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1. Introduction

We consider the following nonlinear semidefinite programming:

(SDP) min f(x) s.t. h(x) = 0, g(x) ∈ Sp
+, (1.1)

where x ∈ R
n, f : Rn→R, h : Rn→R

l, and g : Rn→Sp are twice continuously differentiable
functions, Sp is the linear space of all p × p real symmetric matrices, and Sp

+ is the cone of all
p × p symmetric positive semidefinite matrices.

Fares et al. (2002) [1] studied robust control problems via sequential semidefinite pro-
gramming technique. They obtained the local quadratic convergence rate of the proposed SQP-
typemethod and employed a partial augmented Lagrangianmethod to deal with the problems
addressed there. Correa and Ramirez (2004) [2] systematically studied an SQP-type method
for solving nonlinear SDP problems and analyzed the convergence properties, they obtained
the global convergence and local quadratic convergence rate. Both papers used the same sub-
problems to generate search directions, but employed different merit functions for line search.
The convergence analysis of both papers depends on a set of second-order conditions without
sigma term, which is stronger than no gap second-order optimality condition with sigma term.
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Comparing with the work by Correa and Ramirez (2004) [2], in this note, we make some
modifications to the convergence analysis, and prove that all results in [2] still hold under the
strong second-order sufficient condition with the sigma term.

It should be pointed out that the importance of exploring numerical methods for solving
nonlinear semidefinite programming problems has been recognized in the optimization com-
munity. For instance, Kočvara and Stingl [3, 4] have developed PENNLP and PENBMI codes
for nonlinear semidefinite programming and semidefinite programming with bilinear matrix
inequality constraints, respectively. Recently, Sun et al. (2007) [5] considered the rate of con-
vergence of the classical augmented Lagrangian method and Noll (2007) [6] investigated the
convergence properties of a class of nonlinear Lagrangian methods.

In Section 2, we introduce preliminaries including differential properties of the metric
projector ontoSp

+ and optimality conditions for problem (1.1). In Section 3, we prove, under the
strong second-order sufficient condition with the sigma term, that the local SQP-type method
has the quadratic convergence rate and the global algorithm with line search is convergence.

2. Preliminaries

We use Rm×n to denote the set of all the matrices of m rows and n columns. For A and B in
Rm×n, we use the Frobenius inner product 〈A,B〉 = tr(ATB) , and the Frobenius norm ‖A‖F =√
tr(ATA), where “tr” denotes the trace operation of a square matrix.

For a given matrix A ∈ Sp, its spectral decomposition is

A = PΛPT = P

⎛

⎜
⎝

λ1 0 0

0
. . . 0

0 0 λp

⎞

⎟
⎠PT , (2.1)

whereΛ is the diagonal matrix of eigenvalues ofA and P is a corresponding orthogonal matrix.
We can express Λ and P as

Λ =

⎛

⎝
Λα 0 0
0 0 0
0 0 Λγ

⎞

⎠ , P =
[
Pα Pβ Pγ

]
, (2.2)

where α, β, γ are the index sets of positive, zero, negative eigenvalues of A, respectively.

2.1. Semismoothness of the metric projector

In this subsection, letX, Y , andZ be three arbitrary finite-dimensional real spaces with a scalar
product 〈·, ·〉 and its norm ‖·‖. We introduce some properties of the metric projector, especially
its strong semismoothness.

The next lemma is about the generalized Jacobian for composite functions, proposed in
[7].

Lemma 2.1. Let Ψ : X→Y be a continuously differentiable function on an open neighborhood N̂ of
x and let Ξ : O ⊆ Y→Z be a locally Lipschitz continuous function on the open set O containing
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y := Ψ(x). Suppose that Ξ is directionally differentiable at every point in O and that JxΨ(x) : X→Y
is onto. Then it holds that

∂BΦ(x) = ∂BΞ(y)JxΨ(x), (2.3)

where Φ : N̂→Z is defined by Φ(x) := Ξ(Ψ(x)), x ∈ N̂.

The following concept of semismoothness was first introduced by Mifflin [8] for func-
tionals and was extended by Qi and Sun in [9] to vector valued functions.

Definition 2.2. Let Φ : O ⊆ X→Y be a locally Lipschitz continuous function on the open set O.
One says that Φ is semismooth at a point x ∈ O if

(i) Φ is directionally differentiable at x;

(ii) for any Δx ∈ X and V ∈ ∂Φ(x + Δx) with Δx→0,

Φ(x + Δx) −Φ(x) − V (Δx) = o
(‖Δx‖). (2.4)

Furthermore, Φ is said to be strongly semismooth at x ∈ O if Φ is semismooth at x and
for any Δx ∈ X and V ∈ ∂Φ(x + Δx) with Δx→0,

Φ(x + Δx) −Φ(x) − V (Δx) = O
(‖Δx‖2). (2.5)

Let D be a closed convex set in a Banach space Z, and let ΠD : Z→Z be the metric
projector over D. It is well known in [10, 11] that ΠD(·) is F-differentiable almost everywhere
in Z and for any y ∈ Z, ∂ΠD(y) is well defined.

Suppose A ∈ Sp, then it has the spectral decomposition as (2.1), then the merit projector
of A to Sp

+ is denoted by ΠSp
+
(A) and

ΠSp
+
(A) = P

⎛

⎜
⎝

[
λ1
]
+ 0 0

0
. . . 0

0 0
[
λp
]
+

⎞

⎟
⎠PT , (2.6)

where [λi]+ = max {0, λi}, i = 1, . . . , p.
For our discussion, we know from [12] that the projection operatorΠSp

+
(·) is directionally

differentiable everywhere in Sp
+ and is a strongly semismooth matrix-valued function. In fact,

for any A ∈ Sp, H ∈ Sp
+, there exists V ∈ ∂ΠSp

+
(A +H), satisfying

ΠSp
+
(A +H) = ΠSp

+
(A) + V (H) +O

(‖H‖2). (2.7)

2.2. Optimality conditions

Let the Lagrangian function of (1.1) be

L(x, λ, μ) = f(x) +
〈
λ, h(x)

〉
+
〈
μ, g(x)

〉
. (2.8)
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Robinson’s constraint qualification(CQ) is said to hold at a feasible point x if

0 ∈ int

{(
h(x)
g(x)

)

+

(
Jh(x)
Jg(x)

)

Rn −
(
{0}
Sp
+

)}

. (2.9)

If x is a locally optimal solution to (1.1) and Robinson’s CQ holds at x, then there exist
Lagrangian multipliers (λ, μ) ∈ R

l × Sp, such that the following KKT condition holds:

0 = ∇xL(x, λ, μ) = ∇f(x) + Jh(x)∗λ + Jg(x)∗μ, 0 = h(x),

g(x) = ΠSp
+

(
g(x) + μ

)
,

(2.10)

which is equivalent to F(x, λ, μ) = 0, where

F(x, λ, μ) :=

⎛

⎜
⎝

∇f(x) + Jh(x)∗λ + Jg(x)∗μ
h(x)

g(x) −ΠSp
+

(
g(x) + μ

)

⎞

⎟
⎠ . (2.11)

Let Λ(x) be the set of all the Lagrangian multipliers satisfying (2.10). Then Λ(x) is a
nonempty, compact convex set of Rl × Sp if and only if Robinson’s CQ holds at x, see [13].
Moreover, it follows from [13] that the constraint nondegeneracy condition is a sufficient con-
dition for Robinson constraint qualification. In the setting of the problem (1.1), the constraint
nondegeneracy condition holding at a feasible point x can be expressed as

(
Jh(x)
Jg(x)

)

R
n +

(
{0}

lin
(
TSp

+

(
g(x)

))

)

=

(
R

l

Sp

)

, (2.12)

where lin(TSp
+
(g(x))) is the lineality space of the tangent cone of Sp

+ at g(x). If x, a locally
optimal solution to (1.1), is nondegenerate, then Λ(x) is a singleton.

For a KKT point (x, λ, μ) of (1.1), without loss of generality, we assume that g(x) and μ
have the spectral decomposition forms

g(x) = P

⎛

⎝
Λα 0 0
0 0 0
0 0 0

⎞

⎠PT , μ = P

⎛

⎝
0 0 0
0 0 0
0 0 Λγ

⎞

⎠PT . (2.13)

We state the strong second-order sufficient condition (SSOSC) coming from [7].

Definition 2.3. Let x be a stationary point of (1.1) such that (2.12) holds at x. One says that the
strong second-order sufficient condition holds at x if

〈
d,∇2

xxL(x, λ, μ)d
〉 − Υg(x)

(
μ,Jg(x)d

)
> 0, ∀d ∈ aff C(x) \ {0}, (2.14)

where {(λ, μ)} = Λ(x) ⊂ R
l × Sp, affC(x) is the affine hull of the critical cone C(x):

affC(x) =
{
d : Jh(x)d = 0, PT

β

(Jg(x)d
)
Pγ = 0, PT

γ

(Jg(x)d
)
Pγ = 0

}
. (2.15)

And the linear-quadratic function ΥB : Sp × Sp→R is defined by

ΥB(D,A) := 2
〈
D,AB†A

〉
, (D,A) ∈ Sp × Sp, (2.16)

B† is the Moore-Penrose pseudoinverse of B.



Yun Wang et al. 5

The next proposition relates the SSOSC and nondegeneracy condition to nonsingularity
of Clarke’s Jacobian of the mapping F defined by (2.11). The details of this proof can be found
in [7].

Proposition 2.4. Let (x, λ, μ) be a KKT point of (1.1). If nondegeneracy condition (2.12) and SSOSC
(2.14) hold at x, then any element in ∂F(x, λ, μ) is nonsingular, where F is defined by (2.11).

3. Convergence analysis of the SQP-type method

In this section, we analyze the local quadratic convergence rate of an SQP-type method and
then prove that the SQP-type method proposed in [2] is globally convergent. The analysis is
based on the strong second-order sufficient condition, which is weaker than the conditions
used in [1, 2].

3.1. Local convergence rate

Linearizing (1.1) at the current point (xk, λk, μk), we obtain the following tangent quadratic
problem:

min Δx∇f
(
xk)TΔx +

1
2
ΔxT∇2

xxL
(
xk, λk, μk)Δx,

s.t. h
(
xk) + Jh

(
xk)Δx = 0, g

(
xk) + Jg

(
xk)Δx ∈ Sp

+,
(3.1)

where ∇2
xxL(x

k, λk, μk) = Jx(∇xL)(xk, λk, μk). Let (Δxk, λkQP, μ
k
QP) be a KKT point of (3.1),

then we have F̂(Δxk, λkQP, μ
k
QP; x

k, λk, μk) = 0, where

F̂
(
ζ, η, ξ; xk, λk, μk) :=

⎛

⎜
⎝

∇f
(
xk

)
+∇2

xxL
(
xk, λk, μk

)
ζ + Jh

(
xk

)∗
η + Jg

(
xk

)∗
ξ

h(xk) + Jh(xk)ζ
g
(
xk

)
+ Jg

(
xk

)
ζ −ΠSP

+

(
g
(
xk

)
+ Jg

(
xk

)
ζ + ξ

)

⎞

⎟
⎠ . (3.2)

The following algorithm is an SQP-type algorithm for solving (1.1), which is based on
computing at each iteration a primal-dual stationary point (Δxk, λQP

k
, μQP

k
) of (3.1).

Algorithm 3.1
Step 1. Given an initial iterate point (x1, λ1, μ1). Compute h(x1), g(x1), ∇f(x1), Jh(x1) and
Jg(x1). Set k := 1.
Step 2. If ∇xL(xk, λk, μk) = 0, h(xk) = 0, g(xk) ∈ SP

+ , stop.
Step 3. Compute ∇2

xxL(x
k, λk, μk), and find a solution (Δxk, λkQP, μ

k
QP) to (3.1).

Step 4. Set xk+1 := xk + Δxk, λk+1 := λkQP, μ
k+1 := μk

QP.
Step 5. Compute h(xk+1), g(xk+1), ∇f(xk+1), Jh(xk+1) and Jg(xk+1). Set k := k + 1 and go to
step 2.

From item (f) of [7, Theorem 4.1], we obtain the error between (Δxk, λQP
k

, μQP
k

) and
(x, λ, μ) directly.

Theorem 3.2. Suppose that f, h, g are twice continuously differentiable and their derivatives are lo-
cally Lipschitz in a neighborhood of a local solution x to (1.1). Suppose nondegeneracy condition (2.12)
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and SSOSC (2.14) hold at x. Then there exists a neighborhood U of (x, λ, μ) such that if (xk, λk, μk)
in U, (3.1) has a local solution Δxk together with corresponding Lagrangian multiplies (λkQP, μ

k
QP)

satisfying

∥∥Δxk
∥∥ +

∥∥λkQP − λ
∥∥ +

∥∥μk
QP − μ

∥∥ = O
(∥∥(xk, λk, μk) − (

x, λ, μ
)∥∥). (3.3)

Now we are in a position to state that the sequence of primal-dual points generated by
Algorithm 3.1 has quadratic convergence rate.

Theorem 3.3. Suppose that f, h, g are twice continuously differentiable and their derivatives are lo-
cally Lipschitz in a neighborhood of a local solution x to (1.1). Suppose nondegeneracy condition (2.12)
and SSOSC (2.14) hold at x. Consider Algorithm 3.1, in which Δxk is a minimum norm station-
ary point of the tangential quadratic problem (3.1). Then there exists a neighborhood U of (x, λ, μ)
such that, if (x1, λ1, μ1) ∈ U, Algorithm 3.1 is well defined and the sequence {(xk, λk, μk)} converges
quadratically to (x, λ, μ).

Proof. By Theorem 3.2, we know Algorithm 3.1 is well defined. Let

δk :=
∥∥(xk, λk, μk) − (x, λ, μ)

∥∥, (3.4)

then

Δxk = O
(
δk

)
, λk+1 − λ = O

(
δk

)
, μk+1 − μ = O

(
δk

)
, (3.5)

whereΔxk is theminimum norm solution to (3.1), and λk+1 = λkQP, μ
k+1 = μk

QP are the associated

multipliers. Using Taylor expansion of (3.2) at (x, λ, μ), noting that ∇xL(x, λ, μ) = 0, xk+1 =
xk + Δxk, and (3.5), we obtain

∇2
xxL(x, λ, μ)

(
xk+1 − x

)
+ Jh(x)∗

(
λk+1 − λ

)
+ Jg(x)∗

(
μk+1 − μ

)
= O

(
δ2
k

)
,

Jh(x)
(
xk+1 − x

)
= O

(
δ2
k

)
.

(3.6)

As the projection operator ΠSp
+
(·) is strongly semismooth, we have that there exists V ∈

∂ΠSp
+
(g(x) + μ) such that

ΠSp
+

(
g(x) + μ

)
= ΠSp

+

(
g(xk) + Jg(xk)Δxk + μk

QP

)

+ V
(
g(x) + μ − g(xk) − Jg(xk)Δxk − μk

QP

)

+O
(∥∥g(x) + μ − g(xk) − Jg(xk)Δxk − μk

QP

∥∥2)
.

(3.7)

Since

g(x) + μ − g
(
xk) − Jg

(
xk)Δxk − μk

QP = Jg
(
xk)(x − xk+1) +

(
μ − μk

QP

)
+O

(
δ2
k

)
, (3.8)

we have

ΠSp
+
(g(xk) + Jg(xk)Δxk + μk

QP)

= ΠSp
+
(g(x) + μ) − V (Jg(xk)(x − xk+1) + (μ − μk

QP)) +O(δ2
k).

(3.9)
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Noting the fact that g(x) = ΠSp
+
(g(x) + μ), by Taylor expansion of the third equation of (3.2) at

(x, μ), we obtain

(V − I)Jg(x)(xk+1 − x) + V (μk+1 − μ) = O(δ2
k). (3.10)

Therefore, we can conclude that
⎛

⎜
⎜
⎝

∇2
xxL(x, λ, μ) Jh(x)∗ Jg(x)∗

Jh(x) 0 0

−Jg(x) + VJg(x) 0 V

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

xk+1 − x

λk+1 − λ

μk+1 − μ

⎞

⎟
⎟
⎠ = O

(
δ2
k

)
. (3.11)

Since the nondegeneracy condition (2.12) and SSOSC (2.14) hold, we have from Propo-
sition 2.4 that (3.11) implies the quadratic convergence of the sequence {(xk, λk,
μk)}.

3.2. The global convergence

The tangential quadratic problem constrained here is slightly more general than (3.1) in the
sense that the Hessian of the Lagrangian ∇2

xxL(x
k, λk, μk) is replaced by some positive definite

matrix Mk. Thus the tangential quadratic problem in Δx now becomes

min Δx∇f
(
xk

)TΔx +
1
2
ΔxTMkΔx, s.t. h

(
xk

)
+ Jh

(
xk

)
Δx = 0,

g
(
xk

)
+ Jg

(
xk

)
Δx ∈ Sp

+.
(3.12)

The KKT systemof (3.12) is

∇f
(
xk

)
+MkΔxk + Jh

(
xk

)∗
λkQP + Jg

(
xk

)∗
μk
QP = 0, h

(
xk

)
+ Jh

(
xk

)
Δxk = 0,

g
(
xk

)
+ Jg

(
xk

)
Δxk −ΠSp

+

(
g
(
xk

)
+ Jg

(
xk

)
Δxk + μk

QP

)
= 0.

(3.13)

To obtain theglobal convergence, we use the Han penalty function given by [14], as a merit
function and Armijo line search. For problem (1.1), the Han penalty function is defined by

Θσ(x) = f(x) + σ
∥∥h(x)

∥∥ − σλmin
(
g(x)

)
−, (3.14)

where λmin (g(x)) is the smallest eigenvalue of g(x), (·)− denotemin {·, 0} and σ > 0 is a positive
constant.

The following proposition comes from [2] directly.

Proposition 3.4. (i) If f , h, g have a directional derivative at x in the direction d ∈ Rn, then Θσ has
also a directional derivative at x in the direction d. If, in addition, x is feasible for (1.1), we have

Θ′
σ(x;d) = f ′(x;d) + σ

∥∥h′(x;d)
∥∥ − σλmin

(
NTJg(x)dN

)
, (3.15)

whereN = [ν1, . . . , νr] is the matrix whose columns νi form an orthonormal basis of Kerg(x).
(ii) If x is a feasible point of (1.1) and Θσ has a local minimum at x, then x is the local solution

to (1.1). Furthermore, if f , h, g are differentiable at x and nondegeneracy condition (2.12) holds at x,
then σ≥max {‖λ‖, tr(−μ)}.

(iii) If μ < 0 and σ≥max {‖λ‖, tr(−μ)}, then L(·, λ, μ) ≤ Θσ(·).
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To discuss the conditions ensuring the exactness of Θσ , we need the following lemma
from (3.10).

Lemma 3.5. Suppose nondegeneracy condition (2.12) and SSOSC (2.14) hold at x. Then there exists
c0 > 0, such that for any c > c0 there exist a neighborhood V of x and a neighborhood U of (λ, μ), for
any (λ, μ) ∈ U, the problem

minLc(x, λ, μ) s.t. x ∈ V (3.16)

has a unique solution denote xc(λ, μ). The function xc(·, ·) is locally Lipschitz continuous and semis-
mooth onU. Furthermore, there exists ρ > 0, for any (λ, μ) ∈ U,

∥
∥x − xc(λ, μ)

∥
∥ ≤ ρ

∥
∥(λ, μ) − (λ, μ)

∥
∥/c, (3.17)

where

Lc(x, λ, μ) := f(x) +
〈
h(x), λ

〉
+
c

2
∥∥h(x)

∥∥2 +
1
2c

[∥∥ΠSp
+

( − μ − cg(x)
)∥∥2

F − ‖μ‖2F
]

(3.18)

is the augmented Lagrangian function with the penalty parameter c for (1.1).

Theorem 3.6. Suppose that f , h, g are twice differentiable around a local solution x to (1.1), at which
nondegeneracy condition (2.12) and SSOSC (2.14) hold. If σ > max {‖λ‖, tr(−μ)}, then Θσ has a
strict local minimum at x.

Proof. For the definition of the projection operator ΠSp
+
(·), we have

ΠSp
+

( − μ − cg(x)
)
= −μ − cg(x) + ΠSp

+

(
cg(x) + μ

)
, (3.19)

and for anyW ∈ Sp
+, c > 0,
∥∥ΠSp

+

(
cg(x) + μ

) − (
cg(x) + μ

)∥∥2
F ≤ ∥∥W − (

cg(x) + μ
)∥∥2

F. (3.20)

Then
∥∥ΠSp

+

(
cg(x) + μ

) − cg(x)
∥∥2
F − 2

〈
μ,ΠSp

+

(
cg(x) + μ

) − cg(x)
〉

≤ −2〈μ,W − cg(x)
〉
+
∥∥W − cg(x)

∥∥2
F

(3.21)

holds for anyW ∈ Sp
+. So taking μ = μ andW = cΠSp

+
(g(x)), we obtain that

∥∥ΠSp
+

(
cg(x) + μ) − cg(x)

∥∥2
F − 2

〈
μ,ΠSp

+

(
cg(x) + μ) − cg(x)

〉

≤ −2c〈μ,ΠSp
+

( − g(x)
)〉

+ c2
∥∥ΠSp

+

( − g(x)
)∥∥2

F,
(3.22)

which implies

Lc(x, λ, μ) ≤ f(x) +
〈
λ, h(x)

〉
+
c

2
∥∥h(x)

∥∥2 − 〈
μ,ΠSp

+

( − g(x)
)〉

+
c

2
∥∥ΠSp

+

( − g(x)
)∥∥2

F

≤ f(x) +
∥∥h(x)

∥∥
(
‖λ‖ + c

2
∥∥h(x)

∥∥
)

+ λmax
(
ΠSp

+

( − g(x)
))
[

tr(−μ) + c

2

p∑

i=1

λi
(
ΠSp

+

( − g(x)
))
]

.

(3.23)
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Since σ > max {‖λ‖, tr(−μ)}, for any fixed c > 0, there exists a neighborhood Vc of x such that

Lc(x, λ, μ) ≤ f(x) + σ
∥∥h(x)

∥∥ + σλmax
(
ΠSp

+

( − g(x)
))

= Θσ(x), ∀x ∈ Vc. (3.24)

From Lemma 3.5, we know that there exist an r > c0 and a neighborhood Vr of x where x

is a strict minimum of Lr(·, λ, μ). So we can conclude that x is a strict minimum of Θσ on
Vc ∩ Vr .

Let us outline the line-search SQP-type algorithm that uses the merit function Θσ(·) de-
fined in (3.14) and the parameter updating scheme from [14], which is a generalized version
to the algorithm in [2].

Algorithm 3.7
Step 1. Given a positive number σ > 0, � ∈ (0, 1/2), β ∈ (0, 1/2). Choose an initial iterate
(x1, λ1, μ1) ∈ R

n × R
l × Sp. Compute f(x1), h(x1), g(x1), ∇f(x1), Jh(x1) andJg(x1). Set k :=

1, σ1 = σ.
Step 2. If ∇xL(xk, λk, μk) = 0, h(xk) = 0, g(xk) ∈ Sp

+, stop.
Step 3. Compute a symmetric matrix Mk and find a solution (Δxk, λkQP, μ

k
QP) to (3.12).

Step 4. Adapt σk.

if σk−1≥max {tr(−μk+1), ‖λk+1‖} + σ

then σk = σk−1

else σk = max {1.5σk−1,max {tr(−μk+1), ‖λk+1‖} + σ}

Step 5. Compute

wk := −〈Δxk,MkΔxk〉 +
〈
μk
QP, g

(
xk)〉 +

〈
λkQP, h

(
xk)〉 − σk

∥∥h
(
xk)∥∥ + σkλmin

(
g
(
xk))

−.
(3.25)

Using backtracking line search rule to compute the step length αk:
Step 6. set i = 0, αk,0 = 1;
Step 7. if

Θσk

(
xk + αΔxk) ≤ Θσk

(
xk) + �αwk (3.26)

holds for α = αk,i, then αk = α and stop the line search.
Step 8. else, choose αk,i+1 ∈ [βαk,i, (1 − β)βαk,i];
Step 9. set i := i + 1, go to step 7
Step 10. Set xk+1 := xk + αkΔxk, λk+1 := λkQP, μ

k+1 := μk
QP.

Step 11. Compute f(xk+1), h(xk+1), g(xk+1),∇f(xk+1),Jh(xk+1) and Jg(xk+1). Set k :=
k + 1 and go to step 2.

Now we are in a position to state the global convergence of the line search SQP
Algorithm 3.7, whose proof can be found in [2].
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Theorem 3.8. Suppose that f , h, g are continuously differentiable and their derivatives are Lipschitz
continuous. Consider Algorithm 3.7, if positive definite matricesMk andM−1

k
are bounded, then one of

the following situations occurs:

(i) the sequence {σk} is unbounded, in which case {(λk+1, μk+1)} is also unbounded;
(ii) there exists an index k2 such that σk = σ for any k≥k2, and one of the following situations occurs:

(a) Θσ(xk)→∞,

(b) ∇xL(xk, λk, μk)→0, h(xk)→0, λmin (g(xk))−→0, and 〈μk+1, g(xk)〉→0.
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