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1. Introduction

In the whole paper, N and R stand for the sets of natural numbers and of real numbers,
respectively. The space of all real sequence x = (x(i))∞i=1 is denoted by �0. For a real normed
space (X, ‖·‖), we denote by S(X) the unit sphere of X. We now give some definitions and
basic concepts which will be used in this paper.

A Banach space (X, ‖·‖) which is a subspace of �0 is said to be a Köthe sequence space, if

(i) for any x ∈ �0 and y ∈ X such that |x(i)| ≤ |y(i)| for all i ∈ N, we have x ∈ X and
‖x‖ ≤ ‖y‖;

(ii) there is x ∈ X with x(i)/= 0 for all i ∈ N.

An element x from a Köthe sequence space X is called order continuous if for any
sequence (xn) in X+ (the positive cone of X) such that xn ≤ |x| for all n ∈ N and xn →
0coordinatewise , we have ‖xn‖ → 0. It is easy to see that x is order continuous if and only if
‖(0, 0, . . . , 0, x(n + 1), x(n + 2), . . .)‖ → 0 as n → ∞.
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1.1. Modular spaces

For a real vector space X, a function � : X → [0,∞] is called a modular if it satisfies the
following conditions:

(i) �(x) = 0 if and only if x = 0;

(ii) �(αx) = �(x) for all scalar α with |α| = 1;

(iii) �(αx + βy) ≤ �(x) + �(y) for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

The modular � is called convex if

(iv) �(αx + βy) ≤ α�(x) + β�(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

For any modular � on X, the space

X� = {x ∈ X : �(λx) −→ 0 as λ −→ 0+} (1.1)

is called the modular space.
If � is a convex modular, the function

‖x‖ = inf
{
λ > 0 : �

(
x

λ

)
≤ 1

}
(1.2)

is a norm on X�, which is called the Luxemburg norm (see [1]).
A modular � is said to satisfy the Δ2-condition (� ∈ Δ2) if for any ε > 0 there exist

constants K ≥ 2 and a > 0 such that

�(2x) ≤ K�(x) + ε (1.3)

for all x ∈ X� with �(x) ≤ a.
If � satisfies the Δ2-condition for all a > 0 with K ≥ 2 dependent on a, we say that �

satisfies the strong Δ2-condition (� ∈ Δs
2).

Lemma 1.1. If � ∈ Δs
2, then for any L > 0 and ε > 0, there exists δ > 0 such that

|�(u + v) − �(u)| < ε, (1.4)

whenever u, v ∈ X� with �(u) ≤ L and �(v) ≤ δ.

Proof. See [2, Lemma 2.1].



Narin Petrot 3

Lemma 1.2. If � ∈ Δs
2, then for any x ∈ X�, ‖x‖ = 1 if and only if �(x) = 1.

Proof. See [2, Corollary 2.2].

1.2. Generalized Cesàro sequence spaces

For 1 ≤ p < ∞, the Cesàro sequence space (write cesp, for short) is defined by

cesp =

{
x ∈ �0 :

∞∑
j=1

(
1
j

j∑
i=1

|x(i)|
)p

< ∞
}
, (1.5)

equipped with the norm

‖x‖ =

( ∞∑
j=1

(
1
j

j∑
i=1

|x(i)|
)p)1/p

. (1.6)

Cesàro sequence spaces cesp appeared in 1968 as the problem in the Dutch
Mathematical Society to find their duals (see [3, 4]). Regular investigation of these spaces was
done by Shiue [5] in 1970, while Leibowitz [6] and Jagers [7] proved that ces1 = {0}, cesp are
separable reflexive Banach spaces for 1 < p < ∞ and �p spaces are in cesp for 1 < p ≤ ∞.

Let p = (pj) be a sequences of positive real numbers with pj ≥ 1 for all j ∈ N, the
generalized Cesàro sequence space, ces(p), is defined by

ces(p) = {x ∈ l0 : ρ(λx) < ∞, for some λ > 0}, (1.7)

where

ρ(x) =
∞∑
j=1

(
1
j

j∑
i=1

|x(i)|
)pj

(1.8)

is a convex modular on ces(p) (see [8]). Observe that if the space ces(p) is nontrivial, then it
belongs to the class of Köthe sequence spaces. We also have some observations on ces(p) as
follows.

Remark 1.3. (i) In the case when pj = p, 1 ≤ p < ∞ for all j ∈ N, the generalized Cesàro
sequence space ces(p) is nothing but the Cesàro sequence space cesp and the Luxemburg norm
is expressed by the formula (1.6).

(ii) Condition limj→∞ inf pj > 1 is obviously sufficient for ces(p) /= {0} but it is not a
necessity condition, for example, when pj = 1 + 2(ln ln j/ ln j), j ≥ 2. However, if ces(p) /= {0},
we have

∑∞
j=1(1/j)

pj < ∞.
(iii) It is easy to see that if limj→∞ sup pj < ∞ then ρ ∈ Δs

2, and A(p) = ces(p), where
A(p) = {x ∈ l0 : ρ(λx) < ∞ for all λ > 0}, but unfortunately we do not know whether it is a
necessity condition for A(p) = ces(p).
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(iv) For each x ∈ A(p), whereA(p) is defined as in (ii), we have x is an order continuous
element. Indeed, for given ε > 0 by x ∈ A(p), we can find a natural number i0 such that
ρ((x − xi)/ε) < 1 − ε for all i > i0. This implies that ‖x − xi‖p < ε for all i > i0.

Other investigations to generalized Cesàro spaces can be found in [7, 9–14].

1.3. Nonsquareness

Now, we give the basic definitions related to the nonsquareness in Banach space.

Definition 1.4. A Banach space (X, ‖·‖) is said to be

(i) uniformly nonsquare in the sense of James or uniformly non-l1n (write UN-l1n), n ∈ N, n ≥
2, if there is δ > 0 such that for any x1, x2, . . . , xn ∈ S(X),

min{‖x1 + ε2x2 + · · · + εnxn‖ : εi = ±1, i = 2, . . . , n} ≤ n − δ; (1.9)

(ii) locally uniform nonsquare in the sense of James or locally uniform non-l1n (write LUN-l1n),
n ∈ N, n ≥ 2, if for every x ∈ S(X) there exists δ > 0 such that for any x1, x2, . . . , xn ∈
S(X),

min{‖x + ε2x2 + · · · + εnxn‖ : εi = ±1, i = 2, . . . , n} ≤ n − δ; (1.10)

(iii) nonsquare in the sense of James or non-l1n (write N-l1n), n ∈ N, n ≥ 2, if for every
x ∈ S(X) there exists δ > 0 such that for any x1, x2, . . . , xn ∈ S(X),

min{‖x1 + ε2x2 + · · · + εnxn‖ : εi = ±1, i = 2, . . . , n} < n. (1.11)

The spaces UN-l1n, LUN-l1n, and N-l1n were considered by many authors (see [15–18]).

On the other hand, in 1976, Schäffer (see [19]) introduced the other definitions of
various kind nonsquareness.

Definition 1.5. A Banach space X is said to be

(i) nonsquare (write N-S) if for any x, y ∈ S(X),

max{‖x + y‖, ‖x − y‖} > 1; (1.12)

(ii) locally uniform nonsquare (write LUN-S) or if for any x ∈ S(X) there exists δ > 0 such
that for all y ∈ S(X),

max{‖x + y‖, ‖x − y‖} > 1 + δ (1.13)

for any x, y ∈ S(X);
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(iii) uniformly nonsquare (write UN-S) if there exists δ > 0 such that

max{‖x + y‖, ‖x − y‖} > 1 + δ (1.14)

for any x, y ∈ S(X).

Remark 1.6. It is well known that N-S ⇔ N-l12 and UN-S ⇔ UN-l12 but LUN-S is not equivalent
to LUN-l12 (see [15] or [18]).

Recall that the Banach space X is said to be strictly convex if for any x, y ∈ S(X) with
x /=y we must have ‖(x + y)/2‖ < 1. The next results can be found in [20], but for the sake of
completeness we present here a proof.

Theorem 1.7. If X is a strictly convex Banach space then X is nonsquare in the sense of Schäffer.

Proof. Suppose that X is not nonsquare in the sense of Schäffer. Then there exist x, y ∈ S(X)
such that ‖x ± y‖ = 1. Put z = ((x + y) + (x − y))/2 then z ∈ S(X) but it is not an extreme
point. Hence, X is not strictly convex.

Also, let us recall that the Banach spaceX is said to be locally uniform convex if {xn} and
{yn} are any sequences in S(X) such that limn→∞‖xn + yn‖ = 2 we must have limn→∞‖xn −
yn‖ = 0. The next theorem shows the relation between locally uniform convex and locally
uniform nonsquare in any Banach spaces.

Theorem 1.8. If X is a locally uniform convex Banach space then X is locally uniform nonsquare in
the sense of James.

Proof. Suppose thatX is not locally uniform nonsquare in the sense of James. Then there exists
x ∈ S(X) and {xn} ⊂ S(X) such that ‖xn±x‖ → 2. On the other hand, byX is locally uniform
convex, we must have

lim
n→∞

‖xn − x‖ = 0, (1.15)

which is a contradiction.

In [21], it was showed that every uniformly nonsquare Banach space must have the
fixed point property (that is for any nonempty closed, convex, and bounded subset A of X
and any nonexpansive mapping P from A into itself has a fixed point z in A). On the other
hand, under some suitable conditions, it is well known that the generalized Cesàro sequence
spaces have the fixed point property, however, they are not uniform nonsquare (see [14, 22]).
The main purpose of this this paper is to find the conditions for locally uniform nonsquare
in the sense of James and Schäffer in these spaces. As consequently, we have the examples of
Banach spaces that agree with a weaker geometric property than uniformly nonsquare but
still possess the fixed point property.

In the sequel, we will assume that limj→∞ sup pj < ∞, say pj ≤ β for all j ∈ N. The
following result is quite useful for our purpose.

Theorem 1.9. ces(p) is locally uniform convex.

Proof. See [8].
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2. Main results

We begin by obtaining the first main result.

Theorem 2.1. ces(p) is locally uniform nonsquare in the sense of James.

Proof. The result is an immediate consequence of Theorems 1.8 and 1.9.

Next, we will show that the space ces(p) is locally uniform nonsquare in the sense of
Schäffer. To do this, we need the following lemma.

Lemma 2.2. A closed bounded setK ⊂ ces(p) is compact if for any ε > 0 there existsN ∈ N such that

∞∑
k=N

(
1
k

k∑
i=1

|y(i)|
)pk

< ε (2.1)

for any y ∈ K.

Proof. Let {xn} be a sequence in K. Define

πk : ces(p) −→ R by πk(x) = x(k), (2.2)

we have πk is a continuous function for each k ∈ N. So, πk({xn}) is a bounded subset of R.
Then, by using the orthogonal method, a subsequence {xnj} ⊂ {xn} and x ∈ �0 can be found
such that xnj (k) → x(k) as j → ∞ for all k ∈ N. We claim that x ∈ K and xnj → x as j → ∞.
Indeed, by our hypothesis, for each ε ∈ (0, 1) there exists N = Nε ∈ N such that for all j ∈ N,
we have

M∑
k=N

(
1
k

k∑
i=1

|xnj (i)|
)pk

< εβ, (2.3)

whenM > N. Letting j → ∞ and M → ∞,we get

∞∑
k=N

(
1
k

k∑
i=1

|x(i)|
)pk

< εβ, (2.4)

which implies that x ∈ ces(p). Moreover, since there exists β ∈ R which 1 ≤ pk ≤ β for all
k ∈ N, (2.3) gives

ρ

(xnj − xN
nj

ε

)
=

∞∑
k=N+1

( (1/k)
∑k

i=1|xnj (i)|
ε

)pk

<
1
εβ

∞∑
k=N+1

(
1
k

k∑
i=1

|xnj (i)|
)pk

< 1, (2.5)

that is, for each j ∈ N

∥∥xnj − xN
nj

∥∥
p < ε, (2.6)
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and similarly, (2.4) gives

∥∥x − xN
∥∥
p < ε. (2.7)

Next, since for each k ∈ N we have xnj (k) → x(k) as j → ∞, there exists jo ∈ N such that

|xnj (k) − x(k)| < εβ+1

δN3
(2.8)

for all j > jo and k ∈ {1, 2, 3, . . . ,N}, where δ = max{1,∑∞
j=N+1(1/j

pj )}. Therefore,

ρ

(xN
nj
− xN

ε

)
=

N∑
k=1

(
(1/k)

∑k
i=1|xnj (i) − x(i)|

ε

)pk

+
∞∑

k=N+1

(
(1/k)

∑N
i=1|xnj (i) − x(i)|

ε

)pk

<
1
εβ

(
εβ+1

δN3
· N

3

2
+

εβ+1

δN3
·N · δ

)

<
ε

2
+
ε

2
= ε

(2.9)

for all j > jo, that is,

∥∥xN
nj
− xN

∥∥
p < ε (2.10)

for all j > jo. Hence, by (2.6), (2.7), and (2.10) we can conclude that xnj → x as j → ∞.
Finally, since K is closed, we must have x ∈ K.

Now, we are in position to prove the other main result.

Theorem 2.3. ces(p) is locally uniform nonsquare in the sense of Schäffer.

Proof. Assume on the contrary that ces(p) is not locally uniform nonsquare in the sense of
Schäffer. Then, there are x ∈ S(ces(p)) and {yn} ⊂ S(ces(p)) such that

‖x ± yn‖ −→ 1 as n −→ ∞. (2.11)
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First, we claim that there is εo > 0 such that for any j ∈ N there exists nj > j for which

∞∑
k=j

(
1
k

k∑
i=1

|ynj (i)|
)pk

≥ εo. (2.12)

Otherwise, by Lemma 2.2 the set {yn} is compact. So there is a subsequence {ynk} ⊂
{yn} and y ∈ S(ces(p)) such that

lim
k→∞

‖ynk − y‖ = 0. (2.13)

Therefore, ‖x ± y‖ = 1, that is, ces(p) is not nonsquare. This contradicts to Theorems 1.9 and
1.7, respectively. Hence, the claim holds true.

Note that by Lemma 1.1, a real number δ ∈ (0, εo/4) can be found such that

|ρ(u + v) − ρ(u)| < εo
4
, (2.14)

whenever u, v ∈ ces(p) with ρ(u) ≤ 1 and ρ(v) ≤ δ. Using this positive real number δ, since x
is an order continuous element (see Remark 1.3(iii) and (iv)), there exists io ∈ N such that

∞∑
k=jo+1

(
1
k

k∑
i=1

|x(i)|
)pk

≤ δ. (2.15)

Hence, by Lemma 1.2, we get

1 − εo
4

< ρ(x) −
∞∑

k=jo+1

(
1
k

k∑
i=1

|x(i)|
)pk

=
jo∑
k=1

(
1
k

k∑
i=1

|x(i)|
)pk

. (2.16)

Now, by (2.11), for a real number ε1 ∈ (0, εo)which satisfies the inequality (1 + ε1)
β < 1+εo/2,

a number no ∈ N can be found such that

max{‖x ± yn‖} < 1 + ε1 (2.17)
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for all n > no. Taking j1 = max{jo, no}, so there exists nj1 > j1 + 1 satisfying (2.12). Thus, by
(2.14) and (2.16), we would have

max
{
ρ

(x ± ynj1

1 + ε1

)}
= max

{ ∞∑
k=1

(
1
k

k∑
i=1

∣∣∣∣
x(i) ± ynj1

(i)

1 + ε1

∣∣∣∣
)pk}

≥ 1

(1 + ε1)
β
max

{
j1∑
k=1

(
1
k

k∑
i=1

∣∣x(i) ± ynj1
(i)

∣∣
)pk

+
∞∑

k=j1+1

(
1
k

k∑
i=1

∣∣x(i) ± ynj1
(i)

∣∣
)pk}

≥ 1

(1 + ε1)
β
max

{
j1∑
k=1

(
1
k

k∑
i=1

∣∣x(i) ± ynj1
(i)

∣∣
)pk

+
∞∑

k=j1+1

(
1
k

k∑
i=1

∣∣ynj1
(i)

∣∣
)pk

− εo
4

}

≥ 1

(1 + ε1)
β
max

{
j1∑
k=1

(
1
k

k∑
i=1

∣∣x(i) ± ynj1
(i)

∣∣
)pk

+
3εo
4

}

≥ 1

(1 + ε1)
β

{
j1∑
k=1

[
1
2

(
1
k

k∑
i=1

∣∣x(i) + ynj1
(i)

∣∣
)pk

+
1
2

(
1
k

k∑
i=1

∣∣x(i) − ynj1
(i)

∣∣
)pk]

+
3εo
4

}

≥ 1

(1 + ε1)
β

{
j1∑
k=1

[
1
2k

k∑
i=1

(∣∣x(i) + ynj1
(i)

∣∣ + ∣∣x(i) − ynj1
(i)

∣∣
)]pk

+
3εo
4

}

≥ 1

(1 + ε1)
β

{
j1∑
k=1

(
1
k

k∑
i=1

∣∣x(i)∣∣
)pk

+
3εo
4

}

>
1 + ε0/2

(1 + ε1)
β
> 1.

(2.18)

This implies that max{‖x ± ynj1
‖} > 1 + ε1, which is a contradiction to (2.17). Hence, ces(p) is

locally uniform nonsquare in the sense of Schäffer.

Remark 2.4. In Theorems 2.1 and 2.3, we have shown that, under some suitable conditions, the
generalized Cesàro sequence spaces are locally uniform nonsquare in the sense of James and
Schäffer. This result gives the motivation to consider the geometric properties that are weaker
than uniform nonsquare but still possess the fixed point property in any Banach spaces.
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[6] G. M. Leibowitz, “A note on the Cesàro sequence spaces,” Tamkang Journal of Mathematics, vol. 2, no.
2, pp. 151–157, 1971.
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