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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of influence
in the development of what we call generalized Hyers-Ulam stability of functional equations. A
generalization of the Th. M. Rassias theorem was obtained by Găvruţa [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias’
approach. In 1982, J. M. Rassias [6] followed the innovative approach of the Th. M. Rassias’
theorem [4] in which he replaced the factor ‖x‖p+‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ Rwith p+q /= 1.

The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [7] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [8] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [9] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems
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of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [10–20]).

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see [21, 22]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.2)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M. Rassias [23] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [24–28]).

In [29], Gilányi showed that if f satisfies the functional inequality

∥∥2f(x) + 2f(y) − f(x − y)
∥∥ ≤ ∥∥f(x + y)

∥∥, (1.3)

then, f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x + y) + f(x − y). (1.4)

See also [30]. Gilányi [31] and Fechner [32] proved the generalized Hyers-Ulam stability of
the functional inequality (1.3).

In this paper, using fixed point methods, we prove the generalized Hyers-Ulam
stability of the functional inequalities

∥∥f(x) + f(y) + f(z)
∥∥ ≤ ∥∥f(x + y + z)

∥∥, (1.5)
∥∥f(x) + f(y) + 2f(z)

∥∥ ≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥, (1.6)

in Banach spaces.
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2. Fixed points and generalized Hyers-Ulam stability of
the functional inequalities (1.5) and (1.6)

Throughout this paper, assume that X is a normed vector space with norm ‖·‖ and that Y is a
Banach space with norm ‖·‖.

Using fixed point methods, we prove the generalized Hyers-Ulam stability of the
functional inequality (1.5) in Banach spaces.

Theorem 2.1. Let f : X → Y be an odd mapping for which there exists a function ϕ : X3 → [0,∞)
such that there exists an L < 1 such that ϕ(x, y, z) ≤ (1/2)Lϕ(2x, 2y, 2z) for all x, y, z ∈ X, and

∥
∥f(x) + f(y) + f(z)

∥
∥ ≤ ∥

∥f(x + y + z)
∥
∥ + ϕ(x, y, z) (2.1)

for all x, y, z ∈ X. Then, there exists a unique Cauchy additive mapping A : X → Y satisfying

∥∥f(x) −A(x)
∥∥ ≤ L

2 − 2L
ϕ(x, x,−2x) (2.2)

for all x ∈ X.

Proof. Consider the set

S := {g : X −→ Y}, (2.3)

and introduce the generalized metric on S:

d(g, h) = inf
{
K ∈ R+ : ‖g(x) − h(x)‖ ≤ Kϕ

(
x, x,−2x), ∀x ∈ X

}
. (2.4)

It is easy to show that (S, d) is complete. (See [33, proof of Theorem 2.5].)
Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(
x

2

)
(2.5)

for all x ∈ X.
It follows from [21, proof of Theorem 3.1] that

d(Jg, Jh) ≤ Ld(g, h) (2.6)

for all g, h ∈ S.
Since f : X → Y is odd, f(0) = 0 and f(−x) = −f(x) for all x ∈ X. Letting y = x and

z = −2x in (2.1), we get

∥∥2f(x) − f(2x)
∥∥ =

∥∥2f(x) + f(−2x)∥∥ ≤ ϕ(x, x,−2x) (2.7)

for all x ∈ X.
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It follows from (2.7) that

∥
∥
∥
∥f(x) − 2f

(
x

2

)∥
∥
∥
∥ ≤ ϕ

(
x

2
,
x

2
,−x

)
≤ L

2
ϕ(x, x,−2x) (2.8)

for all x ∈ X. Hence d(f, Jf) ≤ L/2.
By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A

(
x

2

)
=

1
2
A(x) (2.9)

for all x ∈ X. Then A : X → Y is an odd mapping. The mapping A is a unique
fixed point of J in the set

M =
{
g ∈ S : d(f, g) < ∞}

. (2.10)

This implies that A is a unique mapping satisfying (2.9) such that there exists a
K ∈ (0,∞) satisfying

∥∥f(x) −A(x)
∥∥ ≤ Kϕ(x, x,−2x) (2.11)

for all x ∈ X;

(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
(

x

2n

)
= A(x) (2.12)

for all x ∈ X;

(3) d(f,A) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,A) ≤ L

2 − 2L
. (2.13)

This implies that the inequality (2.2) holds.

It follows from (2.1) and (2.12) that

∥∥A(x) +A(y) +A(z)
∥∥ ≤ ∥∥A(x + y + z)

∥∥ (2.14)

for all x, y, z ∈ X. By [34, Proposition 2.2], the mapping A : X → Y is a Cauchy additive
mapping.

Therefore, there exists a unique Cauchy additive mappingA : X → Y satisfying (2.2),
as desired.
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Corollary 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be an odd mapping
such that

∥
∥f(x) + f(y) + f(z)

∥
∥ ≤ ∥

∥f(x + y + z)
∥
∥ + θ

(‖x‖r + ‖y‖r + ‖z‖r) (2.15)

for all x, y, z ∈ X. Then, there exists a unique Cauchy additive mapping A : X → Y such that

∥
∥f(x) −A(x)

∥
∥ ≤ 2r + 2

2r − 2
θ‖x‖r (2.16)

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y, z) := θ
(‖x‖r + ‖y‖r + ‖z‖r) (2.17)

for all x, y, z ∈ X. Then, we can choose L= 21−r and we get the desired result.

Corollary 2.3. Let r > 1/3 and θ be nonnegative real numbers, and let f : X → Y be an odd
mapping such that

∥∥f(x) + f(y) + f(z)
∥∥ ≤ ∥∥f(x + y + z)

∥∥ + θ · ‖x‖r · ‖y‖r · ‖z‖r (2.18)

for all x, y, z ∈ X. Then, there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f(x) −A(x)
∥∥ ≤ 2r

23r − 2
θ‖x‖3r (2.19)

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y, z) := θ · ‖x‖r · ‖y‖r · ‖z‖r (2.20)

for all x, y, z ∈ X. Then we can choose L= 21−3r and we get the desired result.

Remark 2.4. Let f : X → Y be an odd mapping for which there exists a function ϕ : X3 →
[0,∞) satisfying (2.1). By a similar method to the proof of Theorem 2.1, one can show that if
there exists an L < 1 such that ϕ(x, y, z) ≤ 2Lϕ(x/2, y/2, z/2) for all x, y, z ∈ X, then there
exists a unique Cauchy additive mapping A : X → Y satisfying

∥∥f(x) −A(x)
∥∥ ≤ 1

2 − 2L
ϕ(x, x,−2x) (2.21)

for all x ∈ X.
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For the case 0 < r < 1, one can obtain a similar result to Corollary 2.2. Let 0 < r < 1 and
θ ≥ 0 be real numbers, and let f : X → Y be an odd mapping satisfying (2.15). Then, there
exists a unique Cauchy additive mapping A : X → Y satisfying

∥
∥f(x) −A(x)

∥
∥ ≤ 2 + 2r

2 − 2r
θ‖x‖r (2.22)

for all x ∈ X.
For the case 0 < r < 1/3, one can obtain a similar result to Corollary 2.3. Let 0 < r < 1/3

and θ ≥ 0 be real numbers, and let f : X → Y be an odd mapping satisfying (2.18). Then,
there exists a unique Cauchy additive mapping A : X → Y satisfying

∥
∥f(x) −A(x)

∥
∥ ≤ 2r

2 − 23r
θ‖x‖3r (2.23)

for all x ∈ X.

Using fixed point methods, we prove the generalized Hyers-Ulam stability of the
functional inequality (1.6) in Banach spaces.

Theorem 2.5. Let f : X → Y be an odd mapping for which there exists a function ϕ : X3 → [0,∞)
such that there exists an L < 1 such that ϕ(x, y, z) ≤ (1/2)Lϕ(2x, 2y, 2z) for all x, y, z ∈ X, and

∥∥f(x) + f(y) + 2f(z)
∥∥ ≤

∥∥∥∥2f
(
x + y

2
+ z

)∥∥∥∥ + ϕ(x, y, z) (2.24)

for all x, y, z ∈ X. Then, there exists a unique Cauchy additive mapping A : X → Y satisfying

∥∥f(x) −A(x)
∥∥ ≤ L

2 − 2L
ϕ(0, 2x,−x) (2.25)

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be an odd mapping
such that

∥∥f(x) + f(y) + 2f(z)
∥∥ ≤

∥∥∥∥2f
(
x + y

2
+ z

)∥∥∥∥ + θ
(‖x‖r + ‖y‖r + ‖z‖r) (2.26)

for all x, y, z ∈ X. Then, there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f(x) −A(x)
∥∥ ≤ 2r + 1

2r − 2
θ‖x‖r (2.27)

for all x ∈ X.



Choonkil Park 7

Proof. The proof follows from Theorem 2.5 by taking

ϕ(x, y, z) := θ
(‖x‖r + ‖y‖r + ‖z‖r) (2.28)

for all x, y, z ∈ X. Then, we can choose L= 21−r and we get the desired result.

Remark 2.7. Let f : X → Y be an odd mapping for which there exists a function ϕ : X3 →
[0,∞) satisfying (2.24). By a similar method to the proof of Theorem 2.5, one can show that
if there exists an L < 1 such that ϕ(x, y, z) ≤ 2Lϕ(x/2, y/2, z/2) for all x, y, z ∈ X, then there
exists a unique Cauchy additive mapping A : X → Y satisfying

∥
∥f(x) −A(x)

∥
∥ ≤ 1

2 − 2L
ϕ(0, 2x,−x) (2.29)

for all x ∈ X.
For the case 0 < r < 1, one can obtain a similar result to Corollary 2.6. Let 0 < r < 1 and

θ ≥ 0 be real numbers, and let f : X → Y be an odd mapping satisfying (2.26). Then, there
exists a unique Cauchy additive mapping A : X → Y satisfying

∥∥f(x) −A(x)
∥∥ ≤ 1 + 2r

2 − 2r
θ‖x‖r (2.30)

for all x ∈ X.

Acknowledgment

This work was supported by the R & E program of KOSEF in 2008.

References

[1] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1960.
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 27, no. 4, pp. 222–224, 1941.
[3] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical

Society of Japan, vol. 2, pp. 64–66, 1950.
[4] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American

Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
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[20] Th.M. Rassias and P. Šemrl, “On the Hyers-Ulam stability of linear mappings,” Journal of Mathematical
Analysis and Applications, vol. 173, no. 2, pp. 325–338, 1993.
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