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1. Introduction and primary concepts

For n ∈ Z, n ≥ 0, Bernoulli numbers Bn originally arise in the study of finite sums of a given
power of consecutive integers. They are given by B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 =
−1/30, . . ., with B2n+1 = 0 for odd n > 1, and

Bn = − 1
n + 1

n−1∑

m=0

(
n + 1
m

)
Bm, (1.1)

for all n ≥ 1. In the symbolic notation, Bernoulli numbers are given recursively by

(B + 1)n − Bn = δn,1, (1.2)

with the usual convention about replacing Bj by Bj , where δn,1 is the Kronecker symbol. The
Bernoulli polynomials Bn(z) can be expressed in the form

Bn(z) = (B + z)n =
n∑

m=0

(
n

m

)
Bmz

n−m, (1.3)
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for an indeterminate z. The generating functions of these numbers and polynomials are given,
respectively, by

F(t) =
t

et − 1
=

∞∑

n=0

Bn
tn

n!
,

F(z, t) =
t

et − 1
ezt =

∞∑

n=0

Bn(z)
tn

n!
,

(1.4)

for |t| < 2π . One of the notable facts about Bernoulli numbers and polynomials is the relation
between the Riemann and the Hurwitz (or generalized) zeta functions.

Theorem 1.1 (see [1, 2]). For every integer n ≥ 1,

ζ(1 − n) = −Bn

n
, ζ(1 − n, z) = −Bn(z)

n
, (1.5)

where ζ(s) and ζ(s, z) are the Riemann and the Hurwitz (or generalized) zeta functions, defined, re-
spectively, by

ζ(s) =
∞∑

m=1

1
ms

, ζ(s, z) =
∞∑

m=0

1
(m + z)s

, (1.6)

with s ∈ C, �(s) > 1, and z ∈ C with �(z) > 0.

Among various generalizations of Bernoulli numbers and polynomials, generalization
with a primitive Dirichlet character χ has a special case of attention.

Definition 1.2 (see [2, 3]). For a primitive Dirichlet character χ having conductor f ∈ Z, f ≥ 1,
the generalized Bernoulli numbers Bn,χ and polynomials Bn,χ(z) associated with χ are defined
by

Fχ(t) =
f∑

a=1

χ(a)teat

eft − 1
=

∞∑

n=0

Bn,χ
tn

n!
,

Fχ(z, t) =
f∑

a=1

χ(a)te(a+z)t

eft − 1
=

∞∑

n=0

Bn,χ(z)
tn

n!
,

(1.7)

respectively, for |t| < 2π/f.

When χ = 1, the classical Bernoulli numbers and polynomials are obtained in that Bn,1 =
(−1)nBn and Bn,1(z) = (−1)nBn(−z). The generalized Bernoulli numbers and polynomials can
be expressed in terms of Bernoulli polynomials as

Bn,χ = fn−1
f∑

a=1

χ(a)Bn

(
a

f

)
,

Bn,χ(z) = fn−1
f∑

a=1

χ(a)Bn

(
a + z

f

)
.

(1.8)
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Given a primitive Dirichlet character χ having conductor f, the Dirichlet L-function as-
sociated with χ is defined by [1, 2]

L(s, χ) =
∞∑

m=1

χ(m)
ms

, (1.9)

where s ∈ C, Re (s) > 1. It is well known [2] that L(s, χ) may be analytically continued to the
whole complex plane, except for a simple pole at s = 1 when χ = 1, in which case it reduces
to Riemann zeta function, ζ(s) = L(s, 1). The generalized Bernoulli numbers share a particular
relationship with the Dirichlet L-function in that

L(1 − n, χ) = −Bn,χ

n
, (1.10)

for n ∈ Z, n ≥ 1.
Let p be a fixed prime number. Throughout this paper, Zp, Qp, C, and Cp will, respec-

tively, denote the ring of p-adic integers, the field of p-adic rational numbers, the complex
number field, and the completion of the algebraic closure of Qp. Let | · |p denote the p-adic ab-
solute value on Qp, normalized so that |p|p = p−1. Let p∗ = 4 if p = 2 and p∗ = p otherwise.
Note that there exist φ(p∗) distinct solutions, modulo p∗, to the equation xφ(p∗) −1 = 0, and each
solution must be congruent to one of the values a ∈ Z, where 1 ≤ a ≤ p∗ − 1, (a, p) = 1. Thus,
by Hensel’s lemma, given a ∈ Z with (a, p) = 1, there exists a unique w(a) ∈ Zp such that
w(a) ≡ a(mod p∗Zp). Letting w(a) = 0 for a ∈ Z such that (a, p) /= 1, it can be seen that w is
actually a Dirichlet character having conductor fw = p∗, called the Teichmüller character. Let
x = w(x)〈x〉. Then 〈x〉 ≡ 1(mod p∗Zp). In the sense of product of characters, let χn = χw−n.
This implies that fχn

| fp∗. Since χ = χnw
n, f | fχn

p∗ is also true. Thus, f and fχn
differ by a

factor that is a power of p.
During the development of p-adic analysis, researches were made to derive a meromor-

phic function, defined over the p-adic number field, that would interpolate the same, or at least
similar values as the Dirichlet L-function at nonpositive integers. In [4], Kubota and Leopoldt
proved the existence of such a function, considered as p-adic equivalent of the Dirichlet L-
function.

Proposition 1.3 (see [3, 4]). There exists a unique p-adic meromorphic (analytic if χ /= 1) function
Lp(s, χ), s ∈ Zp, for which

Lp(1 − n, χ) =
(
1 − χn(p)pn−1

)
L
(
1 − n, χn

)
, (1.11)

for n ∈ Z, n ≥ 1.

By (1.10), this function yields the values

Lp(1 − n, χ) = − 1
n

(
1 − χn(p)pn−1

)
Bn,χn

, (1.12)

for n ∈ Z, n ≥ 1. Since the time of the work of Kubota and Leopoldt, manymathematicians have
derived the existence and generalizations of Lp(s, χ) by various means [5–12]. In particular,
Washington [11] derived the function by elementary means and expressed it in an explicit
form.

Let D denote the region

D =
{
s ∈ Cp : |s − 1|p < |p|1/(p−1)p |p∗|−1p

}
. (1.13)
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Theorem 1.4 (see [11]). Let F be a positive integer multiple of p∗ and f , and let

Lp(s, χ) =
1

s − 1
1
F

F∑

a=1
(a,p)=1

χ(a)〈a〉1−s
∞∑

m=0

(
1 − s
m

)(
F

a

)m

Bm. (1.14)

Then, Lp(s, χ) is analytic for s ∈ D, when χ /= 1, and meromorphic for s ∈ D, with a simple pole at
s = 1, having residue 1 − 1/p, when χ = 1. Furthermore, for each n ∈ Z, n ≥ 1,

Lp(1 − n, χ) = − 1
n

(
1 − χn(p)pn−1

)
Bn,χn

. (1.15)

Thus, Lp(s, χ) vanishes identically if χ(−1) = −1.

In [6], Fox derived a p-adic function Lp(s, z, χ), where z ∈ Cp, |z|p ≤ 1, and s ∈ D, that
interpolates the values

Lp(1 − n, z, χ) = − 1
n

(
Bn,χn

(
p∗z

) − χn(p)pn−1Bn,χn

(
p−1p∗z

))
, (1.16)

for positive integers n. By applying the method that Washington used to derive Theorem 1.4,
Fox [7] obtained Lp(s, z, χ) by elementary means and expressed it in an explicit form.

Theorem 1.5 (see [7]). Let F be a positive integer multiple of p∗ and f , and let

Lp(s, z, χ) =
1

s − 1
χ(−1)
F

F∑

a=1
(a,p)=1

χ(a)
〈
a − p∗z

〉1−s

×
∞∑

m=0

(
1 − s
m

)(
F

a − p∗z

)m

Bm.

(1.17)

Then, Lp(s, z, χ) is analytic for z ∈ Cp, |z|p ≤ 1, provided that s ∈ D, except for s /= 1 when χ = 1.
Also, if z ∈ Cp, |z|p ≤ 1, this function is analytic for s ∈ D when χ /= 1, and meromorphic for s ∈ D,
with a simple pole at s = 1, having residue 1 − 1/p, when χ = 1. Furthermore, for each n ∈ Z, n ≥ 1,

Lp(1 − n, z, χ) = − 1
n

(
Bn,χn

(
p∗z

) − χn(p)pn−1Bn,χn

(
p−1p∗z

))
. (1.18)

In [12], Young gave p-adic integral representations for the two-variable p-adic L-function
introduced by Fox. These representations leaded to generalizations of some formulas of Dia-
mond [13, 14] and of Ferrero and Greenberg [15] for p-adic L-functions in terms of the p-adic
gamma and log gamma functions. But, his work was restricted to character χ such that the
conductor of χ1 is not a power of p. The explicit formula given in Theorem 1.5 by Fox yielded
to derive formulas similar to that obtained by Young, but for all primitive Dirichlet character χ.

In [16], Carlitz defined q-extensions of Bernoulli numbers and polynomials, and proved
properties generalizing those satisfied by Bn and Bn(z). When talking about q-extensions, q
can be considered as an indeterminate, a complex number q ∈ C or a p-adic number q ∈ Cp. If
q ∈ C, then it is assumed that |q| < 1 and if q ∈ Cp, then it is assumed that |1 − q|p < p−1/(p−1), so
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that qx = exp (logpq) for |x|p ≤ 1, where log is the Iwasawa p-adic logarithm function (see [3,
Chapter 4]).

The q-Bernoulli numbers βn,q, n ∈ Z, n ≥ 0, are usually defined by

β0,q =
q − 1
log q

,
(
qβq + 1

)n − βn,q = δn,1, (1.19)

where the usual convention about replacing β
j
q by βj,q in the binomial expansion is understood

[8, 17–24]. It follows from (1.19) that

βn,q =
1

(1 − q)n
n∑

i=0

(
n
i

)
(−1)i i

[i]q
, (1.20)

where it is understood that for i = 0, the function i/[i]q = 1. We use the notation

[x]q =
1 − qx

1 − q
, (1.21)

so that limq→1[x]q = x for any x ∈ C in the complex case and x ∈ Cp with |x|p ≤ 1 in the p-adic
case. In [8, 9], Kim defined q-Bernoulli polynomials βn,q(z), n ∈ Z, n ≥ 0, as

βn,q(z) =
(
qzβq + z

)n

=
n∑

m=0

(
n
m

)
qmzβm,q[z]

n−m
q

=
1

(1 − q)n
n∑

i=0

(
n
i

)
(−1)iqiz i

[i]q
.

(1.22)

Some basic properties of q-Bernoulli polynomials βn,q(z) similar to those of Bernoulli polyno-
mials Bn(z) can be deduced from (1.22) (see also [25]). For instance, we have

βn,q−1(1 − z) = (−1)nqn−1βn,q(z), (1.23)

βn,q(1 + z) − βn,q(z) = nqz[z]n−1q , (1.24)

βn,q(z + τ) =
n∑

m=0

(
n
m

)
qmzβm,q(τ)[z]

n−m
q . (1.25)

Let χ be a Dirichlet character with conductor f . The generalized q-Bernoulli polynomials
associated with χ, βn,q,χ(z), n ∈ Z, n ≥ 0, are defined by [8, 9]

βn,q,χ(z) = [f]n−1q

f∑

a=1

χ(a)βn,qf
(
a + z

f

)
. (1.26)

For z = 0, βn,q,χ(0) = βn,q,χ are the generalized q-Bernoulli numbers,

βn,q,χ = [f]n−1q

f∑

a=1

χ(a)βn,qf
(
a

f

)
. (1.27)
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From (1.25), (1.26), and (1.27),

βn,q,χ(z) =
n∑

m=0

(
n
m

)
qmzβm,q,χ[z]

n−m
q . (1.28)

An important property that the polynomials βn,q,χ(z) satisfy is the following, which can be
proved by using (1.24) and (1.26):

Proposition 1.6. Form ∈ Z,m ≥ 1,

βn,q,χ(mf + z) − βn,q,χ(z) = n
mf∑

a=1

χ(a)qa+z[a + z]n−1q (1.29)

for all n ∈ Z, n ≥ 1.

Note that for χ = 1 (i.e., f = 1), z = 0, and q → 1, Proposition 1.6 reduces to

m∑

a=1

an−1 =
1
n

(
Bn,1(m) − Bn,1

)
, (1.30)

which is the well-known property of Bernoulli numbers and polynomials.
Let K be an extension of Qp contained in Cp. An infinite series

∑
an, an ∈ K, converges

in K if and only if |an|p → 0, as n → ∞. Let K[[x]] and K[x] be, respectively, the algebras
of formal power series and of polynomials in x. Then, A(x) =

∑
anx

n ∈ K[[x]] converges at
x = η, η ∈ Cp, if and only if |anη

n|p → 0, as n → ∞. The following is a uniqueness property for
power series found in [3].

Lemma 1.7. Let A(x), B(x) ∈ K[[x]] such that each converges in a neighborhood of 0 in Cp. If
A(ηn) = B(ηn) for a sequence {ηn}, ηn /= 0, in Cp such that ηn → 0, then A(x) = B(x).

Any positive integer n can be uniquely expressed in the form

n =
k∑

m=0

amp
m, (1.31)

where am ∈ Z, 0 ≤ am ≤ p − 1, for m = 0, 1, . . . , k and ak /= 0. For such n, let

sp(n) =
k∑

m=0

am (1.32)

be the sum of the p-adic digits of nwith sp(0) = 0. For any n ∈ Z, let vp(n) be the highest power
of p dividing n. The function vp is additive and relates sp by means of

vp(n!) =
n − sp(n)
p − 1

(1.33)

for all n ≥ 0. For n ≥ 1, (1.33) implies that

vp(n!) ≤ n − 1
p − 1

. (1.34)
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We denote a particular subring of Cp as

o =
{
a ∈ Cp : |a|p < 1

}
. (1.35)

If z ∈ Cp such that |z|p ≤ |p|mp , where m ∈ Q, then z ∈ pmo, and this can be also written as
z ≡ 0(mod pmo). Let the set R be defined as

R =
{
a ∈ Cp : |a|p < p−1/(p−1)

}
. (1.36)

Obviously, R ⊂ o. Since |1 − q|p < p−1/(p−1) for q ∈ Cp, we have 1 − q ∈ R, which implies that
q ≡ 1(mod R). Let 〈a : q〉 = [a]qw

−1(a). For the context in the sequel, an extension of 〈a : q〉 is
needed. Since w can be considered as a Dirichlet character of conductor p∗, w(a + p∗z) = w(a)
for a ∈ Z with (a, p) = 1. Thus, 〈a + p∗z : q〉 can be defined by

〈
a + p∗z : q

〉
=

[
a + p∗z

]
q

w(a)
. (1.37)

If z ∈ Cp such that |z|p ≤ 1, then for any a ∈ Z,
[
a + p∗z

]
q = [a]q + qa

[
p∗z

]
q ≡ [a]q(mod R). (1.38)

Thus, 〈a + p∗z : q〉 ≡ 1(mod p∗R).
Let F be a positive integer multiple of f and p∗. In [9], Kim defined p-adic q-L-function

of two variables Lp,q(s, z, χ) as follows:

Lp,q(s, z, χ) =
1

s − 1
1

[F]q

F∑

a=1
(a,p)=1

χ(a)
〈
a + p∗z : q

〉1−s

×
∞∑

m=0

(
1 − s

m

)
βm,qFq

(a+p∗z)m
[

F

a + p∗z

]m

qa+p
∗z
.

(1.39)

The analytic properties of Lp,q(s, z, χ) are given by the following theorem.

Theorem 1.8 (see [9]). Let F be a positive multiple of f and p∗ and let Lp,q(s, z, χ) be as in (1.39).
Then, Lp,q(s, z, χ) is analytic for z ∈ Cp, |z|p ≤ 1, provided that s ∈ D, except for s = 1 if χ /= 1.
Moreover, if z ∈ Cp, |z|p ≤ 1, then this function is analytic for s ∈ D if χ /= 1 and meromorphic
for s ∈ D with a simple pole at s = 1 with residue (1/[F]q)((q

F − 1)/ log q)(1 − 1/p) if χ = 1.
Furthermore, for n ∈ Z, n ≥ 1,

Lp,q(1 − n, z, χ) = − 1
n

(
βn,q,χn

(
p∗z

) − χn(p)[p]
n−1
q βn,qp,χn

(
p−1p∗z

))
. (1.40)

Kim [9] also gave a p-adic integral representation for the function Lp,q(s, z, χ) and
derived a q-extension of the generalized Diamond-Ferrero-Greenberg formula for the two-
variable p-adic L-function in terms of p-adic gamma and log-gamma functions. In [5], first
author derived Lp,q(s, z, χ) by using convergent power series, a method developed by Iwasawa
[3]. Resulting function from this derivation is in closed form but satisfies same properties of
the function defined by (1.39).

The main motivation of this paper is to derive general classes of congruences for gener-
alized q-Bernoulli polynomials by making use of the function Lp,q(s, z, χ). These classes are ob-
tained as an application of the difference formula (see (2.12) for the p-adic q-L-function of two
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variables, which generalizes Proposition 1.6 and thus the well-known formula for Bernoulli
numbers and polynomials (1.30).

2. Properties of Lp,q(s, z, χ)

Recall that Lp,q(s, z, χ), z ∈ Cp, |z|p ≤ 1, interpolates the values

Lp,q(1 − n, z, χ) = − 1
n
bn(z, q, χ), (2.1)

for n ∈ Z, n ≥ 1, where

bn(z, q, χ) = βn,q,χn

(
p∗z

) − χn(p)[p]
n−1
q βn,qp,χn

(
p−1p∗z

)
. (2.2)

Lemma 2.1. For all n ∈ Z, n ≥ 1,

bn
( − z, q−1, χ

)
= χ(−1)qn−1bn(z, q, χ). (2.3)

Proof. We use the method in [26, 27] for the proof. First, consider the case χn = 1, which implies
χ = wn. Then

bn
( − z, q−1, χ

)
= βn,q−1,1

( − p∗z
) − [p]n−1q−1 βn,q−p,1

( − p−1p∗z
)

= βn,q−1
(
1 − p∗z

) − 1
(
qp−1

)n−1 [p]
n−1
q βn,q−p

(
1 − p−1p∗z

)
.

(2.4)

From (1.23), we have

bn
( − z, q−1, χ

)
= (−1)nqn−1βn,q

(
p∗z

) −
[p]n−1q

(
qp−1

)n−1 (−1)
n(qp

)n−1
βn,qp

(
p−1p∗z

)

= (−1)nqn−1
(
βn,q

(
p∗z

) − [p]n−1q βn,qp
(
p−1p∗z

))
.

(2.5)

Using (1.24), we obtain

bn
( − z, q−1, χ

)

= (−1)nqn−1
{
βn,q

(
1+p∗z

)−nqp∗z[p∗z]n−1q −[p]n−1q βn,qp
(
1+p−1p∗z

)
+[p]n−1q n

(
qp
)p−1p∗z[

p−1p∗z
]n−1
qp

}

= (−1)nqn−1
(
βn,q

(
1 + p∗z

) − [p]n−1q βn,qp
(
1 + p−1p∗z

))

= (−1)nqn−1
(
βn,q,1

(
p∗z

) − [p]n−1q βn,qp,1
(
p−1p∗z

))

= (−1)nqn−1bn(z, q, χ).
(2.6)

Since χ = wn and w(−1) = 1, the lemma holds for χn = 1.
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Now, suppose that χn /= 1. Then, from (1.26), we obtain

bn
( − z, q−1, χ

)
= βn,q−1,χn

( − p∗z
) − χn(p)[p]

n−1
q−1 βn,q−p,χn

( − p−1p∗z
)

=
[
fχn

]n−1
q−1

fχn∑

a=1

χn(a)βn,q−fχn
(
a − p∗z
fχn

)

− χn(p)[p]
n−1
q−1

[
fχn

]n−1
q−p

fχn∑

a=1

χn(a)βn,q−pfχn
(
a − p−1p∗z

fχn

)

=
[
fχn

]n−1
q−1

fχn∑

a=1

χn

(
fχn

− a
)
βn,q−fχn

(
fχn

− a − p∗z

fχn

)

− χn(p)[p]
n−1
q−1

[
fχn

]n−1
q−p

fχn∑

a=1

χn

(
fχn

− a
)
βn,q−pfχn

(
fχn

− a − p−1p∗z

fχn

)

=
[
fχn

]n−1
q−1

fχn∑

a=1

χn(−a)βn,q−fχn
(
1 − a + p∗z

fχn

)

− χn(p)[p]
n−1
q−1

[
fχn

]n−1
q−p

fχn∑

a=1

χn(−a)βn,q−pfχn
(
1 − a + p−1p∗z

fχn

)
.

(2.7)

Using (1.23), we have

bn
( − z, q−1, χ

)
= (−1)n(qfχn)n−1[fχn

]n−1
q−1 χn(−1)

fχn∑

a=1

χn(a)βn,qfχn
(
a + p∗z
fχn

)

− χn(p)[p]
n−1
q−1 (−1)n

(
qfχn

)n−1[
fχn

]n−1
q−p χn(−1)

fχn∑

a=1

χn(a)βn,qpfχn

(
a + p−1p∗z

fχn

)

= (−1)nqn−1χn(−1)βn,q,χn

(
p∗z

) − χn(p)[p]
n−1
q (−1)nqn−1χn(−1)βn,qp,χn

(
p−1p∗z

)

= (−1)nqn−1χn(−1)bn(z, q, χ).
(2.8)

Note that χn(−1) = (−1)nχ(−1). Thus, the lemma holds for χn /= 1. Since the lemma holds for
χn = 1 and χn /= 1, the proof must be complete.

Using this result, we can prove the following theorem.

Theorem 2.2. Let z ∈ Cp, |z|p ≤ 1, and s ∈ D, except for s /= 1 if χ = 1. Then

Lp,q−1(s,−z, χ) = χ(−1)q−sLp,q(s, z, χ). (2.9)

Proof. Let z ∈ Cp, |z|p ≤ 1, and n ∈ Z, n ≥ 1. Since

Lp,q(1 − n, z, χ) = − 1
n
bn(z, q, χ). (2.10)
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Lemma 2.1 implies that

Lp,q−1(1 − n,−z, χ)

= − 1
n
bn
( − z, q−1, χ

)
= − 1

n
χ(−1)qn−1bn(z, q, χ) = χ(−1)qn−1Lp,q(1 − n, z, χ),

(2.11)

and (2.9) holds for all s = 1− n, n ∈ Z, n ≥ 1. Since the negative integers have 0 as a limit point,
Lemma 1.7 implies that Theorem 2.2 holds for all s in any neighborhood about 0 common to the
domains of the functions on either side of (2.9). It is obvious that the domains, in the variable
s, of the functions on both sides of (2.9) containD, except for s /= 1 if χ = 1. This completes the
proof.

It is well known that the generalized Bernoulli polynomials associated with a Dirichlet
character χ are important in regard to sums of consecutive integers, all of which raised to the
same power. Proposition 1.6 represents a q-extension of this property. In this section, we will
give an extension of Proposition 1.6 with the use of Lp,q(s, z, χ).

For the character χ, let F0 = l cm(f, p∗). Then, fχn
| F0 for each n ∈ Z. Also, let F be a

positive multiple of p(p∗)−1F0.

Theorem 2.3. Let z ∈ Cp, |z|p ≤ 1, and s ∈ D, except for s /= 1 if χ = 1. Then

Lp,q(s, z + F, χ) − Lp,q(s, z, χ) = −
p∗F∑

a=1
(a,p)=1

χ1(a)qa+p
∗z〈a + p∗z : q

〉−s
. (2.12)

Proof. Let z ∈ Cp, |z|p ≤ 1, and let n ∈ Z, n ≥ 1. From (2.1), we have

Lp,q(1 − n, z + F, χ) − Lp,q(1 − n, z, χ) = − 1
n

(
bn(z + F, q, χ) − bn

(
z, q, χ)). (2.13)

Equation (2.2) then implies that

bn(z + F, q, χ) − bn(z, q, χ)

=
(
βn,q,χn

(
p∗z+p∗F

) − βn,q,χn

(
p∗z

)) − χn(p)[p]
n−1
q

(
βn,qp,χn

(
p−1p∗z+p−1p∗F

) − βn,qp,χn

(
p−1p∗z

))
.

(2.14)

By Proposition 1.6, we can write

bn(z + F, q, χ) − bn(z, q, χ)

= n
p∗F∑

a=1

χn(a)q
a+p∗z[a + p∗z

]n−1
q − χn(p)[p]

n−1
q n

p−1p∗F∑

a=1

χn(a)
(
qp
)a+p−1p∗z[

a + p−1p∗z
]n−1
qp

= n
p∗F∑

a=1

χn(a)q
a+p∗z[a + p∗z

]n−1
q − n

p∗F∑

a=1
p|a

χn(a)q
a+p∗z[a + p∗z

]n−1
q

= n
p∗F∑

a=1
(a,p)=1

χn(a)q
a+p∗z[a + p∗z

]n−1
q .

(2.15)
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Therefore,

Lp,q(1 − n, z + F, χ) − Lp,q(1 − n, z, χ) = −
p∗F∑

a=1
(a,p)=1

χn(a)qa+p
∗z[a + p∗z

]n−1
q . (2.16)

Since χn = χ1w
−(n−1), we can write

χn(a)
[
a + p∗z

]n−1
q = χ1(a)w−(n−1)(a)

[
a + p∗z

]n−1
q = χ1(a)

〈
a + p∗z : q

〉n−1
. (2.17)

Thus,

Lp,q(1 − n, z + F, χ) − Lp,q(1 − n, z, χ) = −
p∗F∑

a=1
(a,p)=1

χ1(a)qa+p
∗z〈a + p∗z : q

〉n−1
. (2.18)

This implies that (2.12) is true for all s = 1 − n, n ∈ Z, n ≥ 1. Since negative integers have 0 as
a limit point, Lemma 1.7 implies that Theorem 2.3 is true for all s in any neighborhood about 0
common to the domains of functions on both sides of (2.12).

The domains, with respect to s, of the functions on the left of (2.12) containD, except for
s /= 1 if χ = 1. Consider the sum

p∗F∑

a=1
(a,p)=1

χ1(a)qa+p
∗z〈a + p∗z : q

〉−s =
p∗F∑

a=1
(a,p)=1

χ1(a)qa+p
∗z〈a + p∗z : q

〉−1〈
a + p∗z : q

〉1−s
. (2.19)

This sum consists of the functions of the form qa+p
∗z〈a + p∗z : q〉1−s, a ∈ Z, (a, p) = 1. Thus, it is

sufficient to show that each such function is analytic on D;
〈a + p∗z : q〉1−s can be written as

〈
a + p∗z : q

〉1−s = e(1−s)logp〈a+p
∗z:q〉 =

∞∑

m=0

1
m!

(1 − s)m
(
logp

〈
a + p∗z : q

〉)m
. (2.20)

Since 〈a + p∗z : q〉 ≡ 1(mod p∗R) for all a ∈ Z, (a, p) = 1 and z ∈ Cp, |z|p ≤ 1, we have
logp〈a + p∗z : q〉 ≡ 0(mod p∗R), which implies that

∣∣logp
〈
a + p∗z : q

〉∣∣
p
<
∣∣p∗

∣∣
p|p|1/(p−1)p . (2.21)

Now, by (1.34) and the definition of the domain D,
∣∣∣qa+p∗z

1
m!

(1 − s)m
(
logp

〈
a + p∗z : q

〉)m∣∣∣
p
< |p|1/(p−1)p |p|(m−1)/(p−1)

p

∣∣p∗
∣∣−m
p |p|m/(p−1)

p

∣∣p∗
∣∣m
p |p|m/(p−1)

p

= |p|3m/(p−1)
p −→ 0,

(2.22)

as m → ∞. So, whenever s ∈ D, the power series converges. Thus, the functions on either side
of (2.12) have domains which contain D, except possibly for s /= 1 if χ = 1. This completes the
proof.

Corollary 2.4. For s ∈ D, except for s /= 1 if χ = 1. Then

Lp,q(s, F, χ) − Lp,q(s, χ) = −
p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : q〉−s. (2.23)
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3. Congruences for generalized q-Bernoulli polynomials

Congruences related to classical and generalized Bernoulli numbers have found an amount
of interest. One of the most celebrated examples is the Kummer congruences for classical
Bernoulli numbers (cf. [2]):

p−1Δc
Bn

n
∈ Zp, (3.1)

where c ∈ Z, c ≥ 1, c ≡ 0(mod (p − 1)), and n ∈ Z is positive, even, and n /≡ 0(mod (p − 1)).
Here, Δc is the forward difference operator which operates on a sequence {xn} by

Δcxn = xn+c − xn. (3.2)

The powers Δk
c of Δc are defined by Δ0

c = identity and Δk
c = Δc ◦ Δk−1

c for positive integers k,
so that

Δk
cxn =

k∑

m=0

(
k
m

)
(−1)k−mxn+mc. (3.3)

More generally, it can be shown that

p−kΔk
c

Bn

n
∈ Zp, (3.4)

where k ∈ Z, k ≥ 1, and c and n are as above, but with n > k.
Kummer congruences for generalized Bernoulli numbers Bn,χ were first regarded by Car-

litz [28].
For positive c ∈ Z, c ≡ 0(mod (p − 1)), n, k ∈ Z, n > k ≥ 1, and χ such that f = fχ /= pm,

wherem ∈ Z, m ≥ 0,

p−kΔk
c

Bn,χ

n
∈ Zp[χ]. (3.5)

Here, Zp[χ] denotes the ring of polynomials in χ, whose coefficients are in Zp.
Shiratani [29] applied the operatorΔk

c to −(1−χn(p)pn−1)Bn,χn
/n for similar c and χ, and

showed that Carlitz’s congruence is still true without the restriction n > k, requiring only that
n ≥ 1. He also established that the divisibility conditions on c can be removed, and proved

(
p∗
)−kΔk

c

(
1 − χn(p)pn−1

)Bn,χn

n
∈ Zp[χ]. (3.6)

As an extension of the Kummer congruence, Gunaratne [30, 31] showed that the value

p−kΔk
c

(
1 − χn(p)pn−1

)Bn,χn

n
, (3.7)

modulo pZp, is independent of n and

p−kΔk
c

(
1 − χn(p)pn−1

)Bn,χn

n
≡ p−k

′
Δk′

c

(
1 − χn′(p)pn

′−1)Bn′,χn′

n′
(
mod pZp

)
, (3.8)
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if p > 3, c, n, k ∈ Z are positive, χ = ωh, where h ∈ Z, h /≡ 0(mod (p − 1)), n′, k′ ∈ Z, k ≡
k′(mod (p − 1)). Furthermore, by means of the binomial coefficient operator

(
p−1Δc

k

)
xn =

1
k!

(
k−1∏

j=0

(
p−1Δc − j

)
)
xn, (3.9)

it has been shown that for similar character χ,
(
p−1Δc

k

)
(
1 − χn(p)pn−1

)Bn,χn

n
∈ Zp, (3.10)

and this value, modulo pZp, is independent of n.
Fox [6] derived congruences similar to those above for the generalized Bernoulli poly-

nomials without restrictions on the character χ.
We now consider how Corollary 2.4 can be utilized to derive a collection of congruences

related to generalized q-Bernoulli polynomials. Let F0 = l cm(f, p∗) and F be a positive integer
multiple of p(p∗)−1F0. We incorporate the polynomial structure

Bn(z, q, χ) = − 1
n

(
βn,q,χn

(
p∗z

) − χn(p)[p]
n−1
q βn,qp,χn

(
p−1p∗z

))
(3.11)

and the set structure

R∗ =
{
x ∈ Zp : |x|p < p−1/(p−1)

}
(3.12)

to derive the Kummer congruences for generalized q-Bernoulli polynomials. Throughout, we
assume that q ∈ Zp with |1 − q|p < p−1/(p−1), so that q ≡ 1(mod R∗).

Theorem 3.1. Let n, c, k be positive integers and z ∈ p(p∗)−1F0R
∗. Then, the quantity

(
p∗
)−kΔk

cBn(z, q, χ) −
(
p∗
)−kΔk

cBn(0, q, χ) ∈ R∗[χ], (3.13)

and, modulo p∗R∗[χ], is independent of n.

Proof. Since Δc is a linear operator, Corollary 2.4 implies that

Δk
cLp,q(1 − n, F, χ) −Δk

cLp,q(1 − n, χ) = −
p∗F∑

a=1
(a,p)=1

χ1(a)qaΔk
c〈a : q〉n−1. (3.14)

Thus,

Δk
cBn(F, q, χ) −Δk

cBn(0, q, χ) = −
p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : 1〉−1Δk
c〈a : q〉n. (3.15)

Note that

Δk
c〈a : q〉n =

k∑

m=0

(
k
m

)
(−1)k−m〈a : q〉n+mc = 〈a : q〉n(〈a : q〉c − 1

)k
. (3.16)
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Now, 〈a : q〉 ≡ 1(mod p∗R∗), which implies that 〈a : q〉c ≡ 1(mod p∗R∗), and thus Δk
c〈a : q〉n ≡

0(mod (p∗)kR∗). Therefore,

Δk
cBn(F, q, χ) −Δk

cBn(0, q, χ) ≡ 0
(
mod

(
p∗
)k
R∗[χ]

)
, (3.17)

and so

(
p∗
)−kΔk

cBn(F, q, χ) −
(
p∗
)−kΔk

cBn(0, q, χ) ∈ R∗[χ]. (3.18)

Also, since 〈a : q〉c ≡ 1(mod p∗R∗),

Δk
cBn(F, q, χ) −Δk

cBn(0, q, χ) = −
p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : q〉n−1
(〈a : q〉c − 1

p∗

)k

(3.19)

implies that the value of (p∗)−kΔk
cBn(F, q, χ) − (p∗)−kΔk

cBn(0, q, χ), modulo p∗R∗[χ], is indepen-
dent of n.

Let z ∈ p(p∗)−1F0R
∗. Since the set of positive integers in p(p∗)−1F0Z is dense in

p(p∗)−1F0R
∗, there exists a sequence {zj} in p(p∗)−1F0Z with zj > 0 for each j, such that zj → z.

Now, Bn(z, q, χ) is a polynomial, which implies that Bn(zj, q, χ) → Bn(z, q, χ). Therefore,

lim
j→∞

(
Δk

cBn

(
zj, q, χ

) −Δk
cBn(0, q, χ)

)
= Δk

cBn(z, q, χ) −Δk
cBn(0, q, χ). (3.20)

The left side of this equality is 0 modulo (p∗)kR∗[χ], which implies that

Δk
cBn(z, q, χ) −Δk

cBn(0, q, χ) ≡ 0
(
mod

(
p∗
)k
R∗[χ]

)
, (3.21)

and so

(p∗)−kΔk
cBn(z, q, χ) − (p∗)−kΔk

cBn(0, q, χ) ∈ R∗[χ]. (3.22)

Furthermore, for a positive integer n′,

lim
j→∞

{((
p∗
)−kΔk

cBn(zj, q, χ)−
(
p∗
)−kΔk

cBn(0, q, χ)
)−((p∗)−kΔk

cBn′(zj, q, χ)−
(
p∗
)−kΔk

cBn′(0, q, χ)
)}

=
{((

p∗
)−kΔk

cBn(z, q, χ)−
(
p∗
)−kΔk

cBn(0, q, χ)
)− ((

p∗
)−kΔk

cBn′(z, q, χ)− (
p∗
)−kΔk

cBn′(0, q, χ))
}
.

(3.23)
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Since zj ∈ p(p∗)−1F0Z for all j, the quantity on the left must be 0 modulo p∗R∗[χ]. Therefore,
the value (p∗)−kΔk

cBn(z, q, χ) − (p∗)−kΔk
cBn(0, q, χ), modulo p∗R∗[χ], is independent of n.

Theorem 3.2. Let n, c, k, k′ be positive integers with k ≡ k′(mod (p − 1)) and let z ∈ p(p∗)−1F0R
∗.

Then

(
p∗
)−kΔk

cBn(z, q, χ)−
(
p∗
)−kΔk

cBn(0, q, χ) ≡
(
p∗
)−k′

Δk′
c Bn(z, q, χ)−

(
p∗
)−k′

Δk′
c Bn(0, q, χ)(mod pR∗[χ]).

(3.24)

Proof. Let k and k′ be positive integers such that k ≡ k′(mod (p−1)). Without loss of generality,
assume that k ≥ k′. From (3.19),

((
p∗
)−kΔk

cBn(F, q, χ) −
(
p∗
)−kΔk

cBn(0, q, χ)
)
−
((

p∗
)−k′

Δk′
c Bn(F, q, χ) −

(
p∗
)−k′

Δk′
c Bn(0, q, χ)

)

= −
p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : q〉n−1
{(〈a : q〉c − 1

p∗

)k

−
(〈a : q〉c − 1

p∗

)k′}

= −
p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : q〉n−1
(〈a : q〉c − 1

p∗

)k′{(〈a : q〉c − 1
p∗

)k−k′

− 1

}
.

(3.25)

If a such that

〈a : q〉c − 1 /≡ 0
(
mod pp∗R∗), (3.26)

then, since k − k′ ≡ 0(mod (p − 1)), we have

(〈a : q〉c − 1
p∗

)k−k′

− 1 ≡ 0
(
mod pR∗). (3.27)

Thus,

(
p∗
)−kΔk

cBn(F, q, χ) −
(
p∗
)−kΔk

cBn(0, q, χ)

≡ (
p∗
)−k′

Δk′
c Bn(F, q, χ) −

(
p∗
)−k′

Δk′
c Bn(0, q, χ)

(
mod pR∗[χ]

)
.

(3.28)

Now, let z ∈ p(p∗)−1F0R
∗. Then, there exists a sequence {zj} in p(p∗)−1F0Zwith zj > 0 for

each j, such that zj → z. Consider

lim
j→∞

{((
p∗
)−kΔk

cBn(zj, q, χ)−
(
p∗
)−kΔk

cBn(0, q, χ)
)−((p∗)−k′

Δk′
c Bn(zj, q, χ)−

(
p∗
)−k′

Δk′
c Bn(0, q, χ)

)}

=
{((

p∗
)−kΔk

cBn(z, q, χ)−
(
p∗
)−kΔk

cBn(0, q, χ)
)−((p∗)−k′

Δk′
c Bn(z, q, χ)−

(
p∗
)−k′

Δk′
c Bn(0, q, χ)

)}
.

(3.29)

Since the left side of this equality must be 0 modulo pR∗[χ], the proof follows.
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The binomial coefficient operator
(
T
k

)
associated to an operator T is defined by writing

the binomial coefficients
(
X
k

)
=
X(X − 1) · · · (X − k + 1)

k!
, (3.30)

for k ≥ 0 as a polynomial in X, and replacing X by T .
In the proof of next theorem, we need special numbers, namely, the Stirling numbers of

the first kind s(n, k), which are defined by means of the generating function

(log (1 + t))k

k!
=

∞∑

n=0

s(n, k)
tn

n!
, (3.31)

for k ∈ Z, k ≥ 0. Since there is no constant term in the expansion of log (1 + t), s(n, k) = 0
for 0 ≤ n < k. Also, s(n, n) = 1, for all n ≥ 0. The numbers s(n, k) are integers and satisfy the
following relation related to binomial coefficients:

(
x
k

)
=

1
n!

n∑

k=0

s(n, k)xk. (3.32)

For further information for Stirling numbers, we refer to [32].

Theorem 3.3. Let n, c, k be positive integers and z ∈ p(p∗)−1F0R
∗. Then, the quantity

((
p∗
)−1Δc

k

)
Bn(z, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ) ∈ R∗[χ], (3.33)

and, modulo p∗R∗[χ], is independent of n.

Proof. Since the binomial coefficients operator is a linear operator, Corollary 2.4 implies that
((

p∗
)−1Δc

k

)
Lp,q(1−n, F, χ)−

((
p∗
)−1Δc

k

)
Lp,q(1−n, χ)=−

p∗F∑
a=1
(a,p)=1

χ1(a)qa
((

p∗
)−1Δc

k

)
〈a : q〉n−1.

(3.34)

Then,
((

p∗
)−1Δc

k

)
Bn(F, q, χ)−

((
p∗
)−1Δc

k

)
Bn(0, q, χ)=−

p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : q〉−1
((

p∗
)−1Δc

k

)
〈a : q〉n.

(3.35)

Utilizing (3.32), we can write
((

p∗
)−1Δc

k

)
〈a : q〉n =

1
k!

k∑

m=0

s(k,m)
(
p∗
)−mΔm

c 〈a : q〉n

=
1
k!

k∑

m=0

s(k,m)
(
p∗
)−m〈a : q〉n(〈a : q〉c − 1

)m
(3.36)
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which follows from (3.16). Thus,
((

p∗
)−1Δc

k

)
Bn(F, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ)

= −
p∗F∑

a=1
(a,p)=1

χ1(a)qa〈a : q〉−1〈a : q〉n
((

p∗
)−1(〈a : q〉c − 1

)

k

)
.

(3.37)

Since (p∗)−1(〈a〉cq − 1) ∈ R∗ for each a ∈ Z with (a, p) = 1, we see that

〈a : q〉n
((

p∗
)−1(〈a : q〉c − 1

)

k

)
∈ R∗. (3.38)

This then implies that
((

p∗
)−1Δc

k

)
Bn(F, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ) ∈ R∗[χ]. (3.39)

Furthermore, since 〈a : q〉c ≡ 1(mod p∗R∗), the value of this quantity, modulo p∗R∗[χ], is inde-
pendent of n.

Now, let z ∈ p(p∗)−1F0R
∗, and let {zj} be a sequence in p(p∗)−1F0Z, with zj > 0 for each

j, such that zj → z. Then,

lim
j→∞

((
p∗
)−1Δc

k

)
Bn(zj, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ)

=

((
p∗
)−1Δc

k

)
Bn(z, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ)

(3.40)

must be in R∗[χ]. Now, let n′ ∈ Z, n′ > 0, and consider

lim
j→∞

{((
p∗
)−1Δc

k

)
Bn(zj, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ)

−
((

p∗
)−1Δc

k

)
Bn′(zj, q, χ) −

((
p∗
)−1Δc

k

)
Bn′(0, q, χ)

}

=
{((

p∗
)−1Δc

k

)
Bn(z, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ)

−
((

p∗
)−1Δc

k

)
Bn′(z, q, χ) −

((
p∗
)−1Δc

k

)
Bn′(0, q, χ)

}
.

(3.41)

The quantity on the left must be 0 modulo p∗R∗[χ], which implies that the value of
((

p∗
)−1Δc

k

)
Bn(z, q, χ) −

((
p∗
)−1Δc

k

)
Bn(0, q, χ), (3.42)

modulo p∗R∗[χ], is independent of n.
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