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1. Introduction

The study of differential equations and variational problems with nonstandard p(x)-growth
conditions is a new and interesting topic. We refer to [1, 2], the background of these problems.
Many results have been obtained on this kind of problems, for example, [1–15]. In this paper,
we consider the p(x)-Laplacian equations with exponential nonlinearities

−Δp(x)u + ef(x,u) = 0 in Ω,

u(x) −→ +∞ as d(x, ∂Ω) −→ 0,
(P)

where −Δp(x)u = −div(|∇u|p(x)−2∇u), Ω = B(0, R) ⊂ R
N is a bounded radial domain (B(0, R) =

{x ∈ R
N | |x| < R} ). Our aim is to give the existence and asymptotic behavior of solutions for

problem (P).
Throughout the paper, we assume that p(x) and f(x, u) satisfy that

(H1) p(x) ∈ C1(Ω) is radial and satisfies

1 < p− ≤ p+ < +∞, where p− = inf
Ω
p(x), p+ = sup

Ω
p(x); (1.1)



2 Journal of Inequalities and Applications

(H2) f(x, u) is radial with respect to x, f(x, ·) is increasing and f(x, 0) = 0 for any x ∈ Ω;

(H3) f : Ω × R → R is a continuous function and satisfies
∣
∣f(x, t)

∣
∣ ≤ C1 + C2|t|γ(x), ∀(x, t) ∈ Ω × R, (1.2)

where C1, C2 are positive constants, 0 ≤ γ ∈ C(Ω).

The operator −Δp(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian. Especially, if p(x) ≡
p (a constant), (P) is the well-known p-Laplacian problem (see [16–18]).

Because of the nonhomogeneity of p(x)-Laplacian, p(x)-Laplacian problems are more
complicated than those of p-Laplacian ones (see [6]); and another difficulty of this paper is
that f(x, u) cannot be represented as h(x)f(u).

2. Preliminary

In order to deal with p(x)-Laplacian problems, we need some theories on spaces Lp(x)(Ω) and
W1,p(x)(Ω), and properties of p(x)-Laplacian, which we will use later (see [3, 7]). Let

Lp(x)(Ω) =

{

u | u is a measurable real-valued function,
∫

Ω

∣
∣u(x)

∣
∣
p(x)

dx < ∞
}

. (2.1)

We can introduce the norm on Lp(x)(Ω) by

|u|p(x) = inf
{

λ > 0 |
∫

Ω

∣
∣
∣
∣

u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

. (2.2)

The space (Lp(x)(Ω), |·|p(x)) becomes a Banach space. We call it generalized Lebesgue
space. The space (Lp(x)(Ω), |·|p(x)) is a separable, reflexive, and uniform convex Banach space
(see [3, Theorems 1.10, 1.14]).

The spaceW1,p(x)(Ω) is defined by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) | ∣∣∇u
∣
∣ ∈ Lp(x)(Ω)

}

, (2.3)

and it can be equipped with the norm

‖u‖ = |u|p(x) +
∣
∣∇u

∣
∣
p(x), ∀u ∈ W1,p(x)(Ω). (2.4)

W
1,p(x)
0 (Ω) is the closure ofC∞

0 (Ω) inW1,p(x)(Ω).W1,p(x)(Ω) andW
1,p(x)
0 (Ω) are separable,

reflexive, and uniform convex Banach spaces (see [3, Theorem 2.1]).
If u ∈ W

1,p(x)
loc (Ω) ∩ C(Ω), u is called a solution of (P) if it satisfies

∫

Q

∣
∣∇u

∣
∣
p(x)−2∇u∇qdx +

∫

Q

f(x, u)qdx = 0, ∀q ∈ W
1,p(x)
0 (Q), (2.5)

for any domain Q � Ω, and max (k − u, 0) ∈ W
1,p(x)
0 (Ω) for any k ∈ N

+.

Let W1,p(x)
0,loc (Ω) = {u| there exists an open domain Q � Ω s.t. u ∈ W

1,p(x)
0 (Q)}. For any

u ∈ W
1,p(x)
loc (Ω) ∩ C(Ω) and ϕ ∈ W

1,p(x)
0,loc (Ω), define A : W1,p(x)

loc (Ω)∩C(Ω) → (W1,p(x)
0,loc (Ω))∗ as

〈Au, ϕ〉 =
∫

Ω(|∇u|p(x)−2∇u∇ϕ + ef(x,u)ϕ)dx.
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Lemma 2.1 (see [5, Theorem 3.1]). Let h ∈ W1,p(x)(Ω) ∩C(Ω), X = h +W
1,p(x)
0,loc (Ω) ∩C(Ω). Then,

A : X → (W1,p(x)
0,loc (Ω))∗ is strictly monotone.

Let g ∈ (W1,p(x)
0,loc (Ω))∗ , if 〈g, ϕ〉 ≥ 0, for all ϕ ∈ W

1,p(x)
0,loc (Ω), ϕ ≥ 0 a.e. in Ω, then denote g ≥ 0

in (W1,p(x)
0,loc (Ω))∗ ; correspondingly, if −g ≥ 0 in (W1,p(x)

0,loc (Ω))∗ , then denote g ≤ 0 in (W1,p(x)
0,loc (Ω))∗ .

Definition 2.2. Let u ∈ W
1,p(x)
loc (Ω) ∩C(Ω). If Au ≥ 0 (Au ≤ 0) in (W1,p(x)

0,loc (Ω))∗ , then u is called a
weak supersolution (weak subsolution) of (P).

Copying the proof of [9], we have the following lemma.

Lemma 2.3 (comparison principle). Let u, v ∈ W
1,p(x)
loc (Ω) ∩ C(Ω) satisfy Au − Av ≥ 0 in

(W1,p(x)
0,loc (Ω))∗ . Let ϕ(x) = min {u(x) − v(x), 0}. If ϕ(x) ∈ W

1,p(x)
0,loc (Ω) (i.e., u ≥ v on ∂Ω), then

u ≥ v a.e. in Ω.

Lemma 2.4 (see [4, Theorem 1.1]). Under the conditions (H1) and (H3), if u ∈ W1,p(x)(Ω) is a
bounded weak solution of −Δp(x)u + ef(x,u) = 0 in Ω, then u ∈ C1,ϑ

loc (Ω), where ϑ ∈ (0, 1) is a constant.

3. Main results and proofs

If u is a radial solution of (P), then (P) can be transformed into

(

rN−1|u′|p(r)−2u′)′ = rN−1ef(r,u), r ∈ (0, R),

u(0) = u0, u′(0) = 0, u′(r) ≥ 0 for 0 < r < R.
(3.1)

It means that u(r) is increasing.

Theorem 3.1. If there exists a constant σ ∈ [R/2, R) such that

f(r, u) ≥ αus (as u −→ +∞) for r ∈ [σ,R) uniformly, (3.2)

where α and s are positive constants, then there exists a continuous function Φ1(x) which satisfies
Φ1(x) → +∞ (as d(x, ∂Ω) → 0), and such that, if u is a weak solution of problem (P), then u(x) ≤
Φ1(x).

Proof. Let R0 ∈ (σ,R). Denote

Θ(r, a, λ)=
∫R0

r

⎡

⎣
a
(

a ln
(

R−R0−λ
)−1)1/s−1

s
(

R−R0−λ
)

⎤

⎦

(p(Ro)−1)/(p(t)−1)[(
Ro

)N−1

tN−1 sin ε(t−σ)
]1/(p(t)−1)

dt.

(3.3)

Define the function g(r, a) on [0, R) as

g(r, a) =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

(

a ln (R − r)−1
)1/s

+ k, R0 ≤ r < R,

k −Θ(r, a, 0) +
(

a ln (R − R0)
−1)1/s, σ < r < R0,

k −Θ(σ, a, 0) +
(

a ln (R − R0)
−1)1/s, r ≤ σ,

(3.4)
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where a > (1/α) sup |x|≥R0
p(x) is a constant, R0 ∈ (σ,R), and R − R0 is small enough,

ε = π/2(R0 − σ) and k = ((2p+/α) ln (R − R0)
−1)1/s + Θ(σ, 2a, 0).

Obviously, for any positive constant a, g(r, a) ∈ C1[0, R).
When R0 < r < R, we have

(

rN−1|g ′|p(r)−2g ′)′=rN−1
(
a1/s

s

)p(r)−1
p(r) − 1

(R − r)p(r)
(

ln (R−r)−1)(1/s−1)(p(r)−1)(1+Π(r)
)

, (3.5)

where

Π(r) =
(1/s − 1)

ln (R − r)−1
+

[

rN−1(a1/s/s)p(r)−1
]′

rN−1(a1/s/s
)p(r)−1(p(r) − 1)

(R − r)

+
−p′(r) ln (R − r)

(

p(r) − 1
) (R − r) +

(1/s − 1)p′(r) ln ln (R − r)−1
(

p(r) − 1
) (R − r).

(3.6)

If (R − R0) is small enough, it is easy to see |Π(r)| ≤ 1/2; from (3.5), we have

(

rN−1|g ′|p(r)−2g ′)′ ≤ 2rN−1
(
a1/s

s

)p(r)−1
(

p(r) − 1)(R − r
)−p(r)( ln (R − r)−1

)(1/s−1)(p(r)−1)

≤ rN−1
(

1
R − r

)αa

= rN−1eαg
s ≤ rN−1ef(r,g), ∀r ∈ (

R0, R
)

.

(3.7)

Obviously, if R − R0 is small enough, then g ≥ ((2p+/α) ln (R−R0)
−1)

1/s
is large enough,

so we have

(

rN−1|g ′|p(r)−2g ′)′ = ε
(

Ro

)N−1
[

a
(

a ln
(

R − R0
)−1)1/s−1

s
(

R − R0
)

](p(Ro)−1)

cos
(

ε(r − σ)
)

≤ rN−1eαg
s ≤ rN−1ef(r,g), σ < r < R0.

(3.8)

Obviously,

(

rN−1|g ′|p(r)−2g ′)′ = 0 ≤ rN−1ef(r,g), 0 ≤ r < σ. (3.9)

Since g(|x|, a) is a C1 function on B(0, R), if 0 < R − R0 is small enough (R0 depends on
R, p, s, α), from (3.7), (3.8), and (3.9), we can see that g(|x|, a) is a supersolution of (P).

Define the function gm(r, a − ε) on [0, R − 1/m) as

gm(r, a − ε) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

(a − ε) ln
(

R − 1
m

− r

)−1]1/s
+ k, R0≤r <R− 1

m
,

k −Θ
(

r, a − ε,
1
m

)

+
[

(a − ε) ln
(

R − 1
m

− R0

)−1]1/s
, σ < r < R0,

k −Θ
(

σ, a − ε,
1
m

)

+
[

(a − ε) ln
(

R − 1
m

− R0

)−1]1/s
, r ≤ σ,

(3.10)
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wherem is a big-enough integer such that 0 < 1/m ≤ (R − R0)/2, ε = π/2(R0 − σ), 0 < ε < 1, is
a positive small constant such that α(a − ε) > sup |x|≥R0

p(x).
Obviously, gm(|x|, a−ε) is a supersolution of (P) on B(0, R−1/m). If u is a solution of (P),

according to the comparison principle, we get that gm(|x|, a−ε) ≥ u(x) for any x ∈ B(0, R−1/m).
For any x ∈ B(0, R − 1/m) \ B(0, R0), we have gm(|x|, a − ε) ≥ gm+1(|x|, a − ε). Thus,

u(x) ≤ lim
m→+∞

gm
(|x|, a − ε

)

, ∀x ∈ B(0, R) \ B(0, R0
)

. (3.11)

When d(x, ∂Ω) > 0 is small enough, we have

lim
m→+∞

gm
(|x|, a − ε

)

<
(

a ln (R − r)−1
)1/s + k ≤ g

(|x|, a). (3.12)

According to the comparison principle, we obtain that g(|x|, a) ≥ u(x), for all x ∈ B(0, R),
then Φ1(x) = g(|x|, a) is an upper control function of all of the solutions of (P). The proof is
completed.

Theorem 3.2. If there exists a σ ∈ [R/2, R) such that

f(r, u) ≤ βus (as u −→ +∞) for r ∈ [σ,R) uniformly, (3.13)

where β and s are positive constants, then there exists a continuous function Φ2(x) which satisfies
Φ2(x) → + ∞ (as d(x, ∂Ω) → 0), and such that, if u(x) is a solution of problem (P), then u(x) ≥
Φ2(x).

Proof. Let z1 be a radial solution of

−Δp(x)z1(x) = −μ in Ω1 = B(0, σ), z1 = 0 on ∂Ω1, (3.14)

where μ > 2 is a positive constant. We denote z1 = z1(r) = z1(|x|), then z1 satisfies z1(σ) = 0,
z′1(0) = 0, and

z′1 =
∣
∣
∣
∣

rμ

N

∣
∣
∣
∣

1/(p(r)−1)
, z1 = −

∫σ

r

∣
∣
∣
∣

rμ

N

∣
∣
∣
∣

1/(p(r)−1)
dr. (3.15)

Denote hb(r, δ) on [σ,R0] as

hb(r, δ) =
∫R0

r

{

(Ro)
N−1

tN−1
t − σ

R0 − σ

[

b
(

b ln
(

R + δ − R0
)−1)1/s−1

s
(

R + δ − R0
)

]p(Ro)−1

+
(σ)N−1

tN−1
R0 − t

R0 − σ

[∣
∣
∣
∣

tμ

N

∣
∣
∣
∣

1/(p(t)−1)]p(σ)−1}1/(p(t)−1)
dt.

(3.16)

It is easy to see that

−h′
b(σ, 0) = z′1(σ) =

∣
∣
∣
∣

σμ

N

∣
∣
∣
∣

1/(p(σ)−1)
, − h′

b

(

R0, 0
)

=
b
(

b ln
(

R − R0
)−1)1/s−1

s
(

R − R0
) . (3.17)
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Define the function v(r, b) on B(0, R) as

v(r, b) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

(

b ln (R − r)−1
)1/s − k∗, R0 ≤ r < R,

(

b ln
(

R − R0
)−1)1/s − k∗ − hb(r, 0), σ < r < R0,

−
∫σ

r

∣
∣
∣
∣

rμ

N

∣
∣
∣
∣

1/(p(r)−1)
dr +

(

b ln
(

R − R0
)−1)1/s − k∗ − hb(σ, 0), r ≤ σ,

(3.18)

where b ∈ (0, (1/β)inf |x|≥R0p(x)) is a constant, R0 ∈ (σ,R), and R − R0 is small enough, and
k∗ = ((2p+/β) ln 2(R − R0)

−1)1/s.
Obviously, for any positive constant b, v(r, b) ∈ C1[0, R).
Similar to the proof of Theorem 3.1, when R − R0 is small enough, we have

(

rN−1|v′|p(r)−2v′)′ ≥ rN−1ef(r,v), ∀r ∈ (

R0, R
)

. (3.19)

When R − R0 is small enough, for all r ∈ (σ,R0), since f(r, v) ≤ 0, then

(

rN−1|v′|p(r)−2v′)′ ≥ 1
2

(

Ro

)N−1

R0 − σ

[

b
(

b ln
(

R − R0
)−1)1/s−1

s
(

R − R0
)

]p(R0)−1

≥ rN−1ef(r,v). (3.20)

Obviously,

(

rN−1|v′|p(r)−2v′)′ = rN−1μ ≥ rN−1ef(r,v), ∀r ∈ (0, σ). (3.21)

Combining (3.19), (3.20), and (3.21), we can see that v(r, a) is a subsolution of (P).
Define the function vm(r, b + ε) on B(0, R) as

vm(r, b + ε) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

(b + ε) ln
(

R +
1
m

− r

)−1]1/s
− k∗, R0 ≤ r < R,

[

(b + ε) ln
(

R +
1
m

− R0

)−1]1/s
− k∗ − hb+ε

(

r,
1
m

)

, σ < r < R0,

−
∫σ

r

∣
∣
∣
∣

μr

N

∣
∣
∣
∣

1/(p(r)−1)
dr+

[

(b+ε) ln
(

R+
1
m

−R0

)−1]1/s
−k∗−hb+ε

(

σ,
1
m

)

, r ≤ σ,

(3.22)

where ε is a small-enough positive constant such that (b + ε) < (1/β)inf |x|≥R0p(x).
We can see that vm(r, b + ε) ∈ C1([0, R)) is a subsolution of (P) on B(R0, R), according

to the comparison principle, we get that vm(|x|, b + ε) ≤ u(x) for any x ∈ B(0, R). For any
x ∈ B(0, R) \ B(0, R0), we have vm(|x|, b + ε) ≤ vm+1(|x|, b + ε). Thus,

u(x) ≥ lim
m→+∞

vm

(|x|, b + ε
)

, ∀x ∈ B(0, R) \ B(0, R0
)

. (3.23)

When d(x, ∂Ω) is small enough, we have

lim
m→+∞

vm

(|x|, b + ε
)

> v
(|x|, b). (3.24)

From the comparison principle, we obtain v(|x|, b) ≤ u(x), ∀x ∈ B(0, R), then Φ2(x) =
v(|x|, b) is a lower control function of all of the solutions of (P).
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Theorem 3.3. If inf x∈Ωp(x) > N and there exists a σ ∈ [R/2, R) such that

f(r, u) ≥ aus (as u −→ +∞) for r ∈ [σ,R) uniformly, (3.25)

where a and s are positive constants, then (P) possesses a solution.

Proof. In order to deal with the existence of boundary blow-up solutions of (P), let us consider
the problem

−Δp(x)u + ef(x,u) = 0 in Ω,

u(x) = j forx ∈ ∂Ω,
(3.26)

where j = 1, 2, . . . . Since inf x∈Ωp(x) > N, then W1,p(x)(Ω) ↪→ Cα(Ω), where α ∈ (0, 1). The
relative functional of (3.26) is

ϕ(u) =
∫

Ω

1
p(x)

∣
∣∇u(x)

∣
∣
p(x)

dx +
∫

Ω
F(x, u)dx, (3.27)

where F(x, u) =
∫u

0e
f(x,t)dt. Since ϕ is coercive in Xj := j + W

1,p(x)
0 (Ω), then ϕ possesses a

nontrivial minimum point uj , then problem (3.26) possesses a weak solution uj . According to
the comparison principle, we get uj(x) ≤ uj+1(x) for any x ∈ Ω and j = 1, 2, . . . . Since Φ1(x)
defined in Theorem 3.1 is a supersolution, according to the comparison principle, we have
uj(x) ≤ Φ1(x) on Ω for all j = 1, 2, . . . . Since Φ1(x) is locally bounded, from Lemma 2.4, every
weak solution of (P) is a locally C1,ϑ

loc function. Thus, {uj(x)} possesses a subsequence (we still
denote it by {uj(x)}), such that lim j→∞uj = u is a solution of (P).
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