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Let SH denote the class of functions f = h+
––
g that are harmonic univalent and sense-preserv-

ing in the unit disk U = {z : |z| < 1}, where h(z) = z +
∑∞

k=2akz
k, g(z) =

∑∞
k=1bkz

k(|b1| <

1). In this paper, we introduce the classMH(n, λ, α) of functions f = h+
––
g which are harmonic in U.

A sufficient coefficient of this class is determined. It is shown that this coefficient bound is also nec-
essary for the classM ––

H(n, λ, α) if fn(z) = h+
––
gn∈ MH(n, λ, α), where h(z) = z−

∑∞
k=2|ak|zk, gn(z) =

(−1)n
∑∞

k=1|bk|zk and n ∈ N0. Coefficient conditions, such as distortion bounds, convolution con-
ditions, convex combination, extreme points, and neighborhood for the class M ––

H(n, λ, α), are ob-
tained.
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1. Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a complex domain
C if both u and v are real harmonic in C. In any simply connected domain D ⊂ C, we can write
f = h + g, where h and g are analytic in D. We call h the analytic part and g the coanalytic part
of f . A necessary and sufficient condition for f to be locally univalent and sense-preserving in
D is that |h′(z)| > |g ′(z)| in D; see [2].

Denote by SH the class of functions f = h + g that are harmonic, univalent, and sense-
preserving in the unit disk U = {z : |z| < 1} for which f(0) = h(0) = fz(0) − 1 = 0. Then for
f = h + g ∈ SH, we may express the analytic functions h and g as

h(z) = z +
∞∑

k=2

akz
k, g(z) =

∞∑

k=1

bkz
k,

∣
∣b1

∣
∣ < 1. (1.1)
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Observe that SH reduces to S, the class of normalized univalent analytic functions, if the coan-
alytic part of f is zero. Also, denote by S∗

H the subclasses of SH consisting of functions f that
map U onto starlike domain.

For f = h + g given by (1.1), we define the derivative operator introduced by authors
(see [1]) of f as

Dn
λ
f(z) = Dn

λ
h(z) + (−1)nDn

λ
g(z), n, λ ∈ N0 = N ∪ {0}, z ∈ U, (1.2)

where Dn
λ
h(z) = z +

∑∞
k=2k

nC(λ, k)akz
k, Dn

λ
g(z) =

∑∞
k=1k

nC(λ, k)bkzk, and C(λ, k) = ( k+λ−1
λ ).

We letMH(n, λ, α) denote the family of harmonic functions f of the form (1.1) such that

Re
{Dn+1

λ
f(z)

Dn
λ
f(z)

}

> α, 0 ≤ α < 1, (1.3)

where Dn
λ
f is defined by (1.2).

If the coanalytic part of f = h + g is identically zero, then the classMH(n, λ, α) turns out
to be the class Rn

λ
(α) introduced by Al-Shaqsi and Darus [1] for the analytic case.

Let MH(n, λ, α) denote that the subclass of MH(n, λ, α) consists of harmonic functions
fn = h + gn such that h and gn are of the form

h(z) = z −
∞∑

k=2

∣
∣ak

∣
∣zk, gn(z) = (−1)n

∞∑

k=1

∣
∣bk

∣
∣zk. (1.4)

It is clear that the class MH(n, λ, α) includes a variety of well-known subclasses of SH. For
example, MH(0, 0, α) ≡ S∗

H(α) is the class of sense-preserving, harmonic, univalent functions
f which are starlike of order α in U, that is, (∂/∂θ)

{
arg(f(reiθ))

}
> α, and MH(1, 0, α) ≡

MH(0, 1, α) ≡ HK(α) is the class of sense-preserving, harmonic, univalent functions f which
are convex of order α in U, that is, (∂/∂θ)

{
arg((∂/∂θ)f(reiθ))

}
> α. Note that the classes

S∗
H and HK(α) were introduced and studied by Jahangiri [3]. Also we notice that the class

MH(n, 0, α) is the class of Salagean-type harmonic univalent functions introduced by Jahangiri
et al. [4]; and MH(0, λ, α) is the class of Ruscheweyh-type harmonic univalent functions stud-
ied by Murugusundaramoorthy and Vijaya [5].

In 1984, Clunie and Sheil-Small [2] investigated the class SH as well as its geometric sub-
classes and obtained some coefficient bounds. Since then, there has been several related papers
on SH and its subclasses such that Silverman [6], Silverman and Silvia [7], and Jahangiri [3, 8]
studied the harmonic univalent functions. Jahangiri and Silverman [9] prove the following
theorem.

Theorem 1.1. Let f = h + g given by (1.1). If

∞∑

k=2

k
(∣
∣ak

∣
∣ +

∣
∣bk

∣
∣
)
≤ 1 −

∣
∣b1

∣
∣, (1.5)

then f is sense-preserving, harmonic, and univalent inU and f ∈ S∗
H consists of functions in SH which

are starlike in U.

The condition (1.5) is also necessary if f ∈ TH ≡ MH(0, 0, 0).
In this paper, we will give sufficient condition for functions f = h + g, where h and g are

given by (1.1) to be in the class MH(n, λ, α); and it is shown that this coefficient condition is
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also necessary for functions in the class MH(n, λ, α). Also, we obtain distortion theorems and
characterize the extreme points for functions inMH(n, λ, α). Closure theorems and application
of neighborhood are also obtained.

2. Coefficient bounds

We begin with a sufficient coefficient condition for functions inMH(n, λ, α).

Theorem 2.1. Let f = h + g be given by (1.1). If

∞∑

k=1

[
(k − α)

∣
∣ak

∣
∣ + (k + α)

∣
∣bk

∣
∣
]
knC(λ, k) ≤ 2(1 − α), (2.1)

where a1 = 1, n, λ ∈ N0, C(λ, k) = ( k+λ−1
λ ), and 0 ≤ α < 1, then f is sense-preserving, harmonic,

univalent in U, and f ∈ MH(n, λ, α).

Proof. If z1 /= z2, then

∣
∣
∣
∣
f
(
z1
)
− f

(
z2
)

h
(
z1
)
− h

(
z2
)

∣
∣
∣
∣ ≥ 1 −

∣
∣
∣
∣
g
(
z1
)
− g

(
z2
)

h
(
z1
)
− h

(
z2
)

∣
∣
∣
∣

= 1 −
∣
∣
∣
∣

∑∞
k=1bk

(
zk1 − zk2

)

(
z1 − z2

)
+
∑∞

k=2ak

(
zk1 − zk2

)

∣
∣
∣
∣

>1−
∑∞

k=1k
∣
∣bk

∣
∣

1 −
∑∞

k=2k
∣
∣ak

∣
∣

≥1−
∑∞

k=1
(
(k + α)knC(λ, k)/(1 − α)

)∣
∣bk

∣
∣

1−
∑∞

k=2
(
(k − α)knC(λ, k)/(1 − α)

)∣
∣ak

∣
∣
≥0,

(2.2)

which proves univalence. Note that f is sense-preserving in U. This is because

∣
∣h′(z)

∣
∣ ≥ 1 −

∞∑

k=2

k
∣
∣ak

∣
∣|z|k−1

> 1 −
∞∑

k=2

(k − α)knC(λ, k)
1 − α

∣
∣ak

∣
∣

≥
∞∑

k=1

(k + α)knC(λ, k)
1 − α

∣
∣bk

∣
∣

>
∞∑

k=1

(k + α)knC(λ, k)
1 − α

∣
∣bk

∣
∣|z|k−1 ≥

∞∑

k=1

k
∣
∣bk

∣
∣|z|k−1 ≥

∣
∣g ′(z)

∣
∣.

(2.3)

Using the fact that Rew > α if and only if |1 − α +w| ≥ |1 + α −w|, it suffices to show that

∣
∣(1 − α)Dn

λ
f(z) +Dn+1

λ
f(z)

∣
∣ −

∣
∣(1 + α)Dn

λ
f(z) − Dn+1

λ
f(z)

∣
∣ ≥ 0. (2.4)
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Substituting Dn
λ
f(z) in (2.4) yields, by (2.1), we obtain

∣
∣(1 − α)Dn

λ
f(z) +Dn+1

λ
f(z)

∣
∣ −

∣
∣(1 + α)Dn

λ
f(z) − Dn+1

λ
f(z)

∣
∣

=

∣
∣
∣
∣
∣
(2 − α)z +

∞∑

k=2

(k + 1 − α)knC(λ, k)akz
k − (−1)n

∞∑

k=1

(k − 1 + α)knC(λ, k)bkzk
∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣
− αz +

∞∑

k=2

(k − 1 − α)knC(λ, k)akz
k − (−1)n

∞∑

k=1

(k + 1 + α)knC(λ, k)bkzk
∣
∣
∣
∣
∣

≥2(1−α)|z|
{

1−
∞∑

k=2

(k−α)knC(λ, k)
1 − α

∣
∣ak

∣
∣|z|k−1

∞∑

k=1

(k+α)knC(λ, k)
1 − α

∣
∣bk

∣
∣|z|k−1

}

≥ 2(1 − α)

{

1 −
∞∑

k=2

(k − α)knC(λ, k)
1 − α

∣
∣ak

∣
∣ −

∞∑

k=1

(k + α)knC(λ, k)
1 − α

∣
∣bk

∣
∣

}

.

(2.5)

This last expression is nonnegative by (2.1), and so the proof is complete.

The harmonic function

f(z) = z +
∞∑

k=2

1 − α

(k − α)knC(λ, k)
xkz

k +
∞∑

k=1

1 − α

(k + α)knC(λ, k)
ykzk, (2.6)

where n, λ ∈ N0 and
∑∞

k=2|xk| +
∑∞

k=1|yk| = 1 show that the coefficient bound given by (2.1) is
sharp. The functions of the form (2.6) are inMH(n, λ, α) because

∞∑

k=1

[
k − α

1 − α

∣
∣ak

∣
∣ +

k + α

1 − α

∣
∣bk

∣
∣
]

knC(λ, k) = 1 +
∞∑

k=2

∣
∣xk

∣
∣ +

∞∑

k=1

∣
∣yk

∣
∣ = 2. (2.7)

In the following theorem, it is shown that the condition (2.1) is also necessary for functions
fn = h + gn, where h and gn are of the form (1.4).

Theorem 2.2. Let fn = h + gn be given by (1.4). Then fn ∈ MH(n, λ, α) if and only if

∞∑

k=1

[
(k − α)

∣
∣ak

∣
∣ + (k + α)

∣
∣bk

∣
∣
]
knC(λ, k) ≤ 2(1 − α), (2.8)

where a1 = 1, n, λ ∈ N0, C(λ, k) = ( k+λ−1
λ ), and 0 ≤ α < 1.

Proof. Since MH(n, λ, α) ⊂ MH(n, λ, α), we only need to prove the “if and only if” part of the
theorem. To this end, for functions fn of the form (1.4), we notice that the condition (1.3) is
equivalent to

Re

{
(1 − α)z −

∑∞
k=2(k − α)knC(λ, k)akz

k − (−1)2n
∑∞

k=1(k + α)knC(λ, k)bkzk

z −
∑∞

k=2k
nC(λ, k)akzk + (−1)2n

∑∞
k=1k

nC(λ, k)bkzk

}

≥ 0. (2.9)
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The above required condition (2.9)must hold for all values of z inU. Upon choosing the values
of z on the positive real axis, where 0 ≤ z = r < 1, we must have

1 − α −
∑∞

k=2(k − α)knC(λ, k)akr
k−1 −

∑∞
k=1(k + α)knC(λ, k)bkrk−1

1 −
∑∞

k=2k
nC(λ, k)akrk−1 +

∑∞
k=1k

nC(λ, k)bkrk−1
≥ 0. (2.10)

If the condition (2.8) does not hold, then the numerator in (2.10) is negative for r sufficiently
close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in (2.8) is negative. This
contradicts the required condition for fn ∈ MH(n, λ, α) and so the proof is complete.

3. Distortion bounds

In this section, we will obtain distortion bounds for functions in MH(n, λ, α).

Theorem 3.1. Let fn ∈ MH(n, λ, α). Then for |z| = r < 1, one has

∣
∣fn(z)

∣
∣ ≤

(
1 +

∣
∣b1

∣
∣
)
r +

1
2n(λ + 1)

(
1 − α

2 − α
− 1 + α

2 − α

∣
∣b1

∣
∣
)

r2,

∣
∣fn(z)

∣
∣ ≥

(
1 −

∣
∣b1

∣
∣
)
r − 1

2n(λ + 1)

(
1 − α

2 − α
− 1 + α

2 − α

∣
∣b1

∣
∣
)

r2.

(3.1)

Proof. We only prove the left-hand inequality. The proof for the right-hand inequality is similar
and will be omitted. Let fn ∈ MH(n, λ, α). Taking the absolute value of fn, we obtain

∣
∣fn(z)

∣
∣ =

∣
∣
∣
∣
∣
z −

∞∑

k=2

akz
k + (−1)n

∞∑

k=1

bkz
k

∣
∣
∣
∣
∣

≥
(
1 −

∣
∣b1

∣
∣
)
r −

∞∑

k=2

(∣
∣ak

∣
∣ +

∣
∣bk

∣
∣
)
rk

≥
(
1 −

∣
∣b1

∣
∣
)
r − r2

∞∑

k=2

(∣
∣ak

∣
∣ +

∣
∣bk

∣
∣
)

≥
(
1−

∣
∣b1

∣
∣
)
r− 1 − α

(2 − α)2n(λ + 1)

(
∞∑

k=2

(2 − α)2n(λ + 1)
1 − α

∣
∣ak

∣
∣ +

(2 − α)2n(λ + 1)
1 − α

∣
∣bk

∣
∣

)

r2

≥
(
1−

∣
∣b1

∣
∣
)
r− 1 − α

(2−α)2n(λ+1)

(
∞∑

k=2

(k−α)knC(λ, k)
1 − α

∣
∣ak

∣
∣ +

(k+α)knC(λ, k)
1 − α

∣
∣bk

∣
∣

)

r2

≥
(
1 −

∣
∣b1

∣
∣
)
r − 1 − α

(2 − α)2n(λ + 1)

(

1 − 1 + α

1 − α

∣
∣b1

∣
∣
)

r2.

(3.2)

The functions

f(z) = z +
∣
∣b1

∣
∣z +

1
2n(λ + 1)

(
1 − α

2 − α
− 1 + α

2 − α

∣
∣b1

∣
∣
)

z2,

f(z) =
(
1 −

∣
∣b1

∣
∣
)
z − 1

2n(λ + 1)

(
1 − α

2 − α
− 1 + α

2 − α

∣
∣b1

∣
∣
)

z2
(3.3)

for |b1| ≤ (1 − α)/(1 + α) show that the bounds given in Theorem 3.1 are sharp.
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The following covering result follows from the left-hand inequality in Theorem 3.1.

Corollary 3.2. If the function fn = h + gn, where h and g given by (1.4) are inMH(n, λ, α), then

{

w : |w| <
2n+1(λ + 1) − 1 −

(
2n(λ + 1) − 1

)
α

2n(λ + 1)(2 − α) −
2n+1(λ + 1) − 1 −

(
2n(λ + 1) + 1

)
α

2n(λ + 1)(2 − α)
∣
∣b1

∣
∣
}

⊂fn(U).

(3.4)

4. Convolution, convex combination, and extreme points

In this section, we show that the class MH(n, λ, α) is invariant under convolution and convex
combination of its member.

For harmonic functions fn(z) = z −
∑∞

k=2akz
k + (−1)n

∑∞
k=1bkz

k and Fn(z) = z −
∑∞

k=2Akz
k + (−1)n

∑∞
k=1Bkz

k, the convolution of fn and Fn is given by

(
fn∗Fn

)
(z) = fn(z)∗Fn(z) = z −

∞∑

k=2

akAkz
k + (−1)n

∞∑

k=1

bkBkz
k. (4.1)

Theorem 4.1. For 0 ≤ β ≤ α < 1, let fn ∈ MH(n, λ, α) and Fn ∈ MH(n, λ, β). Then fn∗Fn

∈ MH(n, λ, α) ⊂ MH(n, λ, β).

Proof. We wish to show that the coefficients of fn∗Fn satisfy the required condition given in
Theorem 2.2. For Fn ∈ MH(n, λ, β),we note that |Ak| ≤ 1 and |Bk| ≤ 1. Now, for the convolution
function fn∗Fn, we obtain

∞∑

k=2

(k − β)knC(λ, k)
1 − β

∣
∣ak

∣
∣
∣
∣Ak

∣
∣ +

∞∑

k=1

(k + β)knC(λ, k)
1 − β

∣
∣bk

∣
∣
∣
∣Bk

∣
∣

≤
∞∑

k=2

(k − β)knC(λ, k)
1 − β

∣
∣ak

∣
∣ +

∞∑

k=1

(k + β)knC(λ, k)
1 − β

∣
∣bk

∣
∣

≤
∞∑

k=2

(k − α)knC(λ, k)
1 − α

∣
∣ak

∣
∣ +

∞∑

k=1

(k + α)knC(λ, k)
1 − α

∣
∣bk

∣
∣ ≤ 1,

(4.2)

since 0 ≤ β ≤ α < 1 and fn ∈ MH(n, λ, α). Therefore fn∗Fn ∈ MH(n, λ, α) ⊂ MH(n, λ, β).
We now examine the convex combination of MH(n, λ, α).
Let the functions fnj

(z) be defined, for j = 1, 2, . . . , by

fnj
(z) = z −

∞∑

k=2

∣
∣ak,j

∣
∣zk + (−1)n

∞∑

k=1

∣
∣bk,j

∣
∣zk. (4.3)

Theorem 4.2. Let the functions fnj
(z) defined by (4.3) be in the class MH(n, λ, α) for every j =

1, 2, . . . , m. Then the functions tj(z) defined by

tj(z) =
m∑

j=1

cjfnj
(z), 0 ≤ cj ≤ 1 (4.4)

are also in the classMH(n, λ, α), where
∑m

j=1cj = 1.
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Proof. According to the definition of tj , we can write

tj(z) = z −
∞∑

k=2

(
m∑

j=1

cjak,j

)

zk + (−1)n
∞∑

k=1

(
m∑

j=1

cjbn,j

)

zk. (4.5)

Further, since fnj
(z) are inMH(n, λ, α) for every j = 1, 2, . . ., then by (2.8), we have

∞∑

k=1

{[

(k − α)

(
m∑

j=1

cj
∣
∣ak,j

∣
∣

)

+ (k + α)

(
m∑

j=1

cj
∣
∣bk,j

∣
∣

)]

knC(λ, k)

}

=
m∑

j=1

cj

(
∞∑

k=1

[
(k − α)

∣
∣an,j

∣
∣ + (k + α)

∣
∣bn,j

∣
∣
]
knC(λ, k)

)

≤
m∑

j=1

cj2(1 − α) ≤ 2(1 − α).

(4.6)

Hence the theorem follows.

Corollary 4.3. The classMH(n, λ, α) is closed under convex linear combination.

Proof. Let the functions fnj
(z) (j = 1, 2) defined by (4.1) be in the class MH(n, λ, α). Then the

function Ψ(z) defined by

Ψ(z) = μfn1(z) + (1 − μ)fn2(z), 0 ≤ μ ≤ 1 (4.7)

is in the class MH(n, λ, α). Also, by taking m = 2, t1 = μ, and t2 = (1 − μ) in Theorem 4.1, we
have the corollary.

Next we determine the extreme points of closed convex hulls ofMH(n, λ, α) denoted by
clcoMH(n, λ, α).

Theorem 4.4. Let fn be given by (1.4). Then fn ∈ MH(n, λ, α) if and only if

fn(z) =
∞∑

k=1

(
Xkhk(z) + Ykgnk

(z)
)
, (4.8)

where h1(z) = z, hk(z) = z − ((1 − α)/(k − α)knC(λ, k))zk, k = 2, 3, . . . , gnk
(z) = z +

(−1)n((1−α)/(k+α)knC(λ, k))zk, k = 1, 2, 3, . . . , and
∑∞

k=1
(
Xk + Yk

)
= 1, Xk ≥ 0, Yk ≥ 0. In

particular, the extreme points of MH(n, λ, α) are
{
hk

}
and

{
gnk

}
.

Proof. For the functions fn of the form (4.8), we have

fn(z) =
∞∑

k=1

(
Xkhk(z) + Ykgnk

(z)
)

=
∞∑

k=1

(
Xk + Yk

)
z −

∞∑

k=2

1 − α

(k − α)knC(λ, k)
Xkz

k + (−1)n
∞∑

k=1

1 − α

(k + α)knC(λ, k)
Ykz

k.

(4.9)

Then
∞∑

k=2

(k − α)knC(λ, k)
1 − α

∣
∣ak

∣
∣ +

∞∑

k=1

(k + α)knC(λ, k)
1 − α

∣
∣bk

∣
∣ =

∞∑

k=2

Xk +
∞∑

k=1

Yk = 1 −X1 ≤ 1, (4.10)
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and so fn ∈ clcoMH(n, λ, α).
Conversely, suppose that fn ∈ clcoMH(n, λ, α). Setting

Xk =
(k − α)knC(λ, k)

1 − α

∣
∣ak

∣
∣, 0 ≤ Xk ≤ 1, k = 2, 3, . . . ,

Yk =
(k + α)knC(λ, k)

1 − α

∣
∣bk

∣
∣, 0 ≤ Yk ≤ 1, k = 1, 2, 3, . . . ,

(4.11)

and X1 = 1 −
∑∞

k=2Xk −
∑∞

k=1Yk. Therefore, fn can be written as

fn(z) = z −
∞∑

k=2

∣
∣ak

∣
∣zk + (−1)n

∞∑

k=1

∣
∣bk

∣
∣zk

= z −
∞∑

k=2

(1 − α)Xk

(k − α)knC(λ, k)
zk + (−1)n

∞∑

k=1

(1 − α)Yk

(k + α)knC(λ, k)
zk

= z +
∞∑

k=2

(
hk(z) − z

)
Xk +

∞∑

k=1

(
gnk

(z) − z
)
Yk

=
∞∑

k=2

hk(z)Xk +
∞∑

k=1

gnk
(z)Yk + z

(

1 −
∞∑

k=2

Xk −
∞∑

k=1

Yk

)

=
∞∑

k=1

(
hk(z)Xk + gnk

(z)Yk

)
, as required.

(4.12)

Using Corollary 4.3 we have clcoMH(n, λ, α) = MH(n, λ, α). Then the statement of
Theorem 4.4 is really for f ∈ MH(n, λ, α).

5. An application of neighborhood

In this section, we will prove that the functions in a neighborhood of MH(n, λ, α) are starlike
harmonic functions.

Following [10], we defined the δ-neighborhood of a function f ∈ TH by

Nδ(f) =

{

F(z) = z −
∞∑

k=2

Akz
k −

∞∑

k=1

Bkz
k,

∞∑

k=2

k
[∣
∣ak −Ak

∣
∣ +

∣
∣bk − Bk

∣
∣
]
+
∣
∣b1 − B1

∣
∣ ≤ δ

}

,
(5.1)

where δ > 0.

Theorem 5.1. Let

δ =
(2 − α)2n(λ + 1) − 1 + α −

(
(2 − α)2n(λ + 1) − 1 − α

)∣
∣b1

∣
∣

(2 − α)2n(λ + 1)
. (5.2)

ThenNδ(MH(n, λ, α)) ⊂ TH.
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Proof. Suppose fn ∈ MH(n, λ, α). Let Fn = H + Gn ∈ Nδ

(
fn
)
, where H = z −

∑∞
k=2Akz

k and
Gn = (−1)n

∑∞
k=1Bkz

k. We need to show that Fn ∈ TH. In other words, it suffices to show that
Fn satisfies the condition T(F) =

∑∞
k=2k[|Ak| + |Bk|] + |B1| ≤ 1. We observe that

T(F) =
∞∑

k=2

k
[∣
∣Ak

∣
∣ +

∣
∣Bk

∣
∣
]
+
∣
∣B1

∣
∣

=
∞∑

k=2

k
[∣
∣Ak − ak + ak

∣
∣ +

∣
∣Bk − bk + bk

∣
∣
]
+
∣
∣B1 − b1 + b1

∣
∣

=
∞∑

k=2

k
[∣
∣Ak − ak

∣
∣ +

∣
∣Bk − bk

∣
∣
]
+

∞∑

k=2

k
[∣
∣ak

∣
∣ +

∣
∣bk

∣
∣
]
+
∣
∣B1 − b1

∣
∣ +

∣
∣b1

∣
∣

=

(
∞∑

k=2

k
[∣
∣Ak − ak

∣
∣ +

∣
∣Bk − bk

∣
∣
]
+
∣
∣B1 − b1

∣
∣

)

+
∞∑

k=2

k
[∣
∣ak

∣
∣ +

∣
∣bk

∣
∣
]
+
∣
∣b1

∣
∣

= δ +
∣
∣b1

∣
∣ +

∞∑

k=2

k
[∣
∣ak

∣
∣ +

∣
∣bk

∣
∣
]

= δ +
∣
∣b1

∣
∣ +

1 − α

(2 − α)2n(λ + 1)

∞∑

k=2

[
2 − α

1 − α

∣
∣ak

∣
∣ +

2 + α

1 − α

∣
∣bk

∣
∣
]

2n(λ + 1)

≤ δ +
∣
∣b1

∣
∣ +

1 − α

(2 − α)2n(λ + 1)

∞∑

k=2

[
k − α

1 − α

∣
∣ak

∣
∣ +

k + α

1 − α

∣
∣bk

∣
∣
]

knC(λ, k)

≤ δ +
∣
∣b1

∣
∣ +

1 − α

(2 − α)2n(λ + 1)

(

1 − 1 + α

1 − α

∣
∣b1

∣
∣
)

.

(5.3)

Now this last expression is never greater than one if

δ ≤ 1 −
∣
∣b1

∣
∣ − 1 − α

(2 − α)2n(λ + 1)

(

1 − 1 + α

1 − α

∣
∣b1

∣
∣
)

=
(2 − α)2n(λ + 1) − 1 + α −

(
(2 − α)2n(λ + 1) − 1 − α

)∣
∣b1

∣
∣

(2 − α)2n(λ + 1)
.

(5.4)
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