)(z) =

(
z2g ∗ z2fF)(z)
(
z2g ∗ z2f)(z) ∈ co

(
F(U)

)
, (3.5)

and because F(z) ≺ h(z), it follows that

−z
(
g ∗ f)′(z)

(g ∗ f)(z) ≺ h(z). (3.6)

Theorem 3.2. The function f ∈ Mk
g(h) if and only if −zf ′ ∈ Ms

g(h).

Proof. The results follow from the equivalence relations

−
(

1 +
z
(
g ∗ f)′′(z)

(
g ∗ f)′(z)

)

≺ h(z) ⇐⇒ −
(
z
(
g ∗ f)′(z))′

(
g ∗ f)′(z)

≺ h(z) ⇐⇒ −z
(
g ∗ −zf ′)′(z)

(
g ∗ −zf ′)(z)

≺ h(z).

(3.7)

Theorem 3.3. Let h be a convex univalent function satisfyingRh(z) < 2−α, 0 ≤ α < 1, and φ ∈ M
with z2φ ∈ Rα. If f ∈ Ms

g(h), then φ ∗ f ∈ Ms
g(h).
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Proof. Since f ∈ Ms
g(h), it follows that

−R
{
z(g ∗ f)′(z)
(g ∗ f)(z)

}

< 2 − α, (3.8)

and thus

R

{
z
(
z2(g ∗ f))′(z)
z2(g ∗ f)(z)

}

> α. (3.9)

Let

P(z) = −z(g ∗ f)′(z)
(g ∗ f)(z) . (3.10)

A similar computation as in the proof of Theorem 3.1 yields

−z(φ ∗ g ∗ f)′(z)
(φ ∗ g ∗ f)(z) =

z2φ(z) ∗ z2(g ∗ f)(z)P(z)
z2φ(z) ∗ z2(g ∗ f)(z) . (3.11)

Inequality (3.9) shows that z2(g ∗ f) ∈ S∗(α). Therefore Theorem 1.1 yields

−z(φ ∗ g ∗ f)′(z)
(φ ∗ g ∗ f)(z) ≺ h(z), (3.12)

hence φ ∗ f ∈ Ms
g(h).

Corollary 3.4. Ms
g(h) ⊂ Ms

φ∗g(h) under the conditions of Theorem 3.3.

Proof. The proof follows from (3.12).

In particular, when g(z) = 1/z + 1/(1 − z), the following corollary is obtained.

Corollary 3.5. Let h and φ satisfy the conditions of Theorem 3.3. If f ∈ Ms(h), then f ∈ Ms
φ
(h).

Theorem 3.6. Let h and φ satisfy the conditions of Theorem 3.3. If f ∈ Mk
g(h), then φ ∗ f ∈ Mk

g(h).
EquivalentlyMk

g(h) ⊂ Mk
φ∗g(h).

Proof. If f ∈ Mk
g(h), it follows from Theorem 3.2 that −zf ′ ∈ Ms

g(h). Theorem 3.3 shows that
φ ∗ (−zf ′) = −z(φ ∗ f)′ ∈ Ms

g(h).Hence φ ∗ f ∈ Mk
g(h).

Theorem 3.7. Under the conditions of Theorem 3.3, if f ∈ Mc
g(h) with respect to ψ ∈ Ms

g(h), then
φ ∗ f ∈ Mc

g(h) with respect to φ ∗ ψ ∈ Ms
g(h).

Proof. Theorem 3.3 shows that φ ∗ψ ∈ Ms
g(h). Since ψ ∈ Ms

g(h), (3.9) yields z
2(g ∗ψ) ∈ S∗(α).
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Let the function G be defined by

G(z) = −z(g ∗ f)′(z)
(g ∗ ψ)(z) . (3.13)

A similar computation as in the proof of Theorem 3.1 yields

−z(φ ∗ g ∗ f)′(z)
(φ ∗ g ∗ ψ)(z) =

z2φ(z) ∗ z2(g ∗ ψ)(z)G(z)
z2φ(z) ∗ z2(g ∗ ψ)(z) . (3.14)

Since z2φ ∈ Rα and z2(g ∗ ψ) ∈ S∗(α), it follows from Theorem 1.1 that

−z(φ ∗ g ∗ f)′(z)
(φ ∗ g ∗ ψ)(z) ≺ h(z). (3.15)

Thus φ ∗ f ∈ Mc
g(h)with respect to φ ∗ ψ.

Corollary 3.8. Mc
g(h) ⊂ Mc

φ∗g(h) under the assumptions of Theorem 3.3.

Proof. The subordination (3.15) shows that f ∈ Mc
φ∗g(h).

Theorem 3.9. Let R(γh(z)) < 0. Then

(i) Mk
g,γ(h) ⊂ Ms

g(h),

(ii) Mk
g,γ(h) ⊂ Mk

g,β
(h) for γ < β ≤ 0.

Proof. Define the function P by

P(z) = −z(g ∗ f)′(z)
(g ∗ f)(z) (3.16)

and the function Jg(γ ; f) by

Jg(γ ; f)(z) = −
{

γ

(

1 +
z(g ∗ f)′′(z)
(g ∗ f)′(z)

)

+ (1 − γ)
(
z(g ∗ f)′(z)
(g ∗ f)(z)

)}

. (3.17)

For f ∈ Mk
g,γ(h), it follows that Jg(γ ; f)(z) ≺ h(z). Note also that

Jg(γ ; f)(z) = P(z) − γzP ′(z)
P(z)

. (3.18)

(i) Since R(γh(z)) < 0 and

P(z) − γzP ′(z)
P(z)

≺ h(z). (3.19)
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Theorem 1.2 yields P(z) ≺ h(z). Hence f ∈ Ms
g(h).

(ii) Observe that

Jg(β; f)(z) = −
{

β

(

1 +
z(g ∗ f)′′(z)
(g ∗ f)′(z)

)

+ (1 − β)
(
z(g ∗ f)′(z)
(g ∗ f)(z)

)}

=
(

1 − β

γ

)

P(z) +
β

γ
Jg(γ ; f)(z).

(3.20)

Furthermore Jg(γ ; f)(z) ≺ h(z) and P(z) ≺ h(z) from (i). Since 0 < β/γ < 1 and h(U) is
convex, we deduce that Jg(β; f)(z) ∈ h(U). Therefore, Jg(β; f)(z) ≺ h(z).

Corollary 3.10. The classMk
g(h) is a subset of the classMq

g(h).

Proof. The proof follows from the definition of the classes by taking f = ϕ.

Theorem 3.11. The function f ∈ Mq
g(h) if and only if −zf ′ ∈ Mc

g(h).

Proof. If f ∈ Mq
g(h), then there exists ϕ ∈ Mk

g(h) such that

[ − z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z) ≺ h(z). (3.21)

Also,

−z(g ∗ −zf ′)′(z)
(
g ∗ −zϕ′)(z)

=

[ − z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z) ≺ h(z). (3.22)

Since ϕ ∈ Mk
g(h), by Theorem 3.2 , −zϕ′ ∈ Ms

g(h). Hence −zf ′ ∈ Mc
g(h).

Conversely, if −zf ′ ∈ Mc
g(h), then

−z
(
g ∗ −zf ′)′(z)
(
g ∗ ϕ1

)
(z)

≺ h(z) (3.23)

for some ϕ1 ∈ Ms
g(h). Let ϕ ∈ Mk

g(h) be such that −zϕ′ = ϕ1 ∈ Ms
g(h). The proof is completed

by observing that

[ − z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z) = −z
(
g ∗ −zf ′)′(z)

(
g ∗ −zϕ′)(z)

≺ h(z). (3.24)

Corollary 3.12. Let h and φ satisfy the conditions of Theorem 3.3. If f ∈ Mq
g(h), then φ∗f ∈ Mq

g(h).

Proof. If f ∈ Mq
g(h), Theorem 3.11 gives −zf ′ ∈ Mc

g(h). Theorem 3.7 next gives φ ∗ (−zf ′) =
−z(φ ∗ f)′ ∈ Mc

g(h). Thus, Theorem 3.11 yields φ ∗ f ∈ Mq
g(h).
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Corollary 3.13. Mq
g(h) ⊂ Mq

φ∗g(h) under the conditions of Theorem 3.3.

Proof. If f ∈ Mq
g(h), it follows from Corollary 3.12 that φ ∗ f ∈ Mq

g(h). The subordination

[ − z(φ ∗ g ∗ f)′(z)]′

(φ ∗ g ∗ ϕ)′(z) ≺ h(z) (3.25)

gives f ∈ Mq

φ∗g(h). Therefore M
q
g(h) ⊂ Mq

φ∗g(h).

Open Problem

An analytic convex function in the unit disk is necessarily starlike. For the meromorphic case,
is it true that Mk

g(h) ⊂ Ms
g(h)?
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