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1. Introduction

Let U = {z ∈ C, |z| < 1} be the unit disc of the complex plane and denote by H(U) the class of
the holomorphic functions inU. LetA = {f ∈ H(U), f(z) = z+a2z

2 +a3z
3 + · · · , z ∈ U} be the

class of analytic functions in U and S = {f ∈ A : f is univalent in U}.
Denote with K the class of convex functions in U, defined by

K =
{
f ∈ A : Re

{
zf ′′(z)
f ′(z)

+ 1
}

> 0, z ∈ U

}
. (1.1)

A function f ∈ S is the convex function of order α, 0 ≤ α < 1, and denote this class by
K(α) if f verifies the inequality

Re
{
zf ′′(z)
f ′(z)

+ 1 > α, z ∈ U

}
. (1.2)

Consider the class Sp(β), which was introduced by Ronning [1] and which is defined by

f ∈ Sp(β) ⇐⇒
∣∣∣∣zf

′(z)
f(z)

− 1
∣∣∣∣ ≤ Re

{
zf ′(z)
f(z)

− β

}
, (1.3)

where β is a real number with the property −1 ≤ β < 1.



2 Journal of Inequalities and Applications

For fi(z) ∈ A and αi > 0, i ∈ {1, . . . , n}, we define the integral operator Fn(z) given by

Fn(z) =
∫z

0

(
f1(t)
t

)α1

· · · · ·
(
fn(t)
t

)αn

dt. (1.4)

This integral operator was first defined by B. Breaz and N. Breaz [2]. It is easy to see that
Fn(z) ∈ A.

2. Main results

Theorem 2.1. Let αi > 0, for i ∈ {1, . . . , n}, let βi be real numbers with the property −1 ≤ βi < 1, and
let fi ∈ Sp(βi) for i ∈ {1, . . . , n}.

If

0 <
n∑
i=1

αi

(
1 − βi

) ≤ 1, (2.1)

then the function Fn given by (1.4) is convex of order 1 +
∑ n

i=1αi(βi − 1).

Proof. We calculate for Fn the derivatives of first and second orders.
From (1.4)we obtain

F ′
n(z) =

(
f1(z)
z

)α1

· · · · ·
(
fn(z)
z

)αn

,

F ′′
n(z) =

n∑
i=1

αi

(
fi(z)
z

)αi(zf ′
i(z) − fi(z)
zfi(z)

) n∏
j=1
j/=i

(
fj(z)
z

)αj

.

(2.2)

After some calculus, we obtain that

F ′′
n(z)

F ′
n(z)

= α1

(
zf ′

1(z) − f1(z)
zf1(z)

)
+ · · · + αn

(
zf ′

n(z) − fn(z)
zfn(z)

)
. (2.3)

This relation is equivalent to

F ′′
n(z)

F ′
n(z)

= α1

(
f ′
1(z)

f1(z)
− 1
z

)
+ · · · + αn

(
f ′
n(z)

fn(z)
− 1
z

)
. (2.4)

If we multiply the relation (2.4) with z, then we obtain

zF ′′
n(z)

F ′
n(z)

=
n∑
i=1

αi

(
zf ′

i(z)
fi(z)

− 1
)

=
n∑
i=1

αi

zf ′
i(z)

fi(z)
−

n∑
i=1

αi. (2.5)

The relation (2.5) is equivalent to

zF ′′
n(z)

F ′
n(z)

+ 1 =
n∑
i=1

αi

zf ′
i(z)

fi(z)
−

n∑
i=1

αi + 1. (2.6)
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This relation is equivalent to

zF ′′
n(z)

F ′
n(z)

+ 1 =
n∑
i=1

αi

(
zf ′

i(z)
fi(z)

− βi

)
+

n∑
i=1

αiβi −
n∑
i=1

αi + 1. (2.7)

We calculate the real part from both terms of the above equality and obtain

Re
(
zF ′′

n(z)
F ′
n(z)

+ 1
)

=
n∑
i=1

αiRe
(
zf ′

i(z)
fi(z)

− βi

)
+

n∑
i=1

αiβi −
n∑
i=1

αi + 1. (2.8)

Because fi ∈ Sp(βi) for i = {1, . . . , n}, we apply in the above relation inequality (1.3) and
obtain

Re
(
zF ′′

n(z)
F ′
n(z)

+ 1
)

>
n∑
i=1

αi

∣∣∣∣zf
′
i(z)

fi(z)
− 1

∣∣∣∣ +
n∑
i=1

αi

(
βi − 1

)
+ 1. (2.9)

Since αi|zf ′
i(z)/fi(z) − 1| > 0 for all i ∈ {1, . . . , n}, we obtain that

Re
(
zF ′′

n(z)
F ′
n(z)

+ 1
)

>
n∑
i=1

αi

(
βi − 1

)
+ 1. (2.10)

So, Fn is convex of order
∑ n

i=1αi(βi − 1) + 1.

Corollary 2.2. Let αi, i ∈ {1, . . . , n} be real positive numbers and fi ∈ Sp(β) for i ∈ {1, . . . , n}.
If

0 <
n∑
i=1

αi ≤ 1
1 − β

, (2.11)

then the function Fn is convex of order (β − 1)
∑ n

i=1αi + 1.

Proof. In Theorem 2.1, we consider β1 = β2 = · · · = βn = β.

Remark 2.3. If β = 0 and
∑ n

i=1αi = 1, then

Re
(
zF ′′

n(z)
F ′
n(z)

+ 1
)

> 0, (2.12)

so Fn is a convex function.

Corollary 2.4. Let γ be a real number, γ > 0. Suppose that the functions f ∈ Sp(β) and 0 < γ ≤
1/(1 − β). In these conditions, the function F1(z) =

∫z
0 (f(t)/t)

γdt is convex of order (β − 1)γ + 1.

Proof. In Corollary 2.2, we consider n = 1.

Corollary 2.5. Let f ∈ Sp(β) and consider the integral operator of Alexander, F(z) =
∫z
0 (f(t)/t)dt.

In this condition, F is convex by the order β.

Proof. We have

zF ′′(z)
F ′(z)

=
zf ′(z)
f(z)

− 1. (2.13)
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From (2.13), we have

Re
(
zF ′′(z)
F ′(z)

+ 1
)

= Re
(
zf ′(z)
f(z)

− β

)
+ β >

∣∣∣∣zf
′(z)

f(z)
− 1

∣∣∣∣ + β > β. (2.14)

So, the relation (2.14) implies that the Alexander operator is convex.
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