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1. Introduction and preliminaries

Let x be positive n-tuples. The well-known inequality for power sums of order s and r, for
s > r > 0 (see [1, page 164]), states that

(
n∑
i=1

xs
i

)1/s

<

(
n∑
i=1

xr
i

)1/r

. (1.1)

Moreover, if p = (p1, . . . , pn) is a positive n-tuples such that pi ≥ 1 (i = 1, . . . , n), then for
s > r > 0 (see [1, page 165]), we have

(
n∑
i=1

pix
s
i

)1/s

<

(
n∑
i=1

pix
r
i

)1/r

. (1.2)

In [2], we defined the following function:

Δt = Δt(x;p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
t − 1

((
n∑
i=1

pixi

)t

−
n∑
i=1

pix
t
i

)
, t /= 1,

n∑
i=1

pixi log
n∑
i=1

pixi −
n∑
i=1

pixi logxi, t = 1.
(1.3)
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We introduced the Cauchy means involving power sums. Namely, the following results were
obtained in [2].

For r < s < t, where r, s, t ∈ R
+, we have

(
Δs

)t−r ≤ (
Δr

)t−s(Δt

)s−r
, (1.4)

such that, xi ∈ (0, a] (i = 1, . . . , n) and

n∑
i=1

pixi ≥ xj , for j = 1, . . . , n,
n∑
i=1

pixi ∈ [0, a]. (1.5)

We defined the following means.

Definition 1.1. Let x and p be two nonnegative n-tuples (n ≥ 2) such that pi ≥ 1 (i = 1, . . . , n).
Then for t, r, s ∈ R

+,

As
t,r(x;p) =

{
r − s

t − s

(∑n
i=1 pix

s
i

)t/s −∑n
i=1 pix

t
i(∑n

i=1 pix
s
i

)r/s −∑n
i=1 pix

r
i

}1/(t−r)

, t /= r, r /= s, t /= s,

As
s,r(x;p) = As

r,s(x;p) =
{
r − s

s
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i=1 pix
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, s /= r,
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As
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i=1 pix
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) (
log
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)2 − s2
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i
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(1.6)

In this paper, we introduce new Cauchy means of convex type in connection with
Power sums. For means, we shall use the following result [1, page 154].

Theorem 1.2. Let x and p be two nonnegative n-tuples such that condition (1.5) is valid. If f is a
convex function on [0, a], then

f

(
n∑
i=1

pixi

)
≥

n∑
i=1

pif
(
xi

)
+

(
1 −

n∑
i=1

pi

)
f(0). (1.7)

Remark 1.3. In Theorem 1.2, if f is strictly convex, then (1.7) is strict unless x1 = · · · = xn and∑n
i=1 pi = 1.
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2. Discrete result

Lemma 2.1. Let

ϕt(x) =

⎧⎪⎨
⎪⎩

xt

t(t − 1)
, t /= 1,

x log x, t = 1,
(2.1)

where t ∈ R
+. Then ϕt(x) is strictly convex for x > 0.

Here, we use the notation 0 log 0 := 0.

Proof. Since ϕ′′
t (x) = xt−2 > 0 for x > 0, therefore ϕt(x) is strictly convex for x > 0.

Lemma 2.2 (see [3]). A positive function f is log convex in Jensen sense on an open interval I, that
is, for each s, t ∈ I

f(s)f(t) ≥ f2
(
s + t

2

)
, (2.2)

if and only if the relation

u2f(s) + 2uwf

(
s + t

2

)
+w2f(t) ≥ 0, (2.3)

holds for each real u, w and s, t ∈ I.

The following lemma is equivalent to definition of convex function [1, page 2].

Lemma 2.3. If f is continuous and convex for all x1, x2, x3 of an open interval I for which x1 < x2 <
x3, then

(
x3 − x2

)
f
(
x1
)
+
(
x1 − x3

)
f
(
x2
)
+
(
x2 − x1

)
f
(
x3
) ≥ 0. (2.4)

Lemma 2.4. Let f be log-convex function and if, x1 ≤ y1, x2 ≤ y2, x1 /=x2, y1 /=y2, then the
following inequality is valid:

(
f
(
x2
)

f
(
x1
))1/(x2−x1)

≤
(
f
(
y2
)

f
(
y1
))1/(y2−y1)

. (2.5)

By using the above lemmas and Theorem 1.2, as in [2], we can prove the following
results.

Theorem 2.5. Let x and p be two positive n-tuples and let

Δt = Δt(x;p) =
Δt

t
, (2.6)
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such that condition (1.5) is satisfied and all xi’s are not equal. ThenΔt is log-convex. Also for r < s < t
where r, s, t ∈ R

+, we have

(
Δs

)t−r ≤ (
Δr

)t−s(
Δt

)s−r
. (2.7)

Moreover, we can use (2.7) to obtain new means of Cauchy type involving power
sums.

Let us introduce the following means.

Definition 2.6. Let x and p be two nonnegative n-tuples such that pi ≥ 1 (i = 1, . . . , n), then for
t, r, s ∈ R

+,

Bs
t,r(x;p) =

{
r(r − s)
t(t − s)

(∑n
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)
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(
− 1
s
+
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i=1 pix
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i

) (
log
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s
i
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i
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log

∑n
i=1 pix

s
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i=1 pix
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.

(2.8)

Remark 2.7. Let us note that Bs
s,r(x;p) = Bs

r,s(x;p) = limt→ s B
s
t,r(x;p) = limt→ s B

s
r,t(x;p),

Bs
r,r(x;p) = limt→ r B

s
t,r(x;p) and Bs

s,s(x;p) = limr→ s B
s
r,r(x;p).

Theorem 2.8. Let

Θs
t =
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1
t(t − s)

{(
n∑
i=1

pix
s
i

)t/s

−
n∑
i=1

pix
t
i

}
, t /= s,

1
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{(
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i=1
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i

)
log

(
n∑
i=1
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s
i

)
− s

n∑
i=1

pix
s
i log xi

}
, t = s.

(2.9)

then for t, r, u ∈ R
+ and t < r < u, we have

(
Θs

r

)u−t ≤ (
Θs

t

)u−r(Θs
u

)r−t
. (2.10)

Theorem 2.9. Let r, t, u, v ∈ R
+, such that t ≤ v, r ≤ u. Then one has

Bs
t,r(x;p) ≤ Bs

v,u(x;p). (2.11)
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Remark 2.10. From (2.7), we have

(
Δs

s

)t−r
≤
(
Δr

r

)t−s(Δt

t

)s−r
=⇒ (

Δs

)t−r ≤ st−r

rt−sts−r
(
Δr

)t−s(Δt

)s−r
. (2.12)

Since log x is concave, therefore for r < s < t, we have

(t − s) log r + (r − t) log s + (s − r) log t < 0 =⇒ st−r

rt−sts−r
> 1. (2.13)

This implies that (1.4), which we derived in [2], is better than (2.7).
Also note that

Bs
t,r(x;p) =

(
r

t

)1/(t−r)
As

t,r(x;p),

Bs
r,s(x;p) = Bs

s,r(x;p) =
(
r

s

)1/(s−r)
As

s,r(x;p) =
(
r

s

)1/(s−r)
As

r,s(x;p),

Bs
r,r(x;p) = exp

(
− 1
r

)
As

r,r(x;p),

Bs
s,s(x;p) = exp

(
− 1
s

)
As

s,s(x;p).

(2.14)

Let us note that there are not integral analogs of results from [2]. Moreover, in Section 3
we will show that previous results have their integral analogs.

3. Integral results

The following theorem is very useful for further result [1, page 159].

Theorem 3.1. Let t0 ∈ [a, b] be fixed, h be continuous and monotonic with h(t0) = 0, g be a function
of bounded variation and

G(t) :=
∫ t

a

dg(x), G(t) :=
∫b

t

dg(x). (3.1)

(a) If

0 ≤ G(t) ≤ 1 for a ≤ t ≤ t0, 0 ≤ G(t) ≤ 1 for t0 ≤ t ≤ b, (3.2)

then for every convex function f : I → R such that h(x) ∈ I for all x ∈ [a, b],

∫b

a

f
(
h(t)

)
dg(t) ≥ f

(∫b

a

h(t)dg(t)
)
+
(∫b

a

dg(t) − 1
)
f(0). (3.3)
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(b) If
∫b
ah(t)dg(t) ∈ I and either there exists an s ≤ t0 such that

G(t) ≤ 0 for t < s, G(t) ≥ 1 for s ≤ t ≤ t0, G(t) ≤ 0 for t > t0, (3.4)

or there exists an s ≥ t0 such that

G(t) ≤ 0 for t < t0, G(t) ≥ 1 for t0 < t < s, G(t) ≤ 0 for t ≥ s, (3.5)

then for every convex function f : I → R such that h(x) ∈ I for all x ∈ [a, b], the reverse of the
inequality in (3.3) holds.

To define the new means of Cauchy involving integrals, we define the following
function.

Definition 3.2. Let t0 ∈ [a, b] be fixed, h be continuous and monotonic with h(t0) = 0, g be a
function of bounded variation. Choose g such that function Λt is positive valued, where Λt is
defined as follows:

Λt = Λt(a, b, h, g) =
∫b

a

ϕt

(
h(x)

)
dg(x) − ϕt

(∫b

a

h(x)dg(x)
)
. (3.6)

Theorem 3.3. Let Λt, defined as above, satisfy condition (3.2). Then Λt is log-convex. Also for r <
s < t, where r, s, t ∈ R

+, one has

(
Λs

)t−r ≤ (
Λr

)t−s(Λt

)s−r
. (3.7)

Proof. Let f(x) = u2ϕs(x) + 2uwϕr(x) +w2ϕt(x),where r = (s + t)/2 and u,w ∈ R,

f ′′(x) = u2xs−2 + 2uwxr−2 +w2xt−2 =
(
ux(s−2)/2 +wx(t−2)/2)2 ≥ 0. (3.8)

This implies that f(x) is convex.
By Theorem 3.1, we have,

∫b

a

f
(
h(t)

)
dg(t) − f

(∫b

a

h(t)dg(t)
)
−
(∫b

a

dg(t) − 1
)
f(0) ≥ 0

=⇒ u2
(∫b

a

ϕs(h(x))dg(x) − ϕs

(∫b

a

h(x)dg(x)
))

+ 2uw
(∫b

a

ϕr(h(x))dg(x) − ϕr

(∫b

a

h(x)dg(x)
))

+ 2w2
(∫b

a

ϕt(h(x))dg(x) − ϕt

(∫b

a

h(x)dg(x)
))

≥ 0

=⇒ u2Λs + 2uwΛr +w2Λt ≥ 0.

(3.9)

Now, by Lemma 2.2, we have Λt is log-convex in Jensen sense.
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Since limt→ 1 Λt = Λ1, this implies that Λt is continuous for all t ∈ R
+, therefore it is a

log-convex [1, page 6].
Since Λt is log-convex, that is, log Λt is convex, therefore by Lemma 2.3 for r < s < t

and taking f = log Λ, we have

(t − s) log Λr + (r − t) log Λs + (s − r) log Λt ≥ 0, (3.10)

which is equivalent to (3.7).

Theorem 3.4. Let Λ̃t = −Λt such that condition (3.4) or (3.5) is satisfied. Then Λ̃t is log-convex.
Also for r < s < t, where r, s, t ∈ R

+, one has

(
Λ̃s

)t−r ≤ (
Λ̃r

)t−s(
Λ̃t

)s−r
. (3.11)

Definition 3.5. Let t0 ∈ [a, b] be fixed, h be continuous and monotonic with h(t0) = 0, g be a
function of bounded variation. Then for t, r, s ∈ R

+, one defines

Fs
t,r(a, b, h, g)

=

⎧⎨
⎩r(r − s)

t(t − s)

∫b
ah

t(x)dg(x) − (∫b
ah(x)dg(x)

)t/s
∫b
ah

r(x)dg(x) − (∫b
ah(x)dg(x)

)r/s
⎫⎬
⎭

1/(t−r)

, t /= r, r /= s, t /= s,

Fs
s,r(a, b, h, g)

= Fs
r,s(a, b, h, g)

=

⎧⎨
⎩r(r − s)

s2
s
∫b
ah

s(x) log h(x)dg(x) − (∫b
ah

s(x)dg(x)
)
log

∫b
ah

s(x)dg(x)∫b
ah

r(x)dg(x) − (∫b
ah

s(x)dg(x)
)r/s

⎫⎬
⎭

1/(s−r)

, s /= r,

Fs
r,r(a, b, h, g)

= exp

(
− 2r − s

r(r − s)
+
s
∫b
ah

r(x) log h(x)dg(x)−(∫bahs(x)dg(x)
)r/s

log
∫b
ah

s(x)dg(x)

s
{∫b

ah
r(x)dg(x)−(∫bahs(x)dg(x)

)r/s}
)
, s /= r,

Fs
s,s(a, b, h, g)

= exp

(
− 1
s
+
s2
∫b
ah

s(x)
(
log h(x)

)2
dg(x) − (∫b

ah
s(x)dg(x)

) (
log

∫b
ah

s(x)dg(x)
)2

2s
{
s
∫b
ah

s(x) log h(x)dg(x) − (∫b
ah

s(x)dg(x)
)
log

∫b
ah

s(x)dg(x)
}

)
.

(3.12)

Remark 3.6. Let us note that Fs
s,r(a, b, h, g) = Fs

r,s(a, b, h, g) = limt→sF
s
t,r(a, b, h, g) =

limt→sF
s
r,t(a, b, h, g), F

s
r,r(a, b, h, g) = limt→rF

s
t,r(a, b, h, g) and Fs

s,s(a, b, h, g) = limr→sF
s
r,r(a, b,

h, g).
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Theorem 3.7. Let r, t, u, v ∈ R
+, such that t ≤ v, r ≤ u. Then

Fs
t,r(a, b, h, g) ≤ Fs

v,u(a, b, h, g). (3.13)

Proof. Let

Λt = Λt(a, b, h, g)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
t(t − 1)

(∫b

a

ht(x)dg(x) −
(∫b

a

h(x)dg(x)
)t)

, t /= 1,

∫b

a

h(x) log h(x)dg(x) −
∫b

a

h(x)dg(x) log
∫b

a

h(x)dg(x), t = 1.

(3.14)

Now, taking x1 = r, x2 = t, y1 = u, y2 = v, where r, t, u, v /= 1, and f(t) = Λt in Lemma 2.4, we
have

⎛
⎝r(r − 1)

t(t − 1)

∫b
ah

t(x)dg(x) − (∫b
ah(x)dg(x)

)t
∫b
ah

r(x)dg(x) − (∫b
ah(x)dg(x)

)r
⎞
⎠

1/(t−r)

≤
⎛
⎝u(u − 1)

v(v − 1)

∫b
ah

v(x)dg(x) − (∫b
ah(x)dg(x)

)v
∫b
ah

u(x)dg(x) − (∫b
ah(x)dg(x)

)u
⎞
⎠

1/(v−u)

.

(3.15)

Since s > 0, by substituting h = hs, t = t/s, r = r/s, u = u/s, and v = v/s, where r, t, v, u /= s,
in above inequality, we get

⎛
⎝r(r − s)

t(t − s)

∫b
ah

t(x)dg(x) − (∫b
ah

s(x)dg(x)
)t/s

∫b
ah

r(x)dg(x) − (∫b
ah

s(x)dg(x)
)r/s

⎞
⎠

s/(t−r)

≤
⎛
⎝u(u − s)

v(v − s)

∫b
ah

v(x)dg(x) − (∫b
ah

s(x)dg(x)
)v/s

∫b
ah

u(x)dg(x) − (∫b
ah

s(x)dg(x)
)u/s

⎞
⎠

s/(v−u)

.

(3.16)

By raising power 1/s, we get an inequality (3.13) for r, t, v, u /= s.
From Remark 3.6 , we get (3.13) is also valid for r = s or t = s or r = t or t = r = s.

Lemma 3.8. Let f ∈ C2(I) such that

m ≤ f ′′(x) ≤ M. (3.17)
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Consider the functions φ1, φ2 defined as

φ1(x) =
Mx2

2
− f(x),

φ2(x) = f(x) − mx2

2
.

(3.18)

Then φi(x) for i = 1, 2 are convex.

Proof. We have that

φ′′
1(x) = M − f ′′(x) ≥ 0,

φ′′
2(x) = f ′′(x) −m ≥ 0,

(3.19)

that is, φi for i = 1, 2 are convex.

Theorem 3.9. Let t0 ∈ [a, b] be fixed, h be continuous and monotonic with h(t0) = 0, g be a function
of bounded variation, and f ∈ C2(I) such that condition (3.2) is satisfied. Then there exists ξ ∈ I such
that

∫b

a

f
(
h(x)

)
dg(x) − f

(∫b

a

h(x)dg(x)
)
−
(∫b

a

dg(x) − 1
)

=
f ′′(ξ)
2

{∫b

a

h2(x)dg(x) −
(∫b

a

h(x)dg(x)
)2}

.

(3.20)

Proof. In Theorem 3.1, setting f = φ1 and f = φ2, respectively, as defined in Lemma 3.8, we
get the following inequalities:

∫b

a

f
(
h(x)

)
dg(x) − f

(∫b

a

h(x)dg(x)
)
−
(∫b

a

dg(x) − 1
)

≤ M

2

{∫b

a

h2(x)dg(x) −
(∫b

a

h(x)dg(x)
)2}

,

(3.21)

∫b

a

f
(
h(x)

)
dg(x) − f

(∫b

a

h(x)dg(x)
)
−
(∫b

a

dg(x) − 1
)

≥ m

2

{∫b

a

h2(x)dg(x) −
(∫b

a

h(x)dg(x)
)2}

.

(3.22)

Now, by combining both inequalities, we get

m ≤ 2
{∫b

af
(
h(x)

)
dg(x) − f

(∫b
ah(x)dg(x)

) − (∫b
adg(x) − 1

)
f(0)

}
∫b
ah

2(x)dg(x) − (∫b
ah(x)dg(x)

)2 ≤ M. (3.23)
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So by condition (3.17), there exists ξ ∈ I such that

2
{∫b

af
(
h(x)

)
dg(x) − f

(∫b
ah(x)dg(x)

) − (∫b
adg(x) − 1

)
f(0)

}
∫b
ah

2(x)dg(x) − (∫b
ah(x)dg(x)

)2 = f ′′(ξ), (3.24)

and (3.24) implies (3.20).
Moreover, (3.21) is valid if f ′′ is bounded from above and again we have (3.20) is valid.
Of course (3.20) is obvious if f ′′ is not bounded from above and below as well.

Theorem 3.10. Let t0 ∈ [a, b] be fixed, h be continuous and monotonic with h(t0) = 0, g be a
function of bounded variation, and f1, f2 ∈ C2(I) such that condition (3.2) is satisfied. Then there
exists ξ ∈ I such that the following equality is true:

∫b
af1

(
h(x)

)
dg(x) − f1

(∫b
ah(x)dg(x)

) − (∫b
adg(x) − 1

)
f1(0)∫b

af2
(
h(x)

)
dg(x) − f2

(∫b
ah(x)dg(x)

) − (∫b
adg(x) − 1

)
f2(0)

=
f ′′
1 (ξ)

f ′′
2 (ξ)

, (3.25)

provided that denominators are nonzero.

Proof. Let a function k ∈ C2(I) be defined as

k = c1f1 − c2f2, (3.26)

where c1 and c2 are defined as

c1 =
∫b

a

f2
(
h(x)

)
dg(x) − f2

(∫b

a

h(x)dg(x)
)
−
(∫b

a

dg(x) − 1
)
f2(0),

c2 =
∫b

a

f1
(
h(x)

)
dg(x) − f1

(∫b

a

h(x)dg(x)
)
−
(∫b

a

dg(x) − 1
)
f1(0).

(3.27)

Then, using Theorem 3.9 with f = k, we have

0 =
(
c1f

′′
1 (ξ) − c2f

′′
2 (ξ)

){∫b

a

h2(x)dg(x) −
(∫b

a

h(x)dg(x)
)2}

. (3.28)

Since

∫b

a

h2(x)dg(x) −
(∫b

a

h(x)dg(x)
)2

/= 0, (3.29)
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therefore, (3.28) gives

c2
c1

=
f ′′
1 (ξ)

f ′′
2 (ξ)

. (3.30)

After putting values, we get (3.25).

Let α be a strictly monotone continuous function, we defined Tα(h, g) as follows
(integral version of quasiarithmetic sum [2]):

Tα(h, g) = α−1
(∫b

a

α
(
h(x)

)
dg(x)

)
. (3.31)

Theorem 3.11. Let α, β, γ ∈ C2[a, b] be strictly monotonic continuous functions. Then there exists
η in the image of h(x) such that

α
(
Tα(h, g)

) − α
(
Tγ(h, g)

) − (∫b
adg(x) − 1

)
α ◦ γ−1(0)

β
(
Tβ(h, g)

) − β
(
Tγ(h, g)

) − (∫b
adg(x) − 1

)
β ◦ γ−1(0)

=
α′′(η)γ ′(η) − α′(η)γ ′′(η)
β′′(η)γ ′(η) − β′(η)γ ′′(η)

(3.32)

is valid, provided that all denominators are nonzero.

Proof. If we choose the functions f1 and f2 so that f1 = α◦γ−1, f2 = β◦γ−1, and h(x) → γ(h(x)).
Substituting these in (3.25),

α
(
Tα(h, g)

) − α
(
Tγ(h, g)

) − (∫b
adg(x) − 1

)
α ◦ γ−1(0)

β
(
Tβ(h, g)

) − β
(
Tγ(h, g)

) − (∫b
adg(x) − 1

)
β ◦ γ−1(0)

=
α′′(γ−1(ξ))γ ′(γ−1(ξ)) − α′(γ−1(ξ))γ ′′(γ−1(ξ))
β′′
(
γ−1(ξ)

)
γ ′
(
γ−1(ξ)

) − β′
(
γ−1(ξ)

)
γ ′′
(
γ−1(ξ)

) .
(3.33)

Then by setting γ−1(ξ) = η, we get (3.32).

Corollary 3.12. Let t0 ∈ [a, b] be fixed, h be continuous and monotonic with h(t0) = 0, g be a
function of bounded variation, and let t, r, s ∈ R

+. Then

Fs
t,r(a, b, h, g) = η. (3.34)

Proof. If t, r, and s are pairwise distinct, then we put α(x) = xt, β(x) = xr and γ(x) = xs in
(3.32) to get (3.34).

For other cases, we can consider limit as in Remark 3.6.
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