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1. Introduction and Lemmas

Let (Ω,F, P) be a probability space. The random variables we deal with are all defined on
(Ω,F, P). Let {Xn;n ≥ 1} be a sequence of random variables. For each nonempty set S ⊂ N,
and write FS = σ(Xi, i ∈ S). Given σ-algebras B,R in F, let

ρ(B,R) = sup{|corr(X,Y )|;X ∈ L2(B), Y ∈ L2(R)}, (1.1)

where corr(X,Y ) = (EXY − EXEY )/
√
VarXVarY . Define the ρ̃-mixing coefficients by

ρ̃(n) = sup
{

ρ(FS,FT ); finite subsets S, T ⊂ N such that dist(S, T) ≥ n
}

, n ≥ 0. (1.2)

Obviously 0 ≤ ρ̃(n + 1) ≤ ρ̃(n) ≤ 1, n ≥ 0, and ρ̃(0) = 1 except in the trivial case where all of
the random variables Xi are degenerate.

Definition 1.1. A random variables sequence {Xn;n ≥ 1} is said to be a ρ̃-mixing random
variables sequence if there exists k ∈ N such that ρ̃(k) < 1.
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ρ̃-mixing is similar to ρ-mixing, but both are quite different. A number of writers
have studied ρ̃-mixing random variables sequences and a series of useful results have been
established. We refer to Bradley [1] (which assumes ρ̃(k) → 0 in the central limit theorem),
Bryc and Smoleński [2], Goldie and Greenwood [3] (which assumes

∑∞
k=1 ρ̃(2

k) < ∞), and
Yang [4] for moment inequalities and the strong law of large numbers, Wu [5, 6], Wu
and Jiang [7], Peligrad and Gut [8], and Gan [9] for almost sure convergence and Utev
and Peligrad [10] for maximal inequalities and the invariance principle. When these are
compared with the corresponding results of independent random variables sequences, there
still remains much to be desired.

Lemma 1.2 (see [7, Theorem 1]). Let {Xn;n ≥ 1} be a ρ̃-mixing sequence of random variables
which satisfies

∞
∑

n=1

VarXn < ∞. (1.3)

Then
∑∞

n=1(Xn − EXn) converges almost surely (a.s.) and in quadratic mean.

Lemma 1.3 (see [11, Lemma 2.4]). For each positive integer m, let G(m) denote the set of all
vectors (−→r ,−→l ) := ((r1, r2, . . . , rm), (l1, l2, . . . , lm)) ∈ {0, 1, 2, . . . , m}m × {0, 1, 2, . . . , m}m such that
∑m

j=1 rj lj = m.

Then for each positive integer m, there exists a function A(m) : G(m) → R such that
the following holds.

For any integer n ≥ m and any choice of real numbers x1, x2, . . . , xn, one has that

∑

1≤i1<i2<···<im≤n

⎛

⎝

∏

1≤j≤m
xij

⎞

⎠ =
∑

(−→r ,−→l )∈G(m)

⎡

⎣A(m)
((−→r ,−→l

))

·
∏

1≤j≤m

(

∑

1≤i≤n
x
rj
i

)lj
⎤

⎦. (1.4)

2. Main Results and the Proof

To state our results, we need some notions. Throughout this paper, let {ωi; i ≥ 1} be a sequence
of positive real numbers, and letWn =

∑n
i=1 ωi, n ≥ 1, satisfyWn ↑ ∞, ωnW

−1
n → 0, n → ∞.

Jamison et al. [12] proved the following result. Suppose that X1, X2, . . . are i.i.d.
random variables with EX1 = 0. Denote N(n)=̂�{k;ω−1

k Wk ≤ n}, that is, the number of
subscripts k such that ω−1

k
Wk ≤ n. If N(n) = O(n), then

∑n
i=1 ωiXi/Wi → 0 a.s. Chen

et al. [13] extended the Jamison Theorem and obtained the following result. Suppose that
X1, X2, . . . are i.i.d. random variables with EX1 = 0, E|X1|r < ∞ for some r ∈ [1, 2). If
N(n) = O(nr), then

∑n
i=1 ωiXi/Wi → 0 a.s.

Themain purpose of this paper is to study the strong limit theorems for weighted sums
of ρ̃-mixing random variables sequences and try to obtain some new results. We establish
weighted partial sums andweighted product sums strong convergence theorems. Our results
in this paper extend and improve the corresponding results of Chen et al. [13], Wu and Jiang
[7], the classical Jamison convergence theorem, and the Marcinkiewicz strong law of large
numbers for independent sequences of random variables to ρ̃-mixing sequences of random
variables.



Journal of Inequalities and Applications 3

Theorem 2.1. Let {Xi; i ≥ 1} be a sequence of ρ̃-mixing random variables with EXi = 0, and let the
following conditions be satisfied:

W−1
n

n
∑

i=1

ωiEXiI(|Xi|≥bi) −→ 0, n −→ ∞, (2.1)

∞
∑

i=1

P(|Xi| ≥ bi) < ∞, (2.2)

∞
∑

i=1

b−2i VarXiI(|Xi|<bi) < ∞, (2.3)

where bi = ω−1
i Wi. Then

Tn=̂W−1
n

n
∑

i=1

ωiXi −→ 0 a.s. n −→ ∞. (2.4)

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold, and also suppose

sup
i≥1

E|Xi| < ∞. (2.5)

Then for all m ≥ 1,

Un=̂W−m
n

∑

1≤i1<···<im≤n

∏

1≤j≤m
ωijXij −→ 0 a.s. n −→ ∞. (2.6)

Corollary 2.3. Let {Xn;n ≥ 1} be a sequence of ρ̃-mixing identically distributed random variables.
Let for some 1 ≤ p < 2,

N(n)=̂�{k; bk ≤ n} ≤ cnp ∀n ≥ 1, and some constant c > 0, (2.7)

EX1 = 0, E|X1|p < ∞. (2.8)

Then (2.6) holds.

Remark 2.4. Let X1, X2, . . . be i.i.d. random variables, and p = 1 in Corollary 2.3, then
Corollary 2.3 is the well-known Jamison convergence theorem. Thus, our Theorem 2.2 and
Corollary 2.3 generalize and improve the Jamison convergence theorem from the i.i.d. case to
ρ̃-mixing sequence. In addition, by Theorems 1 and 2 in Chen et al. [13] are special situation
of Corollary 2.3.
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Theorem 2.5. Let {Xn;n ≥ 1} be a sequence of ρ̃-mixing random variables. Let {an;n ≥ 1} be a
sequence of positive real numbers with an ↑ ∞, and let the following conditions be satisfied:

∞
∑

n=1

a−2
n EX2

nI(|Xn|<an) < ∞, (2.9)

∞
∑

i=1

P(|Xi| ≥ ai) < ∞, (2.10)

a−1
n

n
∑

i=1

EXiI(|Xi|<ai) −→ 0, n −→ ∞. (2.11)

Then for all m ≥ 1,

a−m
n

∑

1≤i1<···<im≤n

∏

1≤j≤m
Xij −→ 0, a.s. n −→ ∞. (2.12)

Corollary 2.6. Let {Xn;n ≥ 1} be a ρ̃-mixing identically distributed random variable sequence, for
0 < p < 2, E|X1|p < ∞, and for 1 ≤ p < 2, EX1 = 0. Then for all m ≥ 1,

n−m/p
∑

1≤i1<···<im≤n

∏

1≤j≤m
Xij −→ 0, a.s. n −→ ∞. (2.13)

In particular, takingm = 1, the above formula is the well-knownMarcinkiewicz strong
law of large numbers. Thus, our Theorem 2.5 and Corollary 2.6 generalize and improve the
Marcinkiewicz strong law of large numbers from the i.i.d. case to ρ̃-mixing sequence. In
addition, by Theorem 4 in Wu and Jiang [7] is a special case of Corollary 2.6.

Proof of Theorem 2.1. Let Xi(bi) = XiI(|Xi|<bi). From (2.2),

∞
∑

i=1

P(Xi(bi)/=Xi) =
∞
∑

i=1

P(|Xi| ≥ bi) < ∞. (2.14)

By the Borel-Cantelli lemma and the Toeplitz lemma,

W−1
n

n
∑

i=1

ωi(Xi −Xi(bi)) −→ 0 a.s. n −→ ∞. (2.15)

By EXi = 0 and (2.1),

W−1
n

n
∑

i=1

ωiEXi(bi) = −W−1
n

n
∑

i=1

ωiEXiI(|Xi|≥bi) −→ 0, n −→ ∞. (2.16)
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By (2.3),

∞
∑

i=1

b−2i VarXi(bi) =
∞
∑

i=1

b−2i VarXiI(|Xi|<bi) < ∞. (2.17)

Applying Lemma 1.2,

∞
∑

i=1

b−1i (Xi(bi) − EXi(bi)) a.s. (2.18)

converges. Hence

W−1
n

n
∑

i=1

ωi(Xi(bi) − EXi(bi)) −→ 0 a.s. (2.19)

from the Kronecker lemma. Combining (2.15)–(2.19), (2.4) holds. This completes the proof of
Theorem 2.1.

Proof of Theorem 2.2. By Lemma 1.3,

Un =
∑

(−→r ,−→l
)

∈G(m)

A(m)
((−→r ,−→l

))

·
∏

1≤j≤m

(

n
∑

i=1

(

ωiXiW
−1
n

)rj
)lj

, (2.20)

where G(m) denote the set of all vectors (−→r ,−→l ) := ((r1, r2, . . . , rm), (l1, l2, . . . , lm)) ∈ {0, 1, 2,
. . . , m}m × {0, 1, 2, . . . , m}m such that

∑m
j=1 rj lj = m, and A(m)((−→r ,−→l )) are constants which do

not depend on n, {ωi; i ≥ 1} and {Xi; i ≥ 1}. Thus, in order to prove (2.6), we only need to
prove that

W−r
n

n
∑

i=1

ωr
i X

r
i −→ 0 a.s. for 1 ≤ r ≤ m. (2.21)

When r = 1, by Theorem 2.1, (2.21) holds. When 2 ≤ r ≤ m, we get

W−r
n

∣

∣

∣

∣

∣

n
∑

i=1

ωr
i X

r
i

∣

∣

∣

∣

∣

≤
(

W−2
n

n
∑

i=1

ω2
i X

2
i

)r/2

∀n ≥ 1 (2.22)

from the elementary inequality (a1 + · · · + an)
p ≥ a

p

1 + · · · + a
p
n valid for ai ≥ 0, p ≥ 1 applied

with p = r/2, ai = ω2
i X

2
i . Hence, in order to prove (2.21), we only need to prove that

W−2
n

n
∑

i=1

ω2
i X

2
i −→ 0 a.s. n −→ ∞. (2.23)
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By (2.3), using Lemma 1.2, we get that

∞
∑

i=1

b−1i (Xi(bi) − EXi(bi)) a.s. (2.24)

converges. By the Kronecker lemma, (1/Wn)
∑n

i=1 ωi(Xi(bi) − EXi(bi)) −→ 0 a.s. Thus,

W−2
n

n
∑

i=1

ω2
i (Xi(bi) − EXi(bi))

2 ≤
(

1
Wn

n
∑

i=1

ωi(Xi(bi) − EXi(bi))

)2

−→ 0 a.s., (2.25)

that is,

W−2
n

n
∑

i=1

ω2
i X

2
i (bi) − 2W−2

n

n
∑

i=1

ω2
i Xi(bi)EXi(bi) +W−2

n

n
∑

i=1

ω2
i (EXi(bi))

2 −→ 0 a.s. (2.26)

By (2.3),

∞
∑

i=1

b−4i Var(Xi(bi)EXi(bi)) =
∞
∑

i=1

b−4i (EXi(bi))
2 VarXi(bi)

≤
∞
∑

i=1

b−2i VarXi(bi) < ∞.

(2.27)

By Lemma 1.2, we have that

∞
∑

i=1

b−2i
(

Xi(bi)EXi(bi) − (EXi(bi))
2
)

a.s. (2.28)

converges. By the Kronecker lemma,

W−2
n

n
∑

i=1

ω2
i

(

Xi(bi)EXi(bi) − (EXi(bi))
2
)

−→ 0 a.s. (2.29)

By ωi/Wi → 0, i → ∞ and the Toeplitz lemma,

W−2
n

n
∑

i=1

ω2
i = W−1

n

n
∑

i=1

ωi
ωi

Wn
≤ W−1

n

n
∑

i=1

ωi
ωi

Wi
−→ 0, n −→ ∞. (2.30)
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Then combining (2.5), we obtain

0 ≤ W−2
n

n
∑

i=1

ω2
i (EXi(bi))

2 ≤
(

sup
i≥1

E|Xi|
)2

W−2
n

n
∑

i=1

ω2
i −→ 0. (2.31)

Substituting (2.29) and (2.31) in (2.26), we get

W−2
n

n
∑

i=1

ω2
i X

2
i (bi) −→ 0 a.s. (2.32)

Then combining (2.2) and the Borel-Cantelli lemma, (2.23) holds. This completes the proof of
Theorem 2.2.

Proof of Corollary 2.3. By Theorem 2.2, we only need to verify (2.1)–(2.3) and (2.5). From Xn

having identically distribution, (2.7), (2.8) and 1 ≤ p < 2, (2.5) holds automatically.
Since

EXiI(|Xi|<bi) −→ EXi = 0, (2.33)

by the Toeplitz lemma,

W−1
n

n
∑

i=1

ωiEXiI(|Xi|<bi) −→ 0, (2.34)

That is,(2.1) holds.
By (2.7),

∞
∑

i=1

P(|Xi| > bi) ≤
∞
∑

j=1

∑

j−1<bi≤j
P
(|X1| > j − 1

)

=
∞
∑

j=1

(

N
(

j
) −N

(

j − 1
))

∞
∑

k=j

P((k − 1 ≤ |X1| ≤ k))

=
∞
∑

k=1

P(k − 1 ≤ |X1| ≤ k)
k
∑

j=1

(

N
(

j
) −N

(

j − 1
))

�
∞
∑

k=1

jpP(k − 1 ≤ |X1| ≤ k)

� E|X1|p < ∞,

(2.35)

That is, (2.2) holds.
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Similarly,

∞
∑

i=1

b−2i EX2
i I(|Xi|<bi) =

∞
∑

i=1

b−2i EX2
1I(|X1|<bi)

=
∞
∑

j=1

∑

j−1<bi≤j
b−2i EX2

1I(|X1|<bi) ≤
∞
∑

j=1

∑

j−1<bi≤j

(

j − 1
)−2

EX2
1I(|X1|<j)

=
∞
∑

j=1

(

j − 1
)−2(

N
(

j
) −N

(

j − 1
))

j
∑

k=1

EX2
1I(k−1≤|X1|<k)

=
∞
∑

k=1

EX2
1I(k−1≤|X1|<k)

∞
∑

j=k

(

j − 1
)−2(

N
(

j
) −N

(

j − 1
))

≤
∞
∑

k=1

EX2
1I(k−1≤|X1|<k)

∞
∑

j=k

(

(

j − 1
)−2 − j−2

)

N
(

j
)

�
∞
∑

k=1

EX2
1I(k−1≤|X1|<k)

∞
∑

j=k

(

(

j − 1
)−2 − j−2

)

jp

�
∞
∑

k=1

EX2
1I(k−1≤|X1|<k)k

p−2

<
∞
∑

k=1

E|X1|pI(k−1≤|X1|<k)

� E|X1|p < ∞,

(2.36)

That is, (2.3) holds. This completes proof of Corollary 2.3.

Proof of Theorem 2.5. Similar to the proof of Theorem 2.2, by Lemma 1.3, in order to prove
(2.12), we only need to prove that

a−r
n

n
∑

i=1

Xr
i −→ 0 a.s. for r = 1, 2. (2.37)

Let Xi(ai) = XiI(|Xi|<ai), then

a−1
n

n
∑

i=1

Xi = a−1
n

n
∑

i=1

(Xi −Xi(ai)) + a−1
n

n
∑

i=1

(Xi(ai) − EXi(ai)) + a−1
n

n
∑

i=1

EXi(ai). (2.38)

(i) When r = 1, by (2.10) and (2.11), in order to prove a−1
n

∑n
i=1 Xi −→ 0 a.s., we only

need to prove that

a−1
n

n
∑

i=1

(Xi(ai) − EXi(ai)) −→ 0 a.s. (2.39)
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By (2.9) and Lemma 1.2,

∞
∑

n=1

a−1
n (Xn(an) − EXn(an)) a.s. (2.40)

converges. By the Kronecker lemma, (2.39) holds.
(ii)When r = 2, by (2.9) and the Kronecker lemma,

a−2
n

n
∑

i=1

X2
i (ai) −→ 0 a.s. (2.41)

By (2.10) and the Borel-Cantelli lemma,

a−2
n

n
∑

i=1

X2
i −→ 0 a.s. (2.42)

Hence, combining (2.39), (2.37) holds. This completes the proof of Theorem 2.5.

Proof of Corollary 2.6. Let an = n1/p. We can easy to verify (2.9)–(2.11). By Theorem 2.5,
Corollary 2.6 holds.
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