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1. Introduction

The paper concerns the existence of nontrivial solutions for the following nonlinear elliptic
system:

−Δp(x)u =
∂F

∂u
(x, u, υ) in R

N,

−Δq(x)υ =
∂F

∂υ
(x, u, υ) in R

N,

(P,Q)

where p(x) and q(x) are two functions such that 1 < p(x), q(x) < N (N ≥ 2), for every
x ∈ R

N . However, F ∈ C1(RN × R
2) and Δp(x) is the p(x)-Laplacian operator defined by

Δp(x)u = div(|∇u|p(x)−2∇u). Using a variational approach, the authors prove the existence of
nontrivial solutions.

Over the last decades, the variable exponent Lebesgue space Lp(x) and Sobolev space
W1,p(x) [1–5] have been a subject of active research stimulated mainly by the development
of the studies of problems in elasticity, electrorheological fluids, image processing, flow in
porous media, calculus of variations, and differential equations with p(x)-growth conditions
[6–13].

Among these problems, the study of p(x)-Laplacian problems via variational methods
is an interesting topic. A lot of researchers have devoted their work to this area [14–22].
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The operator Δp(x)u := div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, where p is a continuous
nonconstant function. In particular, if p(x) ≡ p (constant), it is the well-known p-Laplacian
operator. However, the p(x)-Laplace operator possesses more complicated nonlinearity than
p-Laplace operator due to the fact that Δp(x) is not homogeneous. This fact implies some
difficulties, as for example, we cannot use the Lagrange multiplier theorem and Morse
theorem in a lot of problems involving this operator.

In literature, elliptic systems with standard and nonstandard growth conditions have
been studied by many authors [23–28], where the nonlinear function F have different and
mixed growth conditions and assumptions in each paper.

In [29], the authors show the existence of nontrivial solutions for the following p-
Laplacian problem:

−Δpu =
∂F

∂u
(x, u, υ) in R

N,

−Δqυ =
∂F

∂υ
(x, u, υ) in R

N,

(1.1)

where F ∈ C1(RN × R
2) yields some mixed growth conditions and the primitive F being

intimately connected with the first eigenvalue of an appropriate system. Using a weak
version of the Palais-Smale condition, that is, Cerami condition, they apply the mountain
pass theorem to get the nontrivial solutions of the the system.

In [30], the author obtains the existence and multiplicity of solutions for the following
problem:

−div(|∇u|p(x)−2∇u) =
∂F

∂u
(x, u, υ) in Ω,

−div(|∇υ|q(x)−2∇υ) =
∂F

∂υ
(x, u, υ) in Ω,

u = 0, υ = 0 on Ω,

(1.2)

where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω, N ≥ 2, (p, q) ∈

C(Ω)
2
, p(x) > 1, q(x) > 1, for every x ∈ Ω. The function F is assumed to be continuous

in x ∈ Ω and of class C1 in u, υ ∈ R. Introducing some natural growth hypotheses on the
right-hand side of the system which will ensure the mountain pass geometry and Palais-
Smale condition for the corresponding Euler-Lagrange functional of the system, the author
limits himself to the subcritical case for function F to obtain the existence and multiplicity
results.

In the paper [31], Xu and An deal with the following problem:

−div(|∇u|p(x)−2∇u) + |u|p(x)−2u =
∂F

∂u
(x, u, υ) in R

N,

−div(|∇υ|q(x)−2∇υ) + |υ|q(x)−2υ =
∂F

∂υ
(x, u, υ) in R

N,

(u, υ) ∈ W1,p(x)(RN) ×W1,q(x)(RN),

(1.3)

where N ≥ 2, p(x), q(x) are functions on R
N . The function F is assumed to satisfy

Caratheodory conditions and to be L∞ in x ∈ R
N and C1 in u, υ ∈ R. By the critical point
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theory, the authors use the two basic results on the existence of solutions of the system; these
results correspond to the sublinear and superlinear cases for p = 2, respectively.

Inspired by the above-mentioned papers, we concern the existence of nontrivial
solutions of problem (P,Q). We know that in the study of p(x)-Laplace equations in R

N , the
main difficulty arises from the lack of compactness. So, establishing some growth conditions
on the right-hand side of the system which will ensure the mountain pass geometry
and Cerami condition for the corresponding Euler-Lagrange functional J and applying a
subcritical case for function F, we will overcome this difficulty.

2. Notations and preliminaries

We will investigate our problem (P,Q) in the variable exponent Sobolev space W
1,p(x)
0 (RN),

so we need to recall some theories and basic properties on spaces Lp(x)(RN) andW1,p(x)(RN).
Set

C+(RN) =
{
h ∈ C(RN) : inf

x∈RN
h(x) > 1

}
. (2.1)

For every h ∈ C+(RN), denote

h− := inf
x∈RN

h(x), h+ := sup
x∈RN

h(x). (2.2)

Let us define by U(RN) the set of all measurable real-valued functions defined on R
N .

For p ∈ C+(RN), we denote the variable exponent Lebesgue space by

Lp(x)(RN) =
{
u ∈ U(RN) :

∫
R

N

|u(x)| p(x)dx < ∞
}
, (2.3)

which is equipped with the norm, so-called Luxemburg norm [1, 3, 4]:

|u|p(x) := |u|Lp(x)(RN) = inf
{
λ > 0 :

∫
R

N

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 1
}
, (2.4)

and (Lp(x)(RN), |·|Lp(x)(RN)) becomes a Banach space, we call it generalized Lebesgue space.
Define the variable exponent Sobolev space W1,p(x)(RN) by

W1,p(x)(RN) = {u ∈ Lp(x)(RN) : |∇u| ∈ Lp(x)(RN)}, (2.5)

and it can be equipped with the norm

‖u‖1,p(x) := ‖u‖W1,p(x) = |u|p(x) + |∇u|p(x) ∀u ∈ W1,p(x)(RN). (2.6)

The space W
1,p(x)
0 (RN) is denoted by the closure of C∞

0 (RN) in W1,p(x)(RN) and it is

equipped with the norm for all u ∈ W
1,p(x)
0 (RN):

‖u‖p(x) = |∇u|p(x) ∀u ∈ W
1,p(x)
0 (RN). (2.7)

If p− > 1, then the spaces Lp(x)(RN), W1,p(x)(RN), and W
1,p(x)
0 (RN) are separable and

reflexive Banach spaces.



4 Journal of Inequalities and Applications

Proposition 2.1 (see [1, 3, 4]). The conjugate space of Lp(x)(RN) is Lp′(x)(RN), where 1/p′(x) +
1/p(x) = 1. For any u ∈ Lp(x)(RN) and v ∈ Lp′(x)(RN), we have

∣∣∣∣
∫
RN

uv dx

∣∣∣∣ ≤
(

1
p−

+
1

(p′)−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.8)

Proposition 2.2 (see [1, 3, 4]). Denote �p(x)(u) =
∫
RN |u(x)| p(x)dx for all u ∈ Lp(x)(RN), one has

min
{
|u|p−

p(x), |u|
p+

p(x)

}
≤ �p(x)(u) ≤ max

{
|u|p−

p(x), |u|
p+

p(x)

}
. (2.9)

Proposition 2.3 (see [1]). Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(RN)
and 1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ R

N. Let u ∈ Lq(x)(RN), u /= 0. Then,

|u|p(x)q(x) ≤ 1 =⇒ |u|p+
p(x)q(x) ≤

∣∣|u|p(x)∣∣q(x) ≤ |u|p−
p(x)q(x),

|u|p(x)q(x) ≥ 1 =⇒ |u|p−
p(x)q(x) ≤

∣∣|u|p(x)∣∣q(x) ≤ |u|p+
p(x)q(x).

(2.10)

In particular, if p(x) = p is constant, then

||u|p|q(x) = |u|p
pq(x). (2.11)

Proposition 2.4 (see [3, 4]). If u, un ∈ Lp(x)(RN), n = 1, 2, . . . , then the following statements are
equivalent to each other:

(1) limn→∞|un − u|p(x) = 0,

(2) limn→∞�(un − u) = 0,

(3) un → u in measure in R
N and limn→∞�(un) = �(u).

Definition 2.5. 1 < p(x) < N and for all x ∈ R
N , let define

p∗(x) =

⎧⎪⎨
⎪⎩

Np(x)
N − p(x)

if p(x) < N,

+∞ if p(x) ≥ N,

where p∗(x) is the so-called critical Sobolev exponent of p(x).

Proposition 2.6 (see [1, 32]). Let p(x) ∈ C0,1
+ (RN), that is, Lipschitz-continuous function defined

on R
N , then there exists a positive constant c such that

|u|p∗(x) ≤ c‖u‖p(x), (2.12)

for all u ∈ W
1,p(x)
0 (RN).

In the following discussions, we will use the product space

Wp(x),q(x) := W
1,p(x)
0 (RN) ×W

1,q(x)
0 (RN), (2.13)



S. Ogras et al. 5

which is equipped with the norm

‖(u, υ)‖p(x),q(x) := max
{‖u‖p(x) + ‖υ‖q(x)

} ∀(u, υ) ∈ Wp(x),q(x), (2.14)

where ‖u‖p(x) (resp., ‖u‖q(x)) is the norm of W
1,p(x)
0 (RN) (resp., W1,q(x)

0 (RN)). The space
W∗

p(x),q(x) denotes the dual space of Wp(x),q(x) and equipped with the norm ‖·‖∗,p(x),q(x). Thus,

‖J ′(u, υ)‖∗,p(x),q(x) = ‖D1J(u, υ)‖∗,p(x) + ‖D2J(u, υ)‖∗,q(x), (2.15)

where W−1,p′(x)(RN) (resp., W−1,q′ (x)(RN)) is the dual space of W
1,p(x)
0 (RN) (resp.,

W
1,q(x)
0 (RN)), and ‖·‖∗,p(x) (resp., ‖·‖∗,q(x)) is its norm.

For (u, υ) and (ϕ, ψ) inWp(x),q(x), let

F(u, υ) =
∫
RN

F(x, u(x), υ(x))dx. (2.16)

Then,

F′(u, υ)(ϕ, ψ) = D1F(u, υ)(ϕ) +D2F(u, υ)(ψ), (2.17)

where

D1F(u, υ)(ϕ) =
∫
RN

∂F

∂u
(x, u, υ)ϕdx,

D2F(u, υ)(ψ) =
∫
RN

∂F

∂υ
(x, u, υ)ψ dx.

(2.18)

The Euler-Lagrange functional associated to (P,Q) is defined by

J(u, υ) =
∫
RN

1
p(x)

|∇u|p(x)dx +
∫
RN

1
q(x)

|∇υ|q(x)dx − (u, υ). (2.19)

It is easy to verify that J ∈ C1(Wp(x),q(x),R) and that

J ′(u, υ)(ϕ, ψ) = D1J(u, υ)(ϕ) +D2J(u, υ)(ψ), (2.20)

where

D1J(u, υ)(ϕ) =
∫
RN

|∇u|p(x)−2∇u∇ϕdx −D1F(u, υ)(ϕ),

D2J(u, υ)(ψ) =
∫
RN

|∇υ|q(x)−2∇υ∇ψ dx −D2F(u, υ)(ψ).
(2.21)

Definition 2.7. (u, υ) is called a weak solution of the system (P,Q) if
∫
RN

|∇u|p(x)−2∇u∇ϕdx+
∫
RN

|∇υ|q(x)−2∇υ∇ψ dx=
∫
RN

∂F

∂u
(x, u, υ)ϕdx +

∫
RN

∂F

∂υ
(x, u, υ)ψ dx,

(2.22)

for all (ϕ, ψ) ∈ Wp(x),q(x).



6 Journal of Inequalities and Applications

Definition 2.8. We say that J satisfies the Cerami condition (C) if every sequence (ωn) ∈
Wp(x),q(x) such that

|J(ωn)| ≤ c, (1 + ‖ωn‖)J ′(ωn) −→ 0 (2.23)

contains a convergent subsequence in the norm of Wp(x),q(x).
In this paper, we will use the following assumptions:

(F1) F ∈ C1(RN × R
2,R) and F(x, 0, 0) = 0;

(F2) for all (u, υ) ∈ R
2 and for a.e. x ∈ R

N

∣∣∣∣∂F∂u (x, u, υ)
∣∣∣∣ ≤ a1(x)|(u, υ)|p

−−1 + a2(x)|(u, υ)|p
+−1,

∣∣∣∣∂F∂υ (x, u, υ)
∣∣∣∣ ≤ b1(x)|(u, υ)|q

−−1 + b2(x)|(u, υ)|q
+−1,

(2.24)

where

1 < p−, q− ≤ p+, q+ < (p∗)−, (q∗)−,

ai ∈ Lδ(x)(RN) ∩ Lβ(x)(RN), bi ∈ Lγ(x)(RN) ∩ Lβ(x)(RN), i = 1, 2,

δ(x) =
p(x)

p(x) − 1
, γ(x) =

q(x)
q(x) − 1

, p̃(x) =
p∗(x)p(x)

p∗(x) − p(x)
,

q̃(x) =
q∗(x)q(x)

q∗(x) − q(x)
, β(x) =

p∗(x)q∗(x)
p∗(x)q∗(x) − (p∗(x) + q∗(x))

;

(2.25)

(F3) (u, υ)·∇F(x, u, υ) − F(x, u, υ) ≤ 0 for all (x, u, υ) ∈ R
N × R

2 \ {(0, 0)}, where ∇F =
(∂F/∂u, ∂F/∂υ);

(F4) suppose there exist two positive and bounded functions a ∈ LN/p(x)(RN) and b ∈
LN/q(x)(RN) such that

lim
|(u,υ)|→0

sup
p(x)q(x)|F(x, u, υ)|

q(x)a(x)|u|p(x) + p(x)b(x)|υ|q(x)

< λ1 < lim
|(u,υ)|→+∞

inf
p(x)q(x)|F(x, u, υ)|

q(x)a(x)|u|p(x) + p(x)b(x)|υ|q(x)
.

(2.26)

Let λ1 denote the first eigenvalue of the nonlinear eigenvalue problem in R
N :

−Δp(x)u = λa(x)|u|p(x)−2u in R
N,

−Δq(x)υ = λb(x)|υ|q(x)−2 υ in R
N.

(2.27)

It is useful to recall the variational characterization:

λ1 = inf

{ ∫
RN ((1/p(x))|∇u|p(x) + (1/q(x))|∇υ|q(x))dx∫

RN ((a(x)/p(x))|u|p(x) + (b(x)/q(x))|υ|q(x))dx
: (u, υ) ∈ Wp(x),q(x) \ {(0, 0)}

}
.

(2.28)

We will assume that λ1 is a positive real number for all (u, υ) ∈ Wp(x),q(x) \ {(0, 0)}. For
more details about the eigenvalue problems, we refer the reader to [17].
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3. The main results

We will use the mountain pass theorem together with the following lemmas to get our main
results.

Lemma 3.1. Under the assumptions (F1) and (F2), the functional F is well defined, and it is of class
C1 on Wp(x),q(x). Moreover, its derivative is

F′(u, υ)(ω, z) =
∫
RN

∂F

∂u
(x, u, υ)ωdx +

∫
RN

∂F

∂υ
(x, u, υ)zdx ∀(u, υ), (ω, z) ∈ Wp(x),q(x).

(3.1)

Proof. For all pair of real functions (u, υ) ∈ Wp(x),q(x), under the assumptions (F1) and (F2),
we can write

F(x, u, υ) =
∫u

0

∂F

∂s
(x, s, υ)ds + F(x, 0, υ) =

∫u

0

∂F

∂s
(x, s, υ)ds +

∫υ

0

∂F

∂s
(x, 0, s)ds + F(x, 0, 0),

F(x, u, υ) ≤ c1[a1(x)(|u|p
−
+ |υ|p−−1|u|) + a2(x)(|u|p

+
+ |υ|p+−1|u|) + b1(x)|υ|q

−
+ b2(x)|υ|q

+
].
(3.2)

Then,

∫
RN

F(x, u, υ)dx ≤ c2

[∫
RN

a1(x)|u|p
−
dx +

∫
RN

a1(x)|υ|p
−−1|u|dx +

∫
RN

a2(x)|u|p
+
dx

+
∫
RN

a2(x)|υ|p
+−1|u|dx +

∫
RN

b1(x)|υ|q
−
dx +

∫
RN

b2(x)|υ|q
+
dx

]
,

(3.3)

if we consider the fact that

W
1,p(x)
0 (RN) ↪→ Lp−p(x)(RN) =⇒ ||u|p− |p(x) = |u|p−

p−p(x) ≤ c‖u‖p−
p(x) for p− > 1, (3.4)

and if we apply Propositions 2.1, 2.3, and 2.6 and take ai ∈ Lδ(x)(RN) ∩ Lβ(x)(RN), bi ∈
Lγ(x)(RN), then we have

∫
RN

F(x, u, υ)dx ≤ 2c1
(
|a1|δ(x)||u|p

− |p(x) + |a1|β(x)||υ|p
−−1|q∗(x)|u|p∗(x) + |a2|δ(x)||u|p

+ |p(x)

+ |a2|β(x)||υ|p
+−1|q∗(x)|u|p∗(x) + |b1|γ(x)||υ|q

− |q(x) + |b2|γ(x)||υ|q
+ |q(x)

)

= 2c1
(
|a1|δ(x)|u|p

−

p−p(x) + |a1|β(x)|υ|p
−−1

(p−−1)q∗(x)|u|p∗(x) + |a2|δ(x)|u|p
+

p+p(x)

+ |a2|β(x)|υ|p
+−1

(p+−1)q∗(x)|u|p∗(x) + |b1|γ(x)|υ|q
−

q−q(x) + |b2|γ(x)|υ|q
+

q+q(x)

)

≤ c3
(
|a1|δ(x)‖u‖p

−

p(x) + |a1|β(x)‖υ‖p
−−1

q(x) ‖u‖p(x) + |a2|δ(x)‖u‖p
+

p(x)

+ |a2|β(x)‖υ‖p
+−1

q(x) ‖u‖p(x) + |b1|γ(x)‖υ‖q
−

q(x) + |b2|γ(x)‖υ‖q
+

q(x)

)
< ∞.

(3.5)
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Hence,F is well defined. Moreover, one can see easily thatF′ is also well defined onWp(x),q(x).
Indeed, using (F2) for all (ω, z) ∈ Wp(x),q(x), we have

F′(u, υ)(ω, z) =
∫
RN

∂F

∂u
(x, u, υ)ωdx +

∫
RN

∂F

∂υ
(x, u, υ)zdx,

F′(u, υ)(ω, z) ≤
∫
RN

(a1(x)|(u, υ)|p
−−1 + a2(x)|(u, υ)|p

+−1)|ω|dx

+
∫
RN

(b1(x)|(u, υ)|q
−−1 + b2(x)|(u, υ)|q

+−1)|z|dx

≤
∫
RN

a1(x)|u|p
−−1|ω|dx +

∫
RN

a1(x)|υ|p
−−1|ω|dx

+
∫
RN

a2(x)|u|p
+−1|ω|dx +

∫
RN

a2(x)|υ|p
+−1|ω|dx

+
∫
RN

b1(x)|u|q
−−1|z|dx +

∫
RN

b1(x)|υ|q
−−1|z|dx

+
∫
RN

b2(x)|u|q
+−1|z|dx +

∫
RN

b2(x)|υ|q
+−1|z|dx,

(3.6)

and applying Propositions 2.1, 2.3, and 2.6 and considering the conditions p̃(x) > p(x) and
q̃(x) > q(x), it follows that
∫
RN

∂F

∂u
(x, u, υ)ωdx ≤ 2

(
|a1|δ(x)||u|p

−−1|p∗(x)|ω|p̃(x) + |a1|β(x)||υ|p
−−1|q∗(x)|ω|p∗(x)

+ |a2|δ(x)||u|p
+−1|p∗(x)|ω|p̃(x) + |a2|β(x)||υ|p

+−1|q∗(x)|ω|p∗(x)
)

≤ 2
(
|a1|δ(x)|u|p

−−1
(p−−1)p∗(x)|ω|p̃(x) + |a1|β(x)|υ|p

−−1
(p−−1)q∗(x)|ω|p∗(x)

+ |a2|δ(x)|u|p
+−1

(p+−1)p∗(x)|ω|p̃(x) + |a2|β(x)|υ|p
+−1

(p+−1)q∗(x)|ω|p∗(x)
)

≤ c4
(
|a1|δ(x)‖u‖p

−−1
p(x) +|a1|β(x)‖υ‖p

−−1
q(x) +|a2|δ(x)‖u‖p

+−1
p(x) +|a2|β‖υ‖p

+−1
q(x)

)
‖ω‖p(x)

< ∞,

(3.7)

and similarly
∫
RN

∂F

∂υ
(x, u, υ)zdx

≤ c5
(
|b1|β(x)‖u‖q

−−1
p(x) +|b1|γ(x)‖υ‖

q−−1
q(x) +|b2|β(x)‖u‖

q+−1
p(x) +|b2|γ(x)‖υ‖

q+−1
q(x)

)
‖z‖q(x)<∞.

(3.8)

Now let us show that F is differentiable in sense of Fréchet, that is, for fixed (u, υ) ∈
Wp(x),q(x) and given ε > 0, there must be a δ = (ε, u, υ) > 0 such that

|F(u +ω, υ + z) − F(u, υ) − F′(u, υ)(ω, z)| ≤ ε(‖ω‖p(x) + ‖z‖q(x)), (3.9)

for all (ω, z) ∈ Wp(x),q(x) with (‖ω‖p(x) + ‖z‖q(x)) ≤ δ.
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Let Br be the ball of radius r which is centered at the origin of RN and denote B′
r =

R
N − Br. Moreover, let us define the functional Fr on W

1,p(x)
0 (Br) ×W

1,q(x)
0 (Br) as follows:

Fr(u, υ) =
∫
Br

F(x, u(x), υ(x))dx. (3.10)

If we consider (F1) and (F2), it is easy to see that Fr ∈ C1(W1,p(x)
0 (Br) ×W

1,q(x)
0 (Br)), and in

addition for all (ω, z) ∈ W
1,p(x)
0 (Br) ×W

1,q(x)
0 (Br),we have

F′
r(u, υ)(ω, z) =

∫
Br

∂F

∂u
(x, u, υ)ωdx +

∫
Br

∂F

∂υ
(x, u, υ)zdx. (3.11)

Also as we know, the operator F′
r : Wp(x),q(x) → W∗

p(x),q(x) is compact [3]. Then, for all
(u, υ), (ω, z) ∈ Wp(x),q(x), we can write

∣∣F(u +ω, υ + z) − F(u, υ) − F′(u, υ)(ω, z)
∣∣

≤ ∣∣Fr(u +ω, υ + z) − Fr(u, υ) − F′
r(u, υ)(ω, z)

∣∣
+
∣∣∣∣
∫
B′
r

(F(x, u +ω, υ + z) − F(x, u, υ) − ∂F

∂u
(x, u, υ)ω − ∂F

∂υ
(x, u, υ)z)dx

∣∣∣∣.
(3.12)

By virtue of the mean-value theorem, there exist ζ1, ζ2 ∈ (0, 1) such that

F(x, u +ω, υ + z) − F(x, u, υ) =
∂F

∂u
(x, u + ζ1ω, υ)ω +

∂F

∂υ
(x, u, υ + ζ2z)z. (3.13)

Using the condition (F2), we have

∣∣∣∣
∫
B′
r

(
∂F

∂u
(x, u + ζ1ω, υ)ω +

∂F

∂υ
(x, u, υ + ζ2z)z − ∂F

∂u
(x, u, υ)ω − ∂F

∂υ
(x, u, υ)z

)
dx

∣∣∣∣

≤
∣∣∣∣
∫
B′
r

(
a1(x)

(|u + ζ1ω|p−−1 − |u|p−−1) + a2(x)
(|u + ζ1ω|p+−1 − |u|p+−1))|ω|dx

+
∫
B′
r

(
b1(x)

(|υ + ζ2z|q
−−1 − |υ|q−−1) + b2(x)

(|υ + ζ2z|q
+−1 − |υ|q+−1))|z|dx

∣∣∣∣.

(3.14)

By help of the elementary inequality |a + b|s ≤ 2s−1(|a|s + |b|s) for a, b ∈ R
N , we can write

≤ (2p
−−1 − 1)

∫
B′
r

a1(x)|u|p
−−1|ω|dx + (ζ12)

p−−1
∫
B′
r

a1(x)|ω|p−−1|ω|dx

+ (2p
+−1 − 1)

∫
B′
r

a2(x)|u|p
+−1|ω|dx + (ζ12)

p+−1
∫
B′
r

a2(x)|ω|p+−1|ω|dx

+ (2q
−−1 − 1)

∫
B′
r

b1(x)|υ|q
−−1|z|dx + (ζ22)

q−−1
∫
B′
r

b1(x)|z|q
−−1|z|dx

+ (2q
+−1 − 1)

∫
B′
r

b2(x)|υ|q
+−1|z|dx + (ζ22)

q+−1
∫
B′
r

b2(x)|z|q
+−1|z|dx,

(3.15)
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applying Propositions 2.1, 2.3, and 2.6, then we have

≤ c6
(
|a1|δ(x)||u|p

−−1|p∗(x)|ω|p̃(x) + |a1|δ(x)||ω|p−−1|p∗(x)|ω|p̃(x)

+ |a2|δ(x)||u|p
+−1|p∗(x)|ω|p̃(x) + |a2|δ(x)||ω|p+−1|p∗(x)|ω|p̃(x)

+ |b1|γ(x)||υ|q
−−1|q∗(x)|z|q̃(x) + |b1|γ(x)||z|q

−−1|q∗(x)|z|q̃(x)

+ |b2|γ(x)||υ|q
+−1|q∗(x)|z|q̃(x) + |b2|γ(x)||z|q

+−1|q∗(x)|z|q̃(x)
)
,

≤ c7
((

|a1|δ(x)‖u‖p
−−1

p(x) + |a1|δ(x)‖ω‖p−−1
p(x)

)
+
(
|a2|δ(x)‖u‖p

+−1
p(x) + |a2|δ(x)‖ω‖p+−1

p(x)

))
‖ω‖p(x)

+
((

|b1|γ(x)‖υ‖q
−−1

q(x) + |b1|γ(x)‖z‖q
−−1

q(x)

)
+
(
|b2|γ(x)‖υ‖q

+−1
q(x) + |b2|γ(x)‖z‖q

+−1
q(x)

))
‖z‖q(x),

(3.16)

and by the fact that

|ai|Lδ(x)(B′
r) −→ 0,

|bi|Lγ(x)(B′
r) −→ 0

(3.17)

for i = 1, 2, as r → ∞, and for r sufficiently large, it follows that

∣∣∣∣
∫
B′
r

(
F(x, u +ω, υ + z) − F(x, u, υ) − ∂F

∂u
(x, u, υ)ω − ∂F

∂υ
(x, u, υ

)
z)dx

∣∣∣∣ ≤ ε(‖ω‖p(x) + ‖z‖q(x)).
(3.18)

It remains only to show that F′
is continuous on Wp(x),q(x). Let (un, υn), (u, υ) ∈

Wp(x),q(x) such that (un, υn) → (u, υ). Then, for (ω, z) ∈ Wp(x),q(x), we have

|F′(un, υn)(ω, z) − F′(u, υ)(ω, z)| ≤ |F′
r(un, υn)(ω, z) − F′

r(u, υ)(ω, z)|

+
∣∣∣∣
∫
B′
r

(
∂F

∂u
(x, un, υn) +

∂F

∂u
(x, u, υ)

)
ωdx

∣∣∣∣

+
∣∣∣∣
∫
B′
r

(
∂F

∂υ
(x, un, υn) +

∂F

∂υ
(x, u, υ)

)
zdx

∣∣∣∣,
(3.19)

then by (F2), we can write

∫
B′
r

a1(x)(|un|p
−−1 + |u|p−−1 + |υn|p

−−1 + |υ|p−−1)|ω|dx (3.20)

+
∫
B′
r

a2(x)(|un|p
+−1 + |u|p+−1 + |υn|p

+−1 + |υ|p+−1)|ω|dx (I1)

+
∫
B′
r

b1(x)(|un|q
−−1 + |u|q−−1 + |υn|q

−−1 + |υ|q−−1)|z|dx (I2)

+
∫
B′
r

b2(x)(|un|q
+−1 + |u|q+−1 + |υn|q

+−1 + |υ|q+−1)|z|dx. (3.21)
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Thus,

I1 ≤
∫
B′
r

a1(x)|un|p
−−1|ω|dx +

∫
B
′
r

a1(x)|u|p
−−1|ω|dx +

∫
B
′
r

a1(x)|υn|p
−−1|ω|dx

+
∫
B′
r

a1(x)|υ|p
−−1|ω|dx +

∫
B
′
r

a2(x)|un|p
+−1|ω|dx +

∫
B
′
r

a2(x)|u|p
+−1|ω|dx

+
∫
B′
r

a2(x)|υn|p
+−1|ω|dx +

∫
B
′
r

a2(x)|υ|p
+−1|ω|dx

≤ c9
(
|a1|δ(x)‖un‖p

−−1
p(x) + |a1|δ(x)‖u‖p

−−1
p(x) + |a1|β(x)‖υn‖p

−−1
q(x) + |a1|β(x)‖υ‖p

−−1
q(x)

+ |a2|δ(x)‖un‖p
+−1

p(x) + |a2|δ(x)‖u‖p
+−1

p(x) + |a2|β(x)‖υn‖p
+−1

q(x) + |a2|β(x)‖υ‖p
+−1

q(x)

)
‖ω‖p(x).

(3.22)

Similarly,

I2 ≤ c10
(
|b1|β(x)‖un‖q

−−1
p(x) + |b1|β(x)‖u‖q

−−1
p(x) + |b1|γ(x)‖υn‖q

−−1
q(x) + |b1|γ(x)‖υ‖

q−−1
q(x)

+ |b2|β(x)‖un‖q
+−1

p(x) + |b2|β(x)‖u‖q
+−1

p(x) + |b2|γ(x)‖υn‖q
+−1

q(x) + |b2|γ(x)‖υ‖q
+−1

q(x)

)
‖z‖q(x).

(3.23)

Since F′
r is continuous on W

1,p(x)
0 (Br) ×W

1,q(x)
0 (Br), then we have

|F′
r(un, υn)(ω, z) − F′

r(u, υ)(ω, z)| −→ 0, (3.24)

as n → ∞.Moreover, using (3.17), when r sufficiently large, I1 and I2 tend also to 0. Hence,

|F′(un, υn)(ω, z) − F′(u, υ)(ω, z)| −→ 0, (3.25)

as (un, υn) → (u, υ), this implies F′
is continuous on Wp(x),q(x).

Lemma 3.2. Under the assumptions (F1) and (F2), F′ is compact fromWp(x),q(x) toW∗
p(x),q(x).

Proof. Let (un, υn) be a bounded sequence in Wp(x),q(x). Then, there exists a subsequence (we
denote again as (un, υn)) which converges weakly in Wp(x),q(x) to a (u, υ) ∈ Wp(x),q(x). Then, if
we use the same arguments as above, we have

|F′(un, υn)(ω, z) − F′(u, υ)(ω, z)| ≤ |F′
r(un, υn)(ω, z) − F′

r(u, υ)(ω, z)|

+
∣∣∣∣
∫
B′
r

(
∂F

∂u
(x, un, υn) − ∂F

∂u
(x, u, υ)

)
ωdx

∣∣∣∣

+
∣∣∣∣
∫
B′
r

(
∂F

∂υ
(x, un, υn) − ∂F

∂υ
(x, u, υ)

)
zdx

∣∣∣∣.
(3.26)

Since the restriction operator is continuous, then (un, υn) ⇀ (u, υ) inW
1,p(x)
0 (Br)×W1,q(x)

0 (Br).
Because of the compactness of F′

r , the first expression on the right-hand side of the equation
tends to 0, as n → ∞, and as we did above, when r sufficiently large, I1 and I2 tend also to
0. This implies F′ is compact from Wp(x),q(x) toW∗

p(x),q(x).
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Lemma 3.3. If (F1), (F2), and (F3) hold, then J satisfies the condition (C), that is, there exists a
sequence (un, υn) ∈ Wp(x),q(x) such that

(i) |J(un, υn)| ≤ c,

(ii) (1 + ‖un‖p(x) + ‖υn‖q(x))‖J ′(un, υn)‖∗,p(x),q(x) → 0 as n → +∞
contains a convergent subsequence.

Proof. By the assumption (ii), it is clear that J
′
(un, υn)(ω, z) ≤ ξn → 0 as n → ∞ for all

(ω, z) ∈ Wp(x),q(x). Let us choose (ω, z) = (un, υn), then we have

ξn ≥ J ′(un, υn)(un, υn)

≥ ‖un‖p
−

p(x) + ‖υn‖q
−

q(x) −
∫
RN

(
∂F

∂u
(x, un, υn)un +

∂F

∂υ
(x, un, υn)υn

)
dx.

(3.27)

Moreover, by the assumption (i), we can write

c ≥ −J(un, υn) ≥ − 1
p+

‖un‖p
−

p(x) −
1
q+

‖υn‖q
−

q(x) +
∫
RN

F(x, un, υn)dx. (3.28)

Using the assumption (F3), it follows that

ξn + c ≥ J ′(un, υn)(un, υn) − J(un, υn)

≥
(
1 − 1

p+

)
‖un‖p

−

p(x) +
(
1 − 1

q+

)
‖υn‖q

−

q(x) +
∫
RN

F(x, un, υn)dx

−
∫
RN

(
∂F

∂u
(x, un, υn)un +

∂F

∂υ
(x, un, υn)υn

)
dx

≥
(
1 − 1

p+

)
‖un‖p

−

p(x) +
(
1 − 1

q+

)
‖υn‖q

−

q(x).

(3.29)

Thus, the sequence (un, υn) is bounded in Wp(x),q(x). Then, there exists a subsequence (we
denote again as (un, υn))which converges weakly in Wp(x),q(x).

We recall the elementary inequalities:

22−p|a − b|p ≤ (a|a|p−2 − b|b|p−2)·(a − b) if p ≥ 2, (3.30)

(p − 1)|a − b|2(|a| + |b|)p−2 ≤ (a|a|p−2 − b|b|p−2)·(a − b) if 1 < p < 2, (3.31)

for all a, b ∈ R
N,where · denotes the standard inner product inR

N.Wewill show that (un, υn)
contains a Cauchy subsequence. Let us define the sets

Up = {x ∈ R
N : p(x) ≥ 2}, Vp = {x ∈ R

N : 1 < p(x) < 2},
Uq = {x ∈ R

N : q(x) ≥ 2}, Vq = {x ∈ R
N : 1 < q(x) < 2}.

(3.32)

For all x ∈ R
N, we put

Φn,k = (|∇un|p(x)−2∇un − |∇uk|p(x)−2∇uk)·(∇un − ∇uk),

Ψn,k = (|∇un| + |∇uk|)2−p(x).
(3.33)
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Therefore for p(x) ≥ 2, using (3.30), we have

22−p
+
∫
Up

|∇un − ∇uk|p(x)dx ≤
∫
Up

[(|∇un|p(x)−2∇un − |∇uk|p(x)−2∇uk)·(∇un − ∇uk)]dx

≤
∫
RN

Φn,k dx := Tn,k

= (D1J(un, υn)−D1J(uk, υk)+D1F(un, υn)−D1F(uk, υk))(un−uk)

≤
(
‖D1J(un, υn)‖∗,p(x),q(x) + ‖D1J(uk, υk)‖∗,p(x),q(x)

)
‖un − uk‖p(x)

+ ‖D1F(un, υn) −D1F(uk, υk)‖∗,p(x),q(x)‖un − uk‖p(x).
(3.34)

When 1 < p(x) < 2, employing (3.31) and Proposition 2.2, it follows
∫
Vp

|∇un−∇uk|p(x)dx≤
∫
Vp

|∇un−∇uk|p(x)(|∇un|+|∇uk|)p(x)(p(x)−2)/2(|∇un|+|∇uk|)p(x)(2−p(x))/2dx

≤ 2
∣∣∣|∇un − ∇uk|p(x).Ψ−p(x)/2

n,k

∣∣∣
2/p(x)

×
∣∣∣Ψp(x)/2

n,k

∣∣∣
2/(2−p(x))

≤2max
{(∫

RN

|∇un−∇uk|2Ψ−1
n,kdx

)p−/2

,

(∫
RN

|∇un−∇uk|2Ψ−1
n,k dx

)p+/2}

×max
{(∫

RN

Ψp(x)/(2−p(x))
n,k

dx

)(2−p−)/2
,

(∫
RN

Ψp(x)/(2−p(x))
n,k

dx

)(2−p+)/2}

≤ 2max
{
(p− − 1)−p

−/2 · Tp−/2
n,k , (p− − 1)−p

+/2 · Tp+/2
n,k

}

×max
{(∫

RN

Ψp(x)/(2−p(x))
n,k

dx

)(2−p−)/2
,

(∫
RN

Ψp(x)/(2−p(x))
n,k

dx

)(2−p+)/2}
.

(3.35)

Since Tn,k is uniformly bounded inW
1,p(x)
0 (RN) in accordance with n, k, and by the fact

that ‖J ′(um, υm)‖∗,p(x),q(x) → 0 asm → +∞,F′
is compact and by Proposition 2.4, we have

lim
n,k→+∞

∫
RN

|∇un − ∇uk|p(x)dx = 0. (3.36)

Applying the same arguments, we can find a subsequence of (un, υn) such that

lim
n,k→+∞

∫
RN

|∇υn − ∇υk|q(x)dx = 0. (3.37)

Therefore by Proposition 2.2, for a convenient subsequence, we have

lim
n,k→+∞

‖(un, υn) − (uk, υk)‖∗,p(x),q(x) = 0. (3.38)

Hence, (un, υn) contains a Cauchy subsequence and so contains a strongly convergent
subsequence. The proof is complete.
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Lemma 3.4. Under the assumptions (F1)–(F4), the functional J satisfies the following.

(i) There exists ρ, σ > 0 such that ‖u‖p(x) + ‖υ‖q(x) = ρ implies J(u, υ) ≥ σ > 0.

(ii) There exists E ∈ Wp(x),q(x) such that ‖E‖p(x),q(x) > ρ and J(E) ≤ 0.

Proof. By (F4), we can find ρ > 0 such that ‖u‖p(x) + ‖υ‖q(x) = ρ, so we have

F(x, u, υ) < λ1

(
a(x)
p(x)

|u|p(x) + b(x)
q(x)

|υ|q(x)
)
,

∫
RN

F(x, u, υ) < λ1

∫
RN

(
a(x)
p(x)

|u|p(x) + b(x)
q(x)

|υ|q(x)
)
dx,

(3.39)

since λ1 > 0, then we have∫
RN

F(x, u, υ) <
∫
RN

(
1

p(x)
|∇u|p(x) + 1

q(x)
|∇υ|q(x)

)
dx,

0 <

∫
RN

(
1

p(x)
|∇u|p(x) + 1

q(x)
|∇υ|q(x)

)
dx −

∫
RN

F(x, u, υ) = J(u, υ).
(3.40)

Hence, there exists σ > 0 such that J ≥ σ > 0.
Let (τ, θ) be an eigenfunction relative to λ1. Then, using the assumption (F4), we can

obtain for ε > 0 and t sufficiently large,

F(x, t1/p(x)τ, t1/q(x)θ) ≥ t(λ1 + ε)
(
a(x)
p(x)

|τ |p(x) + b(x)
q(x)

|θ|q(x)
)
. (3.41)

Thus,

J(t1/p(x)τ, t1/q(x)θ) = t

∫
RN

(
1

p(x)
|∇τ |p(x) + 1

q(x)
|∇θ|q(x)

)
dx

−
∫
RN

F(x, t1/p(x)τ, t1/q(x)θ)dx

≤
∫
RN

(
1

p(x)
|∇τ |p(x) + 1

q(x)
|∇θ|q(x)

)
dx

− t(λ1 + ε)
(∫

RN

a(x)
p(x)

|τ |p(x)dx +
∫
RN

b(x)
q(x)

|θ|q(x)dx
)
,

(3.42)

then it follows

J(t1/p(x)τ, t1/q(x)θ) ≤ −εt
(

1
p+

∫
RN

a(x)|τ |p(x)dx +
1
q+

∫
RN

b(x)|θ|q(x)dx
)
. (3.43)

So, we can conclude that limt→+∞J(t1/p(x)τ, t1/q(x)θ) = −∞. Hence, for t sufficiently large,
J(t1/p(x)τ, t1/q(x)θ) ≤ 0. As a consequence, we can say that the functional J(u, υ) has a critical
point; and as we know, the critical points of J(u, υ) are the weak solutions of the system
(P,Q).

Theorem 3.5. The system (P,Q) has at least one nontrivial solution (u, υ).

Proof. By Lemmas 3.3 and 3.4, we can apply the mountain pass theorem to obtain that the
system (P,Q) has a nontrivial weak solution.
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