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1. Introduction

Since the concept of vector variational inequality (VVI) was introduced by Giannessi [1] in
1980, many important results on various kinds of vector variational inequality problems have
been established, such as existence of solutions, relations with vector optimization, stability
of solution set maps, gap function, and duality theories (see, e.g., [2–8] and the references
cited therein).

The stability analysis of the solution set maps for the parametric (VVI) problem is
of considerable interest amongst researchers in the area. Some results on the semicontinuity
of the solution set maps for the parametric (VVI) problem with the parameter perturbed
in the space of parameters are now available in the literature. In [4], Khanh and Luu
proved the upper semicontinuity of the solution set map for two classes of parametric vector
quasivariational inequalities. In [7], Li et al. established the upper semicontinuity property of
the solution set map for a perturbed generalized vector quasivariational inequality problem
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and also obtained the lower semicontinuity property of the solution set map for a perturbed
classical scalar variational inequality. In [9], Cheng and Zhu investigated the upper and
lower semicontinuities of the solution set map for a parameterized weak vector variational
inequality in a finite dimensional Euclidean space by using a scalarization method. In [6],
Li and Chen obtained the closedness and upper semicontinuity of the solution set map for a
parametric weak vector variational inequality under weaker conditions than those assumed
in [9]. Then, under a key assumption, they proved a lower semicontinuity result of the
solution set map in a finite dimensional space by using a parametric gap function.

However, there are few investigations on the convergence of the sequence of
mappings. In particular, almost no stability results are available for the perturbed (VVI)
problem with the sequence of mappings converging continuously or graphically. It appears
that the only relevant paper is [10], where Lignola and Morgan considered generalized
variational inequality in a reflexive Banach space with a sequence of operators converging
continuously and graphically and obtained the convergence of the solution sets under an
assumption of pseudomonotonicity. Since the perturbed (VVI) problem with a sequence of
mappings converging is different from the parametric (VVI) problem with the parameter
perturbed in a space of parameters, these results do not apply to the parametric (VVI)
problem with the parameter perturbed in a space of parameters. Thus, it is important to
study Painleve-Kuratowski upper and lower convergences of the sequence of solution sets.

In passing, it is worth noting that some stability results are available for the vector
optimization and vector equilibrium problemswith a sequence of sets converging in the sense
of Painleve-Kuratowski (see [11–13]). It is well known that the vector equilibrium problem is
a generalization of (VVI) problem. However, if the results obtained for the vector equilibrium
problem are to be applied to the (VVI) problem, the required assumptions are on the (VVI)
problem as a whole. There is no information about the conditions that are required on the
functions defining the (VVI) problem. Clearly, this is unsatisfactory. Our study of the stability
properties for the perturbed (VVI) problemwith a sequence of convergingmappings is under
appropriate assumptions on the function defining the (VVI) problem rather than on the (VVI)
problem as a whole.

In this paper, we should establish Painleve-Kuratowski upper and lower convergences
of the solution sets of the perturbed set-valued weak variational inequity (SWVVI) with a
sequence of converging mappings in a Banach space. We first discuss Painleve-Kuratowski
upper convergence and closedness of the solution sets. To obtain Painleve-Kuratowski lower
convergence of the solution sets, we introduce a sequence of gap functions based on the
nonlinear scalarization function introduced by Chen et al. in [14] and a key assumption
(Hg) imposed on the sequence of gap functions. Then, we obtain Painleve-Kuratowski lower
convergence of the solution sets for (SWVVI)n.

The rest of the paper is organized an follows. In Section 2, we introduce problems
(SWVVI) and (SWVVI)n, and recall some definitions and important properties of these
problems. In Section 3, we investigate Painleve-Kuratowski upper convergence and the
closedness of the solution sets. In Section 4, we introduce respective gap functions
for problems (SWVVI) and (SWVVI)n and then establish Painleve-Kuratowski lower
convergence of the solution sets under a key assumption.

2. Preliminaries

LetX and Y be two Banach spaces and let L(X,Y ) be the set of all linear continuousmappings
fromX to Y . The value of a linear mapping t ∈ L(X,Y ) at x ∈ X is denoted by 〈t, x〉. LetC ⊂ Y
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be a closed and convex cone with nonempty interior, that is, intC/=∅. We define the ordering
relations as follows.

For any y1, y2 ∈ Y ,

y1 ≤intC y2 ⇐⇒ y2 − y1 ∈ intC,

y1 /≤intC y2 ⇐⇒ y2 − y1 /∈ intC.
(2.1)

Consider the set-valued weak vector variational inequality (SWVVI) problem for
finding x ∈ K and t ∈ T(x) such that

〈t, y − x〉 ∈ Y \ −intC ∀y ∈ K, (2.2)

where K ⊂ X is a nonempty subset and T : K → 2L(X,Y ) is a set-valued mapping.
For a sequence of set-valued mappings Tn : Kn → 2L(X,Y ), we define a sequence of

set-valued weak vector variational inequality (SWVVI)n problems for finding xn ∈ Kn and
tn ∈ Tn(xn) such that

〈
tn, y − xn

〉 ∈ Y \ −intC ∀y ∈ Kn, (2.3)

where Kn ⊂ X is a sequence of nonempty subsets.
We denote the solution sets of problems (SWVVI) and (SWVVI)n by I(T) and I(Tn),

respectively, that is,

I(T) =
{
x ∈ K | ∃t ∈ T(x), s.t. 〈t, y − x〉 ∈ Y \ −intC ∀y ∈ K

}
,

I(Tn) =
{
xn ∈ Kn | ∃tn ∈ Tn(xn), s.t.

〈
tn, y − xn

〉 ∈ Y \ −intC ∀y ∈ Kn

}
.

(2.4)

Throughout this paper, we assume that I(T)/=∅ and I(Tn)/=∅. The stability analysis
is to investigate the behaviors of the solution sets I(T) and I(Tn).

Now we recall some basic definitions and properties of problems (SWVVI) and
(SWVVI)n. For each ε > 0 and a subset A ⊂ X, let the open ε-neighborhood of A be defined
as U(A, ε) = {x ∈ X | ∃a ∈ A, s.t. ‖a − x‖ < ε}. The notation B(λ, δ) denotes the open ball
with center λ and radius δ > 0.

In the following, we introduce some concepts of the convergence of set sequences and
mapping sequences which will be used in the sequel. Define

N∞ := {N ⊂ N | N \N finite}
= {subsequences of N containing all n ∈ N beyond some n},

N�
∞ := {N ⊂ N | N infinite}

= {all subsequences of N},

(2.5)

where N denotes the set of all positive integer numbers and n is an integer in N.
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Definition 2.1 (see [11, 15]). Let X be a normed space. A sequence of sets {Dn ⊂ X : n ∈ N} is
said to converge in the sense of Painleve-Kuratowski (P.K.) to D (i.e., Dn

P.K.−→ D) if

lim sup
n→∞

Dn ⊂ D ⊂ lim inf
n→∞

Dn (2.6)

with

lim inf
n→∞

Dn :=
{
x | ∃N ∈ N∞, ∃xn ∈ Dn (n ∈ N) with xn −→ x

}
,

lim sup
n→∞

Dn :=
{
x | ∃N ∈ N�

∞, ∃xn ∈ Dn (n ∈ N) with xn −→ x
}
.

(2.7)

It is said that the sequence {Dn} upper converges in the sense of Painleve-Kuratowski to D
if lim supn→∞Dn ⊂ D. Similarly, the sequence {Dn} is said to lower converge in the sense of
Painleve-Kuratowski to D if D ⊂ lim infn→∞Dn.

Definition 2.2 (see [15]). A set-valued mapping S : X → 2Y is outer semicontinuous (osc) at
x if lim supx→xS(x) ⊂ S(x)with lim supx→xS(x) :=

⋃
xn →xlim supn→∞S(xn).

On the other hand, it is inner semicontinuous (isc) at x if lim infx→xS(x) ⊃ S(x) with
lim infx→xS(x) :=

⋂
xn →xlim infn→∞S(xn).

The set-valued mapping is said to be continuous at x, written as S(x) → S(x) as
x → x if it is both outer semicontinuous and inner semicontinuous.

Definition 2.3 (see [15]). Let Sn : X → 2Y be a sequence of set-valued mappings and S : X →
2Y be a set-valued mapping. It is said that the sequence {Sn} converges continuously to S at
x if

lim sup
n→∞

Sn(xn) ⊂ S(x) ⊂ lim inf
n→∞

Sn(xn) ∀ sequencexn −→ x. (2.8)

If {Sn} converges continuously to S at every x ∈ X, then it is said that {Sn} converges
continuously to S on X.

Let S : X → 2Y be a set-valued map, the graph of S is defined as

gphS =
{
(x, u) | u ∈ S(x)

}
. (2.9)

Applying set convergence theory to the graphs of the mappings, we obtain the
graphical convergence of the sequence of mappings.

Definition 2.4 (see [15]). For a sequence of mappings Sn : X → 2Y , the graphical outer limit,
denoted by g − lim supnSn, is the mapping which has as its graph the set lim supn(gphSn):

gph
(
g − lim sup

n
Sn

)
= lim sup

n

(
gphSn

)
,

(
g − lim sup

n
Sn

)
(x) =

{
u | ∃N ∈ N�

∞, xn
N−→ x, un

N−→ u, un ∈ Sn

(
xn

)}
.

(2.10)
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The graphical inner limit, denote by g − lim infnSn, is the mapping having as its graph the set
lim infn(gphSn):

gph
(
g − lim inf

n
Sn

)
= lim inf

n

(
gphSn

)
,

(
g − lim inf

n
Sn

)
(x) =

{
u | ∃N ∈ N∞, xn

N−→ x, un
N−→ u, un ∈ Sn

(
xn

)}
.

(2.11)

If the outer and inner limits of the mappings Sn agree, it is said that their graphical limit, g −
limnSn, exists. In this case, the notation Sn

g→ S is used, and the sequence {Sn} of mappings

is said to converge graphically to S. Clearly, Sn
g→ S ⇔ gphSn

P.K.−→ gphS.

Proposition 2.5 (see [15]). For any sequence of mappings Sn : X → 2Y , it holds that

(
g − lim inf

n
Sn

)
(x) =

⋃

{xn →x}
lim inf
n→∞

Sn

(
xn

)
,

(
g − lim sup

n
Sn

)
(x) =

⋃

{xn →x}
lim sup
n→∞

Sn

(
xn

)
,

(2.12)

where the unions are taken over all sequences xn → x. Thus, the sequence {Sn} converges graphically
to S if and only if, at each point x ∈ X, it holds that

⋃

{xn →x}
lim sup
n→∞

Sn

(
xn

) ⊂ S(x) ⊂
⋃

{xn →x}
lim inf
n→∞

Sn

(
xn

)
. (2.13)

From Proposition 2.5 and Definition 2.3, the following proposition follows readily.

Proposition 2.6. Let Sn : X → 2Y be a sequence of set-valued mappings and S : X → 2Y be
a set-valued mapping. Then, the sequence {Sn} outer converges graphically to S if and only if {Sn}
outer converges continuously to S, that is,

g−lim sup
n

Sn⊂S ⇐⇒ lim sup
n

Sn

(
xn

)⊂S(x) for any x∈X, ∀ sequences xn −→ x. (2.14)

Definition 2.7 (see [10]). Given a sequence of mappings Sn, {Sn} is said to be uniformly
bounded if for any sequence xn contained in a bounded set, there exists a positive number k
such that for any sequence un with un ∈ Sn(xn) for all n ∈ N, it holds that

∥∥un

∥∥ ≤ k ∀n ∈ N. (2.15)

Proposition 2.8 (see [16]). For any fixed e ∈ intC, y ∈ Y , r ∈ R, and the nonlinear scalarization
function ξe : Y → R defined by ξe(y) = min{t ∈ R : y ∈ te − C}:

(i) ξe is a continuous and convex function on Y ;

(ii) ξe(y) < r ⇔ y ∈ re − intC;

(iii) ξe(y) ≥ r ⇔ y /∈ re − intC.
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3. Painleve-Kuratowski upper convergence of the solution sets

In this section, our focus is on the Painleve-Kuratowski upper convergence and the closedness
of the solution sets.

Theorem 3.1. Suppose that

(i) Tn outer converges continuously to T , that is,

lim sup
n→∞

Tn
(
xn

) ⊂ T(x) for any sequence
{
xn

}
with xn −→ x; (3.1)

(ii) Kn
P.K.−→ K;

(iii) Tn are uniformly bounded.

Then, lim supn→∞I(Tn) ⊂ I(T), that is to say for any subsequence {xnk} of solutions to (SWVVI)n,
if xnk → x, then x is a solution to (SWVVI).

Proof. The proof is listed on contradiction arguments. On a contrary, suppose that ∃x ∈
lim supn→∞I(Tn) but x /∈ I(T).

From x ∈ lim supn→∞I(Tn), we have x = limk→∞xnk , where xnk ∈ I(Tnk) and {nk} is a
subsequence ofN. Then, there exists tnk ∈ Tnk(xnk) such that

〈
tnk , z − xnk

〉 ∈ Y \ −intC ∀z ∈ Knk . (3.2)

Since K ⊂ lim infn→∞Kn, it is clear that for any z′ ∈ K, there exists a sequence {znk} with
{znk} ⊂ Knk and znk → z′, as k → ∞. Thus,

〈
tnk , znk − xnk

〉 ∈ Y \ −intC. (3.3)

Since lim supn→∞Kn ⊂ K and xnk ∈ Knk , we have x ∈ K. Now, we note that x /∈ I(T). Thus,
for all t ∈ T(x), there exists zt ∈ K such that

〈t, zt − x〉 ∈ −intC. (3.4)

From the uniform boundedness of Tn, we may assume, without loss of generality, that
tnk → t0 (though a subsequence of {tnk} if necessary). By (i), we get t0 ∈ T(x). Thus,

〈
tnk , znk − xnk

〉 −→ 〈
t0, z

′ − x
〉
, as k −→ +∞. (3.5)

It follows from (3.3) and the closedness of Y \ −intC that

〈
t0, z

′ − x
〉 ∈ Y \ −intC ∀z′ ∈ K, (3.6)

which is a contradiction to (3.4). This completed the proof.
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Remark 3.2. Let X = E and Y = E∗, where E is a reflexive Banach space and E∗ is its dual.
If we take C = R+, (SWVVI)n reduce to the generalized variational inequality problems
with perturbed operators (GVI)n considered in [10, Section 3]. The convergence for the
solution sets of (GVI)n was studied under the the pseudomonotonicity assumption in [10].
Furthermore, if T and Tn are vector-valued mappings, then (SWVVI)n reduce to (VI)n
considered in [10, Section 2]. We also notice that the Painleve-Kuratowski upper convergence
of the solution sets of (SWVVI)n is obtained under weaker assumptions than these assumed
in [10, Proposition 2.1] for obtaining convergence of the solution sets.

From Proposition 2.5 and Theorem 3.1, we obtain readily the following corollary.

Corollary 3.3. Suppose that

(i) Tn outer converges graphically to T , written as g − lim supnTn ⊂ T, that is,

lim sup
n→∞

(
gph Tn

) ⊂ gph T ; (3.7)

(ii) Kn
P.K.−→ K;

(iii) {Tn} is uniformly bounded.

Then, lim supn→∞I(Tn) ⊂ I(T).

Remark 3.4. Let X = Y = Rm. Then, problems (SWVVI)n reduce to the generalized variational
inequalities with perturbed operators considered in [10, Proposition 3.1] and the convergence
was obtained under the assumption that the operators converge graphically.

Theorem 3.5. Suppose that

(i) T is osc onK, that is, for all x ∈ K, lim supn→∞T(xn) ⊂ T(x) for any sequence xn → x;

(ii) K and T(K) are compact sets.

Then, I(T) is a compact set.

Proof. First, we prove that I(T) is a closed set. Take any sequence xn ∈ I(T) with xn → x.
Then, there exists tn ∈ T(xn) such that

〈
tn, z − xn

〉 ∈ Y \ −intC ∀z ∈ K. (3.8)

It follows from the compactness of K that x ∈ K. Suppose that x /∈ I(T), we have

∀t ∈ T(x), ∃z0 ∈ K, s.t.
〈
t, z0 − x

〉 ∈ −intC. (3.9)

Since T(K) is a compact set, without loss of generality, we assume that there exists a
t0 such that tn → t0. Thus, we have 〈tn, z − xn〉 → 〈t0, z − x〉. By (i), we get a t0 ∈ T(x). It
follows from (3.8) and the closedness of Y \ −intC that

〈
t0, z − x

〉 ∈ Y \ −intC ∀z ∈ K, (3.10)
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which contradicts with (3.9). Hence, x0 ∈ I(T) and I(T) is a closed set. Next, it follows from
I(T) ⊂ K and the compactness of K that I(T) is a compact set. The proof is completed.

Similarly, we have the following result.

Theorem 3.6. For any n, suppose that

(i) Tn is osc on Kn, that is, ∀x ∈ Kn

lim sup
m→∞

Tn
(
xm

) ⊂ Tn(x) for any sequence xm −→ x; (3.11)

(ii) Kn and Tn(Kn) are compact sets.

Then, I(Tn) is a compact set.

4. Painleve-Kuratowski lower convergence of the solution sets

In this section, we focus on the lower convergence of the solution sets. Assume that K and
Kn are compact sets and that for each x ∈ X, T(x) and Tn(x) are compact sets. Let g : K → R
and gn : Kn → R be functions defined by

g(x) = max
t∈T(x)

min
y∈K

ξe
(〈t, y − x〉), x ∈ K,

gn(xn) = max
tn∈Tn(xn)

min
y∈Kn

ξe
(〈
tn, y − xn

〉)
, xn ∈ Kn.

(4.1)

Since K, Kn, T(x), and Tn(x) are compact sets and ξe(·) is continuous, g(x) and gn(xn) are
well defined.

Proposition 4.1. (i) g(x) ≤ 0 for all x ∈ K;
(ii) gn(xn) ≤ 0 for all xn ∈ Kn;
(iii) g(x0) = 0 if and only if x0 ∈ I(T);
(iv) gn(xn) = 0 if and only if xn ∈ I(Tn).

Proof. Define

g(x, t) = min
y∈K

ξe
(〈t, y − x〉), x ∈ K, t ∈ T(x). (4.2)

We first prove that g(x, t) ≤ 0. On a contrary, we suppose that this is false. Then, there
exist x ∈ K and t ∈ T(x) such that g(x, t) > 0. Thus,

0 < g(x, t) ≤ ξe
(〈t, y − x〉) ∀y ∈ K, (4.3)

which is impossible when y = x. Therefore,

g(x) = max
t∈T(x)

g(x, t) ≤ 0 ∀x ∈ K. (4.4)



Z. M. Fang et al. 9

By the same taken, we can show that

gn(xn) = max
tn∈Tn(xn)

min
y∈Kn

ξe
(〈
tn, y − xn

〉) ≤ 0 ∀xn ∈ Kn. (4.5)

On the other hand, if g(x0) = 0, then there exists a t0 ∈ T(x0) such that g(x0, t0) = 0,
that is,

min
y∈K

ξe
(〈
t0, y − x0

〉)
= 0, x0 ∈ K. (4.6)

From Proposition 2.8, (4.6) is valid if and only if for any y ∈ K,

ξe
(〈
t0, y − x0

〉) ≥ 0. (4.7)

Clearly, (4.7) holds if and only if for any y ∈ K, 〈t0, y − x0〉 ∈ Y \ −intC, that is, x0 ∈ I(T).
This proves that (iii) holds.

Similarly, we can show that (iv) holds.
The functions gn are called the gap functions for (SWVVI)n if properties (ii) and (iv)

of Proposition 4.1 are satisfied.
In view of hypothesis (Hg) of [6, 17, 18], we introduce the following key assumption:

(Hg): given the sequence {Tn} for any ε > 0, there exist an α > 0 and an n such that
gn(xn) ≤ −α for all n > n and for all xn ∈ Kn \U(I(Tn), ε).

Geometrically, the hypothesis (Hg) means that given a sequence of mappings {Tn},
we can find for any small positive number ε > 0, a small positive number α > 0 and a large-
enough positive number n > 0 such that for all n > n, if a feasible point xn is away from the
solution sets I(Tn) by distance of at least ε, then the values of all gap functions for (SWVVI)n
is less than or equal to at least some “−α.”

To illustrate assumption (Hg), we give the following example.

Example 4.2. Let

X = R, Y = R2,

Tn(x) =

⎛

⎜⎜
⎝

1
[
1, 1 +

1
n
+ x2

]

⎞

⎟⎟
⎠ ,

T(x) =

(
1

[
1, 1 + x2]

)

,

K = Kn = [0, 1], C = R2
+.

(4.8)
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Consider problems (SWVVI)n. From direct computation, we obtain I(Tn) = {0}. To check
assumption (Hg), we take e = (1, 1)T ∈ intR2

+. Then,

gn
(
xn

)
= max

tn∈Tn(xn)
min
y∈Kn

ξe
(〈
tn, y − xn

〉)

= max
tn∈Tn(xn)

min
y∈Kn

max
1≤i≤2

[〈
tn, y − xn

〉]
i

= max
zn∈[1,1+(1/n)+x2

n]
min
y∈Kn

max
{
y − xn, zn

(
y − xn

)}

= −xn.

(4.9)

For any given 0 < ε, we take α = ε > 0 and N = 1. Then, for all n > N and for all xn ∈
Kn \ ∪(I(Tn), ε), we have gn(xn) = −xn ≤ −α. Hence, assumption (Hg) is valid.

Lemma 4.3. Suppose that

(i) Tn inner converges continuously to T , that is,

T(x) ⊂ lim inf
n→∞

Tn(xn) for any sequence {xn} with xn −→ x; (4.10)

(ii) Kn
P.K.−→ K;

(iii)
⋃∞

n=1Kn is a compact set.

Then, for any δ ≥ 0, x0 ∈ K and sequence {xn} with xn ∈ Kn and xn → x0, there exists a
subsequence {xnl} of {xn} and N > 0 such that gnl(xnl) ≥ g(x0) − δ for all l ≥ N.

Proof. Let g̃ : K × L(X,Y ) → R be a function defined by

g̃(x, t) = min
y∈K

ξe
(〈t, y − x〉), x ∈ K, t ∈ T(x). (4.11)

From the continuity of ξe(〈t, y − x〉) with respect to (x, t, y), the compactness of K and [19,
Chapter 3, Section 1, Proposition 23], we have that g̃(x, t) is continuous with respect to (x, t).
Thus, from the compactness of T(x0), there exists a t0 ∈ T(x0) such that

g
(
x0
)
= max

t∈T(x0)
min
y∈K

ξe
(〈
t, y − x0

〉)
= max

t∈T(x0)
g̃(x0, t) = min

y∈K
ξe
(〈
t0, y − x0

〉)
. (4.12)

From assumption (i), there exists a sequence {tn} satisfying tn ∈ Tn(xn) such that

tn −→ t0. (4.13)

It follows from the compactness of Kn that there exists {yn}with yn ∈ Kn such that

min
y∈Kn

ξe
(〈
tn, y − xn

〉)
= ξe

(〈
tn, yn − xn

〉)
. (4.14)
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Since
⋃∞

n=1Kn is compact, we assume, without loss of generality, that yn → y0. Thus, it follows
from (ii) that y0 ∈ K. Consequently,

lim
n→∞

ξe
(〈
tn, yn − xn

〉)
= ξe

(〈
t0, y0 − x0

〉) ≥ min
y∈K

ξe
(〈
t0, y − x0

〉)
= g

(
x0
)
. (4.15)

So, for any δ > 0, there exists anN > 0 such that ξe(〈tn, yn − xn〉) ≥ g(x0) − δ for all n ≥ N. By
(4.14), we have

gn
(
xn

)
= max

tn∈Tn(xn)
min
y∈Kn

ξe
(〈
tn, y − xn

〉)

≥ min
y∈Kn

ξe
(〈
tn, y − xn

〉)

= ξe
(〈
tn, yn − xn

〉)

≥ g
(
x0
) − δ ∀n ≥ N.

(4.16)

Hence, the result holds.

Set T0 = T and K0 = K. We have the following lemma.

Lemma 4.4. Suppose that for n = 0, 1, 2, . . . , Tn is osc on Kn, that is, for n = 0, 1, 2, . . . ,

lim sup
m→∞

Tn
(
xm

) ⊂ Tn(x) for any sequence
{
xm

}
with xm −→ x. (4.17)

Then, I(T) ⊂ lim infn→∞I(Tn) if and only if for all ε > 0, ∃N > 0 such that I(T) ⊂ U(I(Tn), ε) for
all n > N.

Proof. We assume I(T) ⊂ lim infn→∞I(Tn), but there exists an ε > 0 such that for all N > 0,
there exists an Nn ≥ N satisfying I(T)/⊂U(I(TNn), ε). Then, there exists a sequence {xn}
with xn ∈ I(T), but xn /∈U(I(TNn), ε). From Theorem 3.5, we note that I(T) is a compact set.
Without loss of generality, we assume xn → x and x ∈ I(T). Thus, for any sequence {yn}
satisfying yn → y with yn ∈ I(Tn), we have ‖yNn − xn‖ ≥ ε > 0. Letting n → ∞, we get
‖y − x‖ ≥ ε > 0. Therefore, there does not exist any sequence yn ∈ I(Tn) satisfying yn → x.
This is a contradiction to I(T) ⊂ lim infn→∞I(Tn).

Conversely, suppose that for any ε > 0, ∃N > 0 such that I(T) ⊂ U(I(Tn), ε) for all
n ≥ N. From Theorem 3.6, we note that I(Tn) is compact for all n. Thus, for any x ∈ I(T),
there exists xn ∈ I(Tn) such that ‖xn − x‖ = d(x, I(Tn)) ≤ ε for all n ≥ N. So, we have xn → x
and I(T) ⊂ lim infn→∞I(Tn). Therefore, the result of the lemma follows readily.

Now, we are in a position to state and prove our main result in the following theorem.

Theorem 4.5. Suppose that assumption (Hg) holds and that the following conditions are satisfied:

(i) Tn is osc on Kn for n = 0, 1, 2, . . . , that is, for n = 0, 1, 2, . . . ,

lim sup
m→∞

Tn
(
xm

) ⊂ Tn(x) for any sequence
{
xm

}
with xm −→ x; (4.18)
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(ii) Tn inner converge continuously to T , that is,

T(x) ⊂ lim inf
n→∞

Tn
(
xn

)
for any sequence

{
xn

}
with xn −→ x; (4.19)

(iii)
⋃∞

n=1Kn is a compact set;

(iv) Kn
P.K.−→ K.

Then, I(T) ⊂ lim infn→∞I(Tn).

Proof. We prove the result via contradiction. On a contrary, we assume, by Lemma 4.4, that
there exists an ε > 0 such that for any N > 0, we have Nn ≥ N satisfying

I(T)/⊂U
(
I
(
TNn

)
, ε
)
, (4.20)

that is, there exists a sequence {xNn} satisfying

xNn ∈ I(T) \U(
I
(
TNn

)
, ε
)
. (4.21)

From the compactness of I(T), we can assume, without loss of generality, that xNn → x ∈
I(T). Then, there exists an N1 > 0 such that ‖xNn − x‖ ≤ ε/4 forall n > N1. It is clear that
B(x, ε/Nn)∩K/=∅ for any positive integer n. SinceK ⊂ lim infn→∞Kn, there exist a sequence
{yNn} ⊂ KNn satisfying yNn → x. Then, there exists an N2 > 0 such that yNn ∈ B(x, ε/Nn) ∩
KNn for all n > N2.

Now, we note that yNn /∈U(I(TNn), ε/4). Otherwise, there would exist a sequence
{zNn} with zNn ∈ I(TNn) such that ‖yNn − zNn‖ < ε/4. Thus, for N0 = max{N1,N2}, we
have

∥∥xNn − zNn

∥∥ ≤ ∥∥xNn − x
∥∥ +

∥∥x − yNn

∥∥ +
∥∥yNn − zNn

∥∥ ≤ ε

4
+

ε

Nn
+
ε

4
< ε ∀n > N0. (4.22)

This implies that xNn ∈ U(I(TNn), ε), which contradicts with (4.21). Thus,

yNn ∈ KNn \U
(
I
(
TNn

)
,
ε

4

)
. (4.23)

By hypothesis (Hg), there exist, for any ε > 0, an α > 0 and an N such that for all
n > N and for all x ∈ Kn \U(I(Tn), ε), gn(x) ≤ −α. In particular, it follows from (4.23) that

gNn

(
yNn

) ≤ −α for n large enough. (4.24)

By virtue of Lemma 4.3, there exists, for any δ > 0, a subsequence {yNnk
} of {yNn} and Ñ > 0

such that

gNnk

(
yNnk

) ≥ g(x) − δ ∀k > Ñ. (4.25)
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We can take δ such that −α + δ < 0. Thus,

g(x) ≤ gNnk

(
yNnk

)
+ δ ≤ −α + δ < 0, (4.26)

that is,

max
t∈T(x)

min
y∈K

ξe
(〈t, y − x〉) < 0. (4.27)

So, for any t ∈ T(x), miny∈Kξe(〈t, y − x〉) < 0. Thus, there exists a y ∈ K such that

ξe
(〈t, y − x〉) < 0. (4.28)

Consequently, by Proposition 2.8, we have 〈t, y−x〉 ∈ −intC, which shows that x /∈ I(T). This
contradicts with x ∈ I(T). Therefore, our result follows readily.

Now, we explain the applicability of Theorem 4.5 through an example.

Example 4.6. Consider Example 4.2. It follows from a direct computation that I(Tn) = I(T) =
{0}. It is easy to testify that assumption (Hg) holds and so are conditions (i)–(v) of
Theorem 4.5. Obviously, the solution sets of problem (SWVVI)n lower converge in the sense
of Painleve-Kuratowski.
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