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1. Introduction

We study the regularity condition of weak solutions to the Navier-Stokes equations

ut −Δu + (u·∇)u +∇π = 0, (1.1)

divu = 0, in (0, T) × R
3, (1.2)

u|t=0 = u0(x), x ∈ R
3. (1.3)

Here, u is the unknown velocity vector and π is the unknown scalar pressure.
For u0 ∈ L2(R3)with divu0 = 0 inR

3, Leray [1] constructed global weak solutions. The
smoothness of Leray’s weak solutions is unknown. While the existence of regular solutions is
still an open problem, there are many interesting sufficient conditions which guarantee that
a given weak solution is smooth. A well-known condition states that if

u ∈ Lr(0, T ;Ls(R3)) with
2
r
+
3
s
= 1, 3 ≤ s ≤ ∞, (1.4)
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then the solution u is actually regular [2–8]. A similar condition

ω := curlu ∈ Lr(0, T ;Ls(R3)), with
2
r
+
3
s
= 2,

3
2
≤ s ≤ ∞, (1.5)

also implies the regularity as shown by Beirão da Veiga [9].
As regards (1.4) and (1.5) for s = ∞, Kozono et al. made an improvement to the

following condition:

u ∈ L2(0, T ; Ḃ0
∞,∞(R

3)), (1.6)

or

ω ∈ L1(0, T ; Ḃ0
∞,∞(R

3)), (1.7)

where Ḃ0
∞,∞ is the homogeneous Besov space. On the other hand, Chae and Lee [10] proposed

another regularity criterion in terms of the pressure. They showed that if the pressure π
satisfies

π ∈ Lr(0, T ;Ls(R3)) with
2
r
+
3
s
< 2,

3
2
< s ≤ ∞, (1.8)

then u is smooth. Berselli and Galdi [11] have extended the range of r and s to 2/r + 3/s = 2
and 3/2 < s ≤ ∞. When s = ∞, Chen and Zhang [12] (also see Fan et al. [13]) refined it to the
following condition:

π ∈ L1(0, T ; Ḃ0
∞,∞(R

3)). (1.9)

Zhou [14] (see also Struwe [15]) proposed the following criterion in terms of the gradient of
the pressure:

∇π ∈ Lr(0, T ;Ls(R3)) with
2
r
+
3
s
= 3, 1 < s ≤ ∞. (1.10)

The aim of this paper is to refine (1.10) when s = ∞. We will use the following
interpolation inequality:

‖u‖2
L2p(Rn) ≤ C‖u‖Lp(Rn)‖u‖BMO, 1 ≤ p < ∞, (1.11)

which follows from the bilinear estimates

‖fg‖Lp ≤ C(‖f‖Lp‖g‖BMO + ‖g‖Lp‖f‖BMO), 1 ≤ p < ∞, (1.12)

due to Kozono and Taniuchi [16]. Here, BMO is the space of functions of bounded mean
oscillations.
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Definition 1.1. Let u0 ∈ L2(R3) with divu0 = 0 in R
3. The function u is called a Leray weak

solution of (1.1)–(1.3) in (0, T) if u satisfies the following properties.

(1) u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1).

(2) Equation (1.1) and (1.2) hold in the distributional sense, and

u(t) −→ u0 weakly in L2 as t −→ 0. (1.13)

(3) The energy inequality is

‖u(t)‖2
L2 + 2

∫ t

0
‖∇u(s)‖2

L2ds ≤ ‖u0‖2L2 , for any t ∈ [0, T]. (1.14)

Our main result reads as follows.

Theorem 1.2. Let u0 ∈ (L2 ∩L4)(R3) with divu0 = 0 in R
3. Suppose that u is a Leray weak solution

of (1.1)–(1.3) in (0, T). If the gradient of the pressure satisfies the condition

∇π ∈ L2/3(0, T ; BMO), (1.15)

then u is smooth in (0, T].

Remark 1.3. If the interpolation inequality

‖u‖2
L2p(Rn) ≤ C‖u‖Lp‖u‖Ḃ0∞,∞ (1.16)

is true, then as in the argument below, (1.15)may be improved to the following condition:

∇π ∈ L2/3(0, T ; Ḃ0
∞,∞). (1.17)

Remark 1.4. Inequality (1.11) plays an important role in our proof. Chen and Zhu [17]
extended (1.11) to the following inequality:

‖u‖Lq ≤ C‖u‖r/qLr ‖u‖1−r/qBMO , 1 ≤ r < q < ∞, (1.18)

and used (1.18) to obtain (1.12). Kozono and Wadade [18] give another proof of (1.18). Here,
we give an elementary and short proof of (1.18) by (1.11).

For given 1 ≤ r < q < ∞, there exists a positive integer n and θ ∈ (0, 1) such that
r < q < 2nr and 1/q = θ · (1/r) + (1 − θ) · (1/2nr) = (θ + (1 − θ)/2n) · (1/r). By the Hölder
inequality, we have

‖u‖Lq ≤ ‖u‖θLr‖u‖1−θL2nr . (1.19)
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Using (1.11) for p = 2n−1r, 2n−2r, . . . , r, n times and plugging them into (1.6), we find
that

‖u‖Lq ≤ C‖u‖θ+(1−θ)/2nLr ‖u‖(1−θ)(1/2+1/22+···+1/2n)BMO

= C‖u‖θ+(1−θ)/2nLr ‖u‖(1−1/2n)(1−θ)BMO

= C‖u‖r/qLr ‖u‖1−r/qBMO ,

(1.20)

which proves (1.18).

Remark 1.5. From Remark 1.4, we know that if (1.16) holds true, then we have

‖u‖Lq ≤ C‖u‖r/qLr ‖u‖1−r/q
Ḃ0∞,∞

, 1 ≤ r < q < ∞. (1.21)

2. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. First, we recall the following result
according to Giga [5].

Proposition 2.1 (see [5]). Suppose u0 ∈ Ls(R3), s ≥ 3; then there exists T and a unique classical
solution u ∈ (L∞ ∩ C)([0, T);Ls). Moreover, let (0, T ∗) be the maximal interval such that u solves
(1.1)–(1.3) in C((0, T ∗);Ls), s > 3. Then, for any t ∈ (0, T ∗),

‖u(t)‖Ls ≥ C

(T ∗ − t)(s−3)/2s
(2.1)

with the constant C independent of T ∗ and s.

Next, we derive a priori estimates for smooth solutions of (1.1)–(1.3). To this end,
multiplying (1.1) by |u|2u, integrating by parts, and using (1.2), (1.11) for p = 2, we see that

1
4
d

dt
‖u‖4

L4 +
∫
|∇u|2|u|2dx +

1
4

∫
|∇|u|2|2dx = −

∫
∇π · |u|2udx ≤ ‖∇π‖L4‖u‖3

L4

≤ C‖∇π‖1/2
L2 ‖∇π‖1/2BMO‖u‖3L4

≤ C‖u∇u‖1/2
L2 ‖∇π‖1/2BMO‖u‖3L4

≤ 1
2

∫
|u · ∇u|2

L2 + C‖∇π‖2/3BMO‖u‖4L4 ,

(2.2)

which yields

‖u‖L4 ≤ ‖u0‖L4 exp
(
C

∫T

0
‖∇π‖2/3BMOdt

)
, (2.3)
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by Gronwall’s inequality. Here, we have used the estimate

‖∇π‖L2 ≤ C‖u · ∇u‖L2 . (2.4)

Now, we are in a position to complete the proof of Theorem 1.2. From Proposition 2.1,
it follows that there exists T ∗ > 0 and the smooth solution v of (1.1)–(1.3) satisfies

v(t) ∈ (L∞ ∩ C)([0, T ∗);L4), v(0) = u0. (2.5)

Since the weak solution u satisfies the energy inequality, we may apply Serrin’s
uniqueness criterion [19] to conclude that

u ≡ v on [0, T ∗). (2.6)

Thus, it is sufficient to show that T ∗ = T . Suppose that T ∗ < T . Without loss of
generality, we may assume that T ∗ is the maximal existence time for v(t). By Proposition 2.1
again, we find that

‖u(t)‖L4 ≥ C

(T ∗ − t)1/8
for any t ∈ (0, T ∗). (2.7)

On the other hand, from (2.3), we know that

sup
0≤t≤T∗

‖u(t)‖L4 ≤ ‖u0‖L4 exp
(
C

∫T

0
‖∇π‖2/3BMOdt

)
, (2.8)

which contradicts with (2.7). Thus, T ∗ = T .
This completes the proof.
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[8] L. Iskauriaza, G. A. Serëgin, and V. Shverak, “L3,∞-solutions of Navier-Stokes equations and
backward uniqueness,” Russian Mathematical Surveys, vol. 58, no. 2, pp. 211–250, 2003.

[9] H. Beirão da Veiga, “A new regularity class for the Navier-Stokes equations in R
n,” Chinese Annals of

Mathematics. Series B, vol. 16, no. 4, pp. 407–412, 1995.
[10] D. Chae and J. Lee, “Regularity criterion in terms of pressure for the Navier-Stokes equations,”

Nonlinear Analysis: Theory, Methods & Applications, vol. 46, no. 5, pp. 727–735, 2001.
[11] L. C. Berselli and G. P. Galdi, “Regularity criteria involving the pressure for the weak solutions to

the Navier-Stokes equations,” Proceedings of the American Mathematical Society, vol. 130, no. 12, pp.
3585–3595, 2002.

[12] Q. Chen and Z. Zhang, “Regularity criterion via the pressure on weak solutions to the 3D Navier-
Stokes equations,” Proceedings of the AmericanMathematical Society, vol. 135, no. 6, pp. 1829–1837, 2007.

[13] J. Fan, S. Jiang, and G. Ni, “On regularity criteria for the n-dimensional Navier-Stokes equations in
terms of the pressure,” Journal of Differential Equations, vol. 244, no. 11, pp. 2963–2979, 2008.

[14] Y. Zhou, “On regularity criteria in terms of pressure for the Navier-Stokes equations in R
3,”

Proceedings of the American Mathematical Society, vol. 134, no. 1, pp. 149–156, 2006.
[15] M. Struwe, “On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the

pressure,” Journal of Mathematical Fluid Mechanics, vol. 9, no. 2, pp. 235–242, 2007.
[16] H. Kozono and Y. Taniuchi, “Bilinear estimates in BMO and the Navier-Stokes equations,”

Mathematische Zeitschrift, vol. 235, no. 1, pp. 173–194, 2000.
[17] J. Chen and X. Zhu, “A note on BMO and its application,” Journal of Mathematical Analysis and

Applications, vol. 303, no. 2, pp. 696–698, 2005.
[18] H. Kozono and H. Wadade, “Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev

space and BMO,”Mathematische Zeitschrift, vol. 259, no. 4, pp. 935–950, 2008.
[19] J. Serrin, “The initial value problem for the Navier-Stokes equations,” in Nonlinear Problems, R. E.

Langer, Ed., pp. 69–98, University of Wisconsin Press, Madison, Wis, USA, 1963.


	1. Introduction
	2. Proof of Theorem 1.2
	Acknowledgment
	References

