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1. Introduction

Let (X, ‖·‖) be an infinite-dimensional Banach space. The open ball of X will be denoted by BX

and its closure by BX. We denote by C(X) (resp., L(X)) the set of all closed densely defined
linear operators (resp., the space of all bounded linear operators) on X. The set of all compact
operators of L(X) is designed by K(X). Let T ∈ C(X), we write N(T) ⊆ X for the null space
and R(T) ⊆ X for the range of T . We set α(T) := dimN(T) and β(T) := codimR(T). The set of
upper semi-Fredholm operators is defined by

Φ+(X) =
{
T ∈ C(X) such thatα(T) < ∞, R(T) closed inX

}
, (1.1)

and the set of lower semi-Fredholm operators is defined by

Φ−(X) =
{
T ∈ C(X) such that β(T) < ∞ (

then R(T) closed inX
)}

. (1.2)
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Φ(X) :=Φ+(X)∩Φ−(X) is the set of Fredholm operators in C(X), whileΦ±(X) := Φ+(X)∪Φ−(X)
is the set of semi-Fredholm operators in C(X). If T ∈ Φ(X), the number i(T) := α(T) − β(T) is
called the index of T . The spectrum of T will be denoted by σ(T). The resolvent set of T , ρ(T),
is the complement of σ(T) in the complex plane. A complex number λ is in Φ+T, Φ−T, Φ±T , or
ΦT if λ − T is in Φ+(X), Φ−(X), Φ±(X), or Φ(X), respectively. In the next proposition we recall
some well-known properties of those sets (see, e.g., [11, 16, 30]).

Proposition 1.1. For any T ∈ C(X),

(i) Φ+T , Φ−T andΦT are open,

(ii) i(λ − T) is constant on any component of ΦT .

There are many ways to define the essential spectrum of a closed densely defined linear
operator on a Banach space. Hence several definitions of the essential spectrum may be found
in the literature; see, for example, [16] or the comments in [30, Chapter 11, page 283]. Various
notions of essential spectrum appear in the applications of spectral theory (see, e.g., [13, 16,
21]). Throughout this paper we are concerned with the so-called Schechter essential spectrum.

Definition 1.2. Let T ∈ C(X). Define the Schechter essential spectrum of the operator T by

σess(T) =
⋂

K∈K(X)

σ(T +K). (1.3)

The following proposition gives a characterization of the Schechter essential spectrum
by means of Fredholm operators.

Proposition 1.3 (see [30, Theorem 5.4, page 180]). Let T ∈ C(X). Then

λ/∈ σess (T) iff λ ∈ Φ0
T , (1.4)

where Φ0
T := {λ ∈ ΦT such that i(λ − T) = 0}.

Definition 1.4. An operator T ∈ L(X) is said to be weakly compact if T(B) is relatively weakly
compact for every bounded subset B ⊂ X.

The family of weakly compact operators onX,W(X), is a closed two-sided ideal ofL(X)
containingK(X) (see [8, 12]).

Definition 1.5. ABanach spaceX is said to have the Dunford-Pettis property (for short property
DP) if for each Banach space Y every weakly compact operator T : X → Y takes weakly
compact sets in X into norm compact sets of Y .

It is well known that any L1-space has the property DP [9]. Also ifΩ is a compact Haus-
dorff space, C(Ω) has the property DP [15]. For further examples we refer to [5] or [8, pages
494, 497, 508, and 511]. Note that the property DP is not preserved under conjugation. How-
ever, if X is a Banach space whose dual has the property DP, then X has the property DP (see,
e.g., [15]). Furthermore, if the Banach space X has the property DP, then W(X)W(X) ⊂ K(X),
where W(X)W(X) = {JK : J,K ∈ W(X)} (see [18, Lemma 2.1]). For more information we
refer to the paper by Diestel [5] which contains a survey and exposition of the Dunford-Pettis
property and related topics.
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One of the central questions in the study of the Schechter essential spectrum of closed
densely defined linear operators on Banach spaces X consists of showing what are the
conditions that we must impose on K ∈ L(X) such that, for T ∈ C(X), σess(T + K) =
σess(T). If K is a compact operator on Banach spaces, then σess(T + K) = σess(T) (see
Definition 1.2). If K is a strictly singular on Lp-spaces, then σess(T + K) = σess(T) (see
[25, Theorem 3.2]). If K is weakly compact on Banach spaces which possess the Dunford-
Pettis property, then σess(T + K) = σess(T) (see [23, Theorem 3.2]). If K ∈ L(X) and
(λ − T)−1K is strictly singular (resp., weakly compact) on Lp-spaces p > 1 (resp., on Ba-
nach spaces which possess the Dunford-Pettis property), then σess(T + K) = σess(T) (see
[17, 18]). In [19], Jeribi extended this analysis of the Schechter essential spectrum to the
case of general Banach spaces and he proves that σess(T + K) = σess(T) for all K ∈ L(X)
such that (λ − T)−1K ∈ I(X), where I(X) is an arbitrary two-sided ideal of L(X) sat-
isfying K(X) ⊂ I(X) ⊂ F(X), where F(X) = {F ∈ L(X) such that F + U ∈ Φ(X)
whenever U ∈ Φ(X)}. Recently, in [20], the Schechter essential spectrum is characterized by

σess(T) =
⋂

K∈Mn(X)

σ(T +K), (1.5)

where T ∈ C(X) and Mn(X) := {A ∈ L(X) : (AB)n ∈ K(X), ∀B ∈ L(X)}. In our paper, using
the concept of measure of noncompactness, we show in Theorem 3.1 (see Section 3) that, for P
andQ two complex polynomials such thatQ divides P − 1 and γ is the Kuratowski measure of
noncompactness, we have

(i) if γ(P(T)) < 1, then Q(T) ∈ Φ+(X),

(ii) if γ(P(T)) < 1/2, then Q(T) ∈ Φ(X).

We apply this result to give a new characterization of the Schechter essential spectrum (see
Theorem 3.5) by means of the measure of noncompactness and we give sufficient conditions
on the perturbed operator (see Corollary 4.12) to have the invariance of the Schechter essential
spectrum on Banach space which possesses the Dunford-Pettis property. More precisely, we
show that in (1.5), the set Mn(X) can be replaced by the more general class:

Gn
T(X) =

{
K ∈ L(X) : γ

([
(λ − T −K)−1K

]n)
<
1
2
∀λ ∈ �(T +K)

}
(1.6)

(see Theorem 3.5), and we prove that for X having the property DP and T ∈ C(X),
σess(T +K) = σess(T), for all K in a subgroup of Gn

T(X).
Finally, we apply the obtained results to study the Schechter essential spectrum of the

multidimensional neutron transport equation which governs the time evolution of the distri-
bution of neutrons in a nuclear reactor (cf. [7, 14, 22, 32]). In [24], it was shown that if K is
a regular collusion operator, then the Schechter essential spectrum of one-dimensional trans-
port operator with general boundary conditions on L1 spaces is given as σess(T + K) = {λ ∈
C such that Reλ ≤ −λ∗},where T is the streaming operator and λ∗ := lim inf|ξ|→0σ(ξ). The possi-
bility of the above result is due to the fact that, in slab geometry, ifK is regular, then (λ − T)−1K
is weakly compact (cf. [24, Proposition 3.2(i)]). Unfortunately, for multidimensional neutron
transport equation, (λ − T)−1K is not compact nor weakly compact. For this reason, in [26], the
authors have shown only the following inclusion σess(T + K) ⊂ {λ ∈ C such that Reλ ≤ −λ∗}
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(see Theorem 5.3). In this paper, we give sufficient conditions to replace the above inclusion by
equality (see Theorem 5.3).

Our paper is organized as follows. In Section 2, we consider one axiomatic approach
to the notion of measure of noncompactness. In Section 3, we use the notion of measure of
noncompactness to establish some results concerning the class of Fredholm operators and to
apply the obtained results to give a new characterization of the Schechter essential spectrum.
The main result of this section is Theorem 3.5. In Section 4, we prove that under some condi-
tions on the perturbed operator, we get the invariance of the Schechter essential spectrum on
a Banach space which possesses the Dunford-Pettis property (see Corollary 4.12). Finally, in
Section 5, we apply the result of Theorem 4.11 to investigate the Schechter essential spectrum
of the multidimensional neutron transport equation.

2. Measure of noncompactness

The notion of measure of noncompactness turned out to be a useful tool in some problems of
topology, functional analysis, and operator theory (see [1, 3, 6, 27, 29]). In order to recall the
measure of noncompactness, let (X, ‖·‖) be an infinite-dimensional Banach space. The open ball
ofX will be denoted by BX and its closure by BX. We denote byMX the family of all nonempty
and bounded subsets of X while NX denotes its subfamily consisting of all relatively compact
sets. Moreover, let us denote by conv(A) the convex hull of a set A ⊂ X.

Let us recall the following definition.

Definition 2.1 (see [3]). A mapping μ : MX → [0,+∞[ is said to be a measure of noncompact-
ness in the space X if it satisfies the following conditions:

(i) the family Ker(μ) := {D ∈ MX : μ(D) = 0} is nonempty and Ker(μ) ⊂ NX,

for A,B ∈ MX, we have the following:

(ii) if A ⊂ B, then μ(A) ≤ μ(B),

(iii) μ(A) = μ(A),

(iv) μ(conv(A)) = μ(A),

(v) μ(λA + (1 − λ)B) ≤ λμ(A) + (1 − λ)μ(B), for allλ ∈ [0, 1],

(vi) if (An)n∈N is a sequence of sets from MX such that An+1 ⊂ An, An = An (n = 1, 2, . . . )
and limn→+∞μ(An)=0, then A∞=

⋂∞
n=1An is nonempty andA∞∈ Ker(μ).

The family Ker(μ) described in Definition 2.1(i) is called the kernel of the measure of
noncompactness μ.

Definition 2.2. A measure of noncompactness μ is said to be sublinear if for all A,B ∈ MX, it
satisfies the following two conditions:

(i) μ(λA) = |λ|μ(A) for λ ∈ R (μ is said to be homogenous),

(ii) μ(A + B) ≤ μ(A) + μ(B) (μ is said to be subadditive).

Definition 2.3. Ameasure of noncompactness μ is referred to as measure with maximum prop-
erty if max(μ(A), μ(B)) = μ(A ∪ B).
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Definition 2.4. A measure of noncompactness μ is said to be regular if Ker(μ) = NX, sublinear,
and has maximum property.

For A ∈ MX, the most important examples of measures of noncompactness (see [27])
are

(i) Kuratowski measure of noncompactness

γ(A) = inf
{
ε > 0 : A may be covered by finitely many sets of diameter ≤ ε

}
, (2.1)

(ii) Hausdorff measure of noncompactness

γ(A) = inf
{
ε > 0 : A may be covered by finitely many open balls of radius ≤ ε

}
. (2.2)

Note that these measures γ and γ are regular. The relations between these measures are given
by the following inequalities, which are obtained by Daneš [4]:

γ(A) ≤ γ(A) ≤ 2γ(A), for any A ∈ MX. (2.3)

Let T ∈ L(X). We say that T is k-set-contraction if for every set A ∈ MX, we have γ(T(A))
≤ kγ(A). T is called k-ball-contraction if γ(T(A)) ≤ kγ(A) for every set A ∈ MX. We define
γ(T) and γ(T), respectively, by

γ(T) := inf{k : T is k-set-contraction},
γ(T) := inf{k : T is k-ball-contraction}. (2.4)

In the following lemma, we give some important properties of γ(T) and γ(T).

Lemma 2.5 (see [2, 10]). Let X be a Banach space and T ∈ L(X).

(i) (1/2)γ(T) ≤ γ(T) ≤ 2γ(T).

(ii) γ(T) = 0 if and only if γ(T) = 0 if and only if T is compact.

(iii) If T, S ∈ L(X), then γ(ST) ≤ γ(S)γ(T) and γ(ST) ≤ γ(S)γ(T).

(iv) If K ∈ K(X), then γ(T +K) = γ(T) and γ(T +K) = γ(T).

(v) γ(T ∗) ≤ γ(T) and γ(T) ≤ γ(T ∗), where T ∗ denotes the dual operator of T.

3. A characterization of the Schechter essential spectrum

Let X be a Banach space. The open ball of X will be denoted by BX and its closure by BX. We
start our investigation with the following useful result.

Theorem 3.1. Let X be a Banach space, T ∈ L(X), and P, Q two complex polynomials satisfying Q
which divides P − 1.

(i) If γ(P(T)) < 1, then Q(T) ∈ Φ+(X).

(ii) If γ(P(T)) < 1/2, then Q(T) ∈ Φ(X).

To prove this theorem the following lemma is required.
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Lemma 3.2. Assume that the hypotheses of Theorem 3.1 hold true. Let M ⊂ X and let A = {x ∈ BX :
Q(T)(x) ∈ M}. If M is compact and γ(P(T)) < 1, then A is compact or empty.

Proof. Assume thatA is not empty. According to the hypothesisQ divides P−1, there existsH, a
complex polynomial such that P = HQ + 1. Consider x ∈ A and z ∈ M such that Q(T)(x) = z,
then we get H(T)Q(T)(x) + x = H(T)(z) + x, which implies x = P(T)x − H(T)(z). Since a
continuous image of a compact set by a continuous operator is also compact, it follows that

Ã =
{ −H(T)(z) : z ∈ M

}
(3.1)

is compact as well. Obviously, A ⊂ P(T)A + Ã, so using the regularity of γ , we get

γ(A) ≤ γ
(
P(T)A

)
+ γ(Ã) ≤ γ(A)γ

(
P(T)

)
. (3.2)

Since γ(P(T)) < 1, then γ(A) = 0. Consequently, by Definition 2.1 and the fact that A is closed,
we infer that A is compact.

Proof of Theorem 3.1. (i) First we prove that α(Q(T)) < ∞. To do so, it suffices to establish that
the set N(Q(T)) ∩ BX is compact, where N(Q(T)) and BX denote, respectively, the null space
of the operator Q(T) and the closed unit ball of X. The result follows from Lemma 3.2 with
M = {0}.

In order to complete the proof of (i), we will check that R(Q(T)) (the range of Q(T))
is closed. Indeed, since N(Q(T)) is finite dimensional, then there exists a closed infinite-
dimensional subspace Y in X such that X = N(Q(T)) ⊕ Y .

We claim that there exists δ > 0 satisfying δ‖Q(T)(x)‖ ≥ ‖x‖ for every x ∈ Y.Assume the
contrary, for every n ∈ N, there exists xn ∈ Y satisfying ‖xn‖ = 1 and ‖Q(T)(xn)‖ ≤ 1/n. Hence
Q(T)(xn) → 0 (when n → +∞). It follows from Lemma 3.2 withM={Q(T)(xn) : n ∈ N} ∪ {0}
that the sequence (xn)n∈N admits a subsequence (xnk

)k∈N which converges to x0 ∈ Y. Clearly,
‖x0‖ = 1 and Q(T)(x0) = 0. This is a contradiction. This proves the claim.

Using [31], it is easy to conclude that R(Q(T)) is closed. This ends the proof of (i).
(ii) Assume that γ(P(T)) < 1/2. Combining the assertions (i) and (v) of Lemma 2.5 one

has γ(P(T)∗) ≤ 2γ(P(T)) < 1,where P(T)∗ stands for the dual of the operator P(T). Arguing as
in the proof of (i), we get α(Q(T)∗) = β(Q(T)) < ∞. This completes the proof of the theorem.

As a consequence of Theorem 3.1 we have the following corollary.

Corollary 3.3. Let X be a Banach space, T ∈ L(X), and let P be a complex polynomial nonconstant
satisfying P(0) = 1.

(i) If γ(P(T)) < 1, then T ∈ Φ+(X).

(ii) If γ(P(T)) < 1/2, then T ∈ Φ(X).

(iii) If γ(I + T) < 1, then T ∈ Φ(X).

Proof. (i)-(ii) Since P(0) = 1, then Q(z) := z divides (P(z) − 1) and the result follows from
Theorem 3.1.

(iii) If γ(I + T) < 1, then limk→+∞(γ(I + T))k = 0. So, there exists k0 ∈ N
∗ such that

(γ(I + T))k0 ≤ 1/2. Using Lemma 2.5(iii), we deduce that γ((I + T)k0) ≤ 1/2. So, the result is
consequence immediate from (ii) with P(z) := (1 + z)k0 and Q(z) := z.
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Corollary 3.4. Let X be a Banach space and T ∈ L(X).
If γ(Tm) < 1, for somem > 0, then (I − T) is a Fredholm operator with i(I − T) = 0.

Proof. If γ(Tm) < 1, then limk→+∞(γ(Tm))k = 0. Arguing as in the proof of Corollary 3.3(iii),
there exists k0 ∈ N

∗ such that γ(Tmk0) ≤ 1/2. So, applying Theorem 3.1 with P(z) := zmk0 and
Q(z) := 1 − z we conclude that Q(T) := (I − T) ∈ Φ(X). Next, note that for t ∈ [0, 1], we have
γ((tT)mk0) < 1/2 and therefore (I − tT) is a Fredholm operator onX. On the other hand, the fact
that the index is constant on any component ofΦ(X) (see Proposition 1.1) and the compactness
of [0, 1] imply that i(Q(T)) = i(I − tT) = i(I) = 0.

In what follows, we will give a refinement of the definition of the Schechter essential
spectrum. For this, let X be a Banach space and let n ∈ N

∗. For each T ∈ C(X), we denote

σn
W(T) =

⋂

K∈Gn
T (X)

σ(T +K), (3.3)

where Gn
T(X) =

{
K ∈ L(X) : γ

([
(λ − T −K)−1K

]n)
< 1/2 ∀λ ∈ �(T +K)

}
.

The main result of this section is the following theorem.

Theorem 3.5. For each T ∈ C(X),

σess(T) = σn
W(T). (3.4)

Proof. We first claim that σess(T) ⊂ σn
W(T). Indeed, if λ/∈ σn

W(T), then there exists K ∈ Gn
T(X)

such that λ ∈ ρ(T + K). So, λ ∈ ρ(T + K) and γ([(λ − T −K)−1K]
n
) < 1/2. Hence, applying

Corollary 3.4(i), we get

[
I + (λ − T −K)−1K

] ∈ Φ(X), i
[
I + (λ − T −K)−1K

]
= 0. (3.5)

Moreover, we have

λ − T = (λ − T −K)
[
I + (λ − T −K)−1K

]
, (3.6)

then

(λ − T) ∈ Φ(X), i(λ − T) = 0. (3.7)

Finally, the use of Proposition 1.3 shows that λ/∈ σess(T)which proves our claim.
On the other hand, sinceK(X) ⊂ Gn

T(X), we infer that σn
W(T) ⊂ σess(T)which completes

the proof of the theorem.

Corollary 3.6. Let n ∈ N
∗, T ∈ C(X), and let H(X) be any subset of L(X) satisfying K(X) ⊂

H(X) ⊂ Gn
T(X).Then σess(T) =

⋂
K∈ H(X)σ(T +K).

Proof. The fact is that H(X) ⊂ Gn
T(X) then

⋂
K∈ Gn

T (X)σ(T + K) ⊂ ⋂
K∈ H(X)σ(T + K). Using

Theorem 3.5, we get σess(T) ⊂
⋂

k∈ H(X)σ(T +K). On the other hand, since K(X) ⊂ H(X), we
infer that

⋂
k∈ H(X)σ(T +K) ⊂ σess(T) which completes the proof.
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Corollary 3.7. Let T ∈ C(X). Consider that IT(X) is included in Gn
T(X), containing the subspace

of all compact operators K(X) and checking: for all K,K′ ∈ IT(X), K± K′ ∈ IT(X). Then, for each
K ∈ IT(X),

σess(T) = σess(T +K). (3.8)

Proof. We denote that

σ ′
W(T) =

⋂

K∈IT (X)

σ(T +K). (3.9)

From Corollary 3.6, we have σess(T) = σ ′
W(T). Furthermore, for each K ∈ IT(X), we have

IT(X) +K = IT(X). Then σ ′
W(T +K) = σ ′

W(T). Hence for each K ∈ IT(X), we get

σess (T +K) = σ ′
W(T +K) = σ ′

W(T) = σess(T), (3.10)

which completes the proof.

4. Invariance of the Schechter essential spectrum in Dunford-Pettis space

In this section, we will establish the invariance of the Schechter essential spectrum in a Banach
space X which possesses the Dunford-Pettis property. In what follows, we will assume that
T ∈ C(X) and satisfies the hypothesis (A), that is,

(i) for all R ∈ L(X), there existλ ∈ R such that ]λ,+∞[⊂ ρ(T + R),

(ii) ρess(T) is a connected set of C.

Remark 4.1. Let T ∈ C(X). If T generates a C0-semigroup and ρess(T) is a connected set, then T
satisfies the hypothesis (A).

Definition 4.2. An operator R ∈ L(X) is called T -Regular if, for all λ ∈ ρ(T), R(λ − T)−1R is
weakly compact and ρess(T + R) is a connected set of C.

We note thatRT(X) is the set of all T -Regular operators. We start by giving some lemmas useful
for the proof of the main result of this section.

Lemma 4.3. Assume that R is T -Regular. Then, for all λ ∈ �(T +R)∩�(T), R(λ−T −R)−1R is weakly
compact.

Proof. The result follows from the resolvent identity:

R(λ − T − R)−1R − R(λ − T)−1R = R(λ − T − R)−1R(λ − T)−1R. (4.1)

Remark 4.4. (i) If R is T -Regular then, for all λ ∈ �(T + R) ∩ �(T), [(λ − T − R)−1R]
4
is compact.

(ii) If ρess(T) is a connected set of C, thenK(X) ⊂ RT(X).

Lemma 4.5. Let Ω be an open connected set of C, let Y be a Banach space, and let f : Ω → L(Y ) be
an analytic operator.
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Define K(f) = {λ ∈ Ω such that f(λ) is compact}. Then one of the two possibilities must hold:

(a) K(f) = Ω,

(b) K(f) does not have a point of accumulation in Ω.

Proof. Let E = {λ ∈ Ω; λ is point of accumulation of K(f) inΩ}. If λ ∈ E, then there exists
(λn)n ∈ K(f) such that λn converges to λ. Since f is continuous, then f(λn) converges to f(λ).
As f(λn) is compact, f(λ) will be compact, so E ⊂ K(f). We fix λ ∈ K(f) and we choose r > 0,
such that B(λ, r) ⊂ Ω. Since f is analytic in B(λ, r), then f(z) =

∑
n≥0An(z − λ)n, where (An)n

are bounded operators and independent of z. We have two possibilities.

(i) An is compact for all n ∈ N, then B(λ, r) ⊂ K(f). So, each point z ∈ B(λ, r) is an

accumulation point of K(f). We deduce that B(λ, r) ⊂ E and λ ∈ ◦
E .

(ii) There exists a smaller integer m, such that Am is not compact. In this case, we write
for z ∈ B(λ, r),

f(z) =
m−1∑

k=0

Ak(z − λ)k + (z − λ)mg(z), (4.2)

where g(z) =
∑ +∞

k=0Am+k(z − λ)k. Furthermore g(λ) is not compact, using the continuity of g,
we get a neighborhood V (λ) of λ including in B(λ, r) such that g(μ) is not compact for all
μ ∈ V (λ). Indeed, suppose that for all n > 0, there exists λn ∈ B(λ, 1/n) such that g(λn) is
compact. Since limn→+∞λn = λ and g is continuous, then g(λ) is compact, contradicting g(λ) is
not compact. So, f(μ) is not compact for all μ ∈ V (λ). Hence λ is an isolated point of K(f).

Let λ ∈ E, the first possibility holds, thus E is open. Let F = Ω \ E. It follows from the
definition of E that F is open. Since Ω = E ∪ F, with E ∩ F = ∅, and Ω is a connected set, then
E = Ω, in this caseK(f) = Ω, or E = ∅, in this caseK(f) does not have a point of accumulation
in Ω.

Remark 4.6. It should be observed that the result of Lemma 4.5 remains valid if we replaceK(f)
by K1(f) = {λ ∈ Ω such that f(λ) is weakly compact}.

Lemma 4.7. IfO is an open and connected set of C and F is a set of isolated points ofO, thenO′ = O\F
is a connected set of C.

Proposition 4.8. Let R ∈ L(X).

(i) If ρess(T + R) is a connected set, then for allKcompact operator, ρ(T + R +K) is a connected
set.

(ii) If R is T -Regular, then for allK compact operator, ρ(T +R+K)∩ρ(T +R)∩ρ(T) has a point
of accumulation.

(iii) If R is T -Regular and ρ(T + R) is a connected set of C, then for all λ ∈ ρ(T + R), [(λ − T −
R)−1R]4 is compact.

Proof. (i) For all K compact operator, we have ρess(T+R) = ρess(T+R+K). Since ρess(T + R) is a
connected set, then from [20, Lemma 3.1],

C \ ρ6(T + R +K) = σess(T + R +K) = σess(T + R), (4.3)
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where ρ6(T +R +K) denotes the set of those λ ∈ ρess(T +R +K) such that all scalars near λ are
in ρ(T + R +K). The result follows from the identity

ρ(T + R +K)

= Cσe6 (T+R+K)
\ {λ ∈ σ(T + R +K); λ is an isolated eigenvalue of finite algebraic multiplicity

}

(4.4)

and Lemma 4.7.
(ii) It suffices to show that ρ(T + R + K) ∩ ρ(T + R) ∩ ρ(T) is nonempty because

for every open nonempty set, all of its points are points of accumulation. Since T satis-
fies the hypothesis (A), there exist λ1, λ2, and λ3 ∈ R such that ]λ1, +∞[ ⊂ ρ(T), ]λ2,+∞[
⊂ ρ(T + R), and ]λ3,+∞[⊂ ρ(T + R + K). If we take λ = max{λ1, λ2, λ3}, we have necessarily
]λ,+∞[⊂ ρ(T +R+K)∩ ρ(T +R)∩ ρ(T). Then the set ρ(T +R+K)∩ ρ(T +R)∩ ρ(T) has a point
of accumulation.

(iii) Let E =
{
λ ∈ ρ(T + R) such that [(λ − T − R)−1R]

4
is compact

}
. From Lemma

4.3, we have �(T + R) ∩ �(T) ⊂ E. Applying the assertion (ii), ρ(T + R) ∩ ρ(T) has a point
of accumulation. Finally, by Lemma 4.5, E = ρ(T +R). This completes the proof of the proposi-
tion.

Lemma 4.9. Let K be a compact operator and assume that R is T -Regular. Then

(i) for all λ ∈ ρ(T +K) ∩ ρ(T), R(λ − T −K)−1R is weakly compact,

(ii) for all λ ∈ ρ(T + R +K), [(λ − T − R −K)−1R]
4
is compact.

Proof. (i) By using the resolvent equation, we get the following identity:

R(λ − T −K)−1R = R(λ − T −K)−1K(λ − T)−1R + R(λ − T)−1R. (4.5)

Since R(λ−T −K)−1K(λ−T)−1R is compact and R(λ−T)−1R is weakly compact, then R(λ−T −
K)−1R is weakly compact.

(ii) For λ ∈ ρ(T + R +K) ∩ ρ(T), we have

(λ−T −R −K)−1R=(λ−T)−1R+(λ−T −R−K)−1(R +K)(λ−T)−1R = A1+A2+A3, (4.6)

whereA1 = (λ−T)−1R, A2 = (λ−T−R−K)−1R(λ − T)−1R, andA3 = (λ−T−R−K)−1K(λ − T)−1R.
Hence

[
(λ − T − R −K)−1R

]4
=
(
A1 +A2 +A3

)4 =
34∑

j=1

Qj. (4.7)

For each j ∈ {1, . . . , 34}, the operator Qj is compact, so [(λ − T − R −K)−1R]
4
is compact. Let

E′={λ∈ρ(T+R+K) such that [(λ−T−R −K)−1R]
4
is compact}.We have �(T +R+K)∩�(T) ⊂ E′.

By Proposition 4.8(ii), E′ has a point of accumulation in ρ(T + R + K). By Proposition 4.8(i),
�(T + R +K) is a connected set. Finally, by Lemma 4.5, E′ = �(T + R +K).
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Lemma 4.10. Assume that R is T -Regular. Let JT(X) be a subgroup of (L(X),+) such that JT(X) ⊂
RT(X) and let

IT(X) =
{
R +K ∈ L(X), such thatK is compact andR ∈ JT(X)

}
. (4.8)

Then

(i) K(X) ⊂ IT(X) ⊂ G4
T(X),

(ii) for all (R1 +K1), (R2 +K2) ∈ IT(X), then (R1 +K1) ± (R2 +K2) ∈ IT(X).

Proof. (i) Since the null operator õ ∈ JT(X), thenK(X) ⊂ IT(X).
Let R +K ∈ IT(X) and let λ ∈ ρ(T + R +K). We have

[
(λ−T−R−K)−1(R +K)

]4
=
[
(λ − T − R −K)−1R+ (λ − T − R −K)−1K

]4
=

24∑

j=1

Pj, (4.9)

where each Pj is a product of 4 factors formed from the operators (λ − T − R −K)−1R and

(λ − T − R −K)−1K. FromLemma 4.9, P1 = [(λ − T − R −K)−1R]
4
is compact. For j ∈ {2, . . . , 24},

the operator K appears at least one time in the expression of Pj. So Pj is compact. Hence

[(λ − T − R −K)−1(R +K)]
4
is compact for all λ ∈ ρ(T + R +K).

(ii) It is clear that for all (R1 +K1), (R2 +K2) ∈ IT(X), we have
(
R1 +K1

) ± (
R2 +K2

)
=(

R1 ± R2
)
+
(
K1 ±K2

) ∈ IT

(
X
)
.

We are now ready to prove the main result of this section.

Theorem 4.11. Let JT(X) be a subgroup of (L(X),+) such that JT(X) ⊂ RT(X). Then for all R ∈
JT(X),

σess (T + R) = σess (T). (4.10)

Proof. The result follows from Lemma 4.10 and Corollary 3.7.

Corollary 4.12. Let R ∈ L(X) such that for all n ∈ Z, nR is T -regular. Then

σess (T + R) = σess (T). (4.11)

Proof. Let JT(X) = {nR, n ∈ Z}. We have JT(X) ⊂ RT(X) and for all R1, R2 ∈ JT(X),
R1 ± R2 ∈ JT(X). Then by Theorem 4.11, we have σess(T + R) = σess(T).

5. Application to transport equation

In this section, we will apply the result of Theorem 4.11 to investigate the Scheter essential
spectrum to the multidimensional neutron transport equation which governs the time evolu-
tion of the distribution of neutrons in a nuclear reactor (cf. [7, 14, 22, 26, 32]):

∂ψ

∂t
(x, υ, t) = −υ∂ψ

∂x
(x, υ, t) − σ(υ)ψ(x, υ, t) +

∫

V

k(x, υ, υ′)ψ(x, υ′, t)dυ′

= A0ψ(x, υ, t) = T0ψ(x, υ, t) + Rψ(x, υ, t),

ψ |Γ− = 0 , ψ(x, υ, 0) = ψ0(x, υ),

(5.1)
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where T0 is the streaming operator and R denotes the integral part of A0 (the collision opera-

tor), (x, v) ∈ D ×V , whereD =
◦
D⊂ R

N and the velocity space V ⊂ R
N (N ≥ 1). The unbounded

operator A0 is studied in the Banach space X1 = L1(D × V, dx dv). Its domain is

D(
A0

)
= D(

T0
)
=
{
ψ ∈ X1, such that v

∂ψ

∂x
∈ X1, ψ |Γ− = 0

}
, (5.2)

where

Γ− =
{
(x, v) ∈ ∂D × V such that v is ingoing at x ∈ ∂D

}
. (5.3)

The function σ(·) is called the collision frequency. The scattering kernel κ(·, ·, ·) defines a linear
operator R by

R : X1 −→ X1, ψ −→
∫

V

k(x, v, v′)ψ(x, v′)dv′. (5.4)

Observe that the operator R acts only on the variables v′. So, x may be viewed merely as a
parameter in D. Hence, we may consider R as a function

R(·) : x ∈ D −→ R(x) ∈ Z, (5.5)

where Z = L(L1(V, dv)) denotes the set of all bounded linear operators on L1(V, dv). In the
following we will make the assumptions (hypothesis A1):

(i) the function R(·) is strongly measurable,

(ii) there exists a compact subset C ⊂ L(L1(V, dυ)) such that R(x) ∈ C a.e. on D,

(iii) R(x) ∈ K(L1(V, dv)) a.e. onD,

whereK(L1(V, dv)) denotes the set of all compact operators on L1(V ;dv).
Obviously, the second hypothesis ofA1 implies that

R
(·) ∈ L∞(D,Z

)
. (5.6)

Let ψ ∈ X1. It is easy to see that (Rψ)(x, v) = R(x)ψ(x, v) and then, byA1, we have
∫

V

∣∣(Rψ)(x, v)
∣∣dv ≤ ∥∥R(·)∥∥L∞(D,Z)

∫

V

∣∣ψ(x, v)
∣∣dv, (5.7)

and therefore,
∫

D

∫

V

∣∣(Rψ)(x, v)
∣∣dv ≤ ∥∥R(·)∥∥L∞(D,Z)

∫

D

∫

V

∣∣ψ(x, v)
∣∣dv. (5.8)

Thus leads to the estimate

‖R‖L(X1) ≤
∥∥R(·)∥∥L∞(D,Z). (5.9)

Definition 5.1. A collision operatorR is said to be regular if it satisfies the assumptionA1 above.

We denote by R(X1) the space of all regular operator.
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It is well known that

σ
(
T0
)
=
{
λ ∈ C such that Reλ ≤ −λ∗}, where λ∗ := lim inf

ξ|→0
σ(ξ). (5.10)

(see, e.g., [22, Corollary 12.11, page 272]). Note that the spectrum of the operator T0 was ana-
lyzed in [28]. In particular, we have

σess
(
T0
)
= σC

(
T0
)
=
{
λ ∈ C such that Reλ ≤ −λ∗}, (5.11)

where σC(T0) denotes the continuous spectrum of T0. The existence of the eigenvalues of T0+R
in the half-plan {λ ∈ C such that Reλ > −λ∗} is related to the compactness of some iterate of
(λ − T0)

−1R (see [22, Chapter 12]).

Lemma 5.2 (see [28, Lemma 2.1]). LetK andH be two regular collision operators on X1 and Reλ >
η, where η is the type of the C0-semigroup generated by T0.

(i) K(λ − T0)
−1H is weakly compact on X1. If σ(x, v) = σ(v) and if D is convex, then

K(λ − T0)
−1H is compact on X1.

(ii) If ω > η, then lim|Imλ|→+∞‖K(λ − T0)
−1H‖ = 0 uniformly in {λ; Reλ ≥ ω}.

Theorem 5.3. Let R be a regular operator such that, for all n ∈ Z, ρess(T0 + nR) is a connected set of
C. Then

σess
(
T0 + R

)
= σess

(
T0
)
=
{
λ ∈ C such that Reλ ≤ −λ∗}. (5.12)

Proof. We claim that, for all n ∈ Z, nR is T0-regular. Indeed, we have that nR is regular and
so, by Lemma 5.2, nR(λ − T0)

−1nR is weakly compact on X1, for all λ such that Re(λ) > η. The
use of Remark 4.6 and the fact that ρ(T0) is a connected set of C shows that nR(λ − T0)

−1nR
is weakly compact for all λ ∈ ρ(T0). So, for all n ∈ Z, nR is T0-regular. We define JT0(X1) =
{nR, n ∈ Z}.We haveJT0(X1) ⊂ RT0(X1) and for all R1, R2∈JT0(X1),we have R1±R2 ∈ JT0(X1).
Finally, by Theorem 4.11, we obtain σess(T0 +R) = σess(T0) = {λ ∈ C such that Reλ ≤ −λ∗}. This
completes the proof of the theorem.
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