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1. Introduction

At the close of the 19th century a theorem of great elegance and simplicity was discovered
by D. Hilbert.

Theorem 1.1 (Hilbert’s double series theorem). The series

∞∑

m=1

∞∑

n=1

aman
m+n

(1.1)

is convergent whenever
∑∞

n=1a2n is convergent.

The Hilbert’s inequalities were studied extensively; refinements, generalizations, and
numerous variants appeared in the literature (see [1, 2]). Firstly, we will recall some
Hilbert’s inequalities. If f (x),g(x)≥ 0, 0 <

∫∞
0 f 2(x)dx <∞ and 0 <

∫∞
0 g2(x)dx <∞, then

∫∞

0

∫∞

0

f (x)g(y)
x+ y

dx dy < π

{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

, (1.2)

where the constant factor π is the best possible. Inequality (1.2) is named of Hardy-
Hilbert’s integral inequality (see [3]). Under the same condition of (1.2), we have the
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Hardy-Hilbert’s type inequality (see [3], Theorem 319, Theorem 341) similar to (1.2):

∫∞

0

∫∞

0

f (x)g(y)
max{x, y}dx dy < 4

{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

, (1.3)

where the constant factor 4 is also the best possible. The corresponding inequalities for
series are:

∞∑

n=1

∞∑

m=1

ambn
m+n

< π

( ∞∑

n=1
a2n

)1/2( ∞∑

n=1
b2n

)1/2

;

∞∑

n=1

∞∑

m=1

ambn
max{m,n} < 4

( ∞∑

n=1
a2n

)1/2( ∞∑

n=1
b2n

)1/2

,

(1.4)

where the constant factors π and 4 are both the best possible.
LetH be a real separable Hilbert space, and T :H→H be a bounded self-adjoint semi-

positive definite operator, then (see [4])

(x,Ty)2 ≤ ‖T‖
2

2

[‖x‖2‖y‖2 + (x, y)2
]
, (1.5)

where x, y ∈H and ‖x‖ = √(x,x) is the norm of x.
Set H = L2(0,∞) = { f (x) : ∫∞0 f 2(x)dx <∞} and define T : L2(0,∞)→L2(0,∞) as the

following:

(T f )(y) :=
∫∞

0

1
x+ y

f (x)dx, (1.6)

where y ∈ (0,∞). It is easy to see T is a bounded operator (see [5]). By (1.5), one has the
sharper form of Hilbert’s inequality as (see [4]),

∫∞

0

∫∞

0

f (x)g(y)
x+ y

dx dy ≤ π√
2

{∫∞

0
f 2(x)dx

∫∞

0
g2(x)dx+

(∫∞

0
f (x)g(x)dx

)2}1/2

.

(1.7)

Recently, Yang [6, 7] studied the Hilbert’s inequalities by the norm of some Hilbert’s
type linear operators.

The main purpose of this article is to study the norm of a Hilbert’s type linear operator
with the kernel Amin{x, y}+Bmax{x, y} and give some new generalizations of Hilbert’s
inequality. As applications, we also consider some particular results.
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2. Main results and applications

Lemma 2.1. Define the weight function �(x) as

�(x) :=
∫∞

0

1
Amin{x, y}+Bmax{x, y}

(
x

y

)1/2

dy, x ∈ (0,∞),

�(y)�
∫∞

0

1
Amin{x, y}+Bmax{x, y}

(
y

x

)1/2

dx, y ∈ (0,∞).

(2.1)

Then �(x)= �(y)=D(A,B) is a constant and 0 < D(A,B) <∞.
In particular, one has D(1,1)= π and D(1,0)= 4.

Proof. For fixed x, letting t = y/x, we get

�(x)=
∫∞

0

1
A min{x, y}+B max{x, y}

(
x

y

)1/2

dy

=
∫∞

0

1
A min{1, t}+B max{1, t} t

−1/2dt

=
∫ 1

0

1
At+B

t−1/2dt+
∫∞

1

1
A+Bt

t−1/2dt

= 1√
AB

∫ A/B

0

1
1+ t

t−1/2dt+
1√
AB

∫∞

B/A

1
1+ t

t−1/2dt

≤ 1√
AB

∫∞

0

1
1+ t

t−1/2dt+
1√
AB

∫∞

0

1
1+ t

t−1/2dt

= 2√
AB

B

(
1
2
,
1
2

)
<∞.

(2.2)

therefore 0 < D(A,B) <∞. Moreover,

�(y)=
∫∞

0

1
Amin{x, y}+Bmax{x, y}

(
y

x

)1/2

dx

=
∫∞

0

1
Amin{1, t}+Bmax{1, t} t

−1/2dt

=
∫ 1

0

1
At+B

t−1/2dt+
∫∞

1

1
A+Bt

t−1/2dt

= 1√
AB

A−1+(1/2)

B1/2

∫ A/B

0

1
1+ t

t−1/2dt+
1√
AB

∫∞

B/A

1
1+ t

t−1/2dt

= 1√
AB

∫ A/B

0

1
1+u

u−1/2du+
1√
AB

∫∞

B/A

1
1+u

u−1/2du

(2.3)

(setting t = 1/u).
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Thus �(y)=D(A,B). In particular:

D(1,1)=
∫∞

0

1
x+ y

(
y

x

)1/2

dx =
∫∞

0

1
1+ t

t−1/2dt = π,

D(0,1)=
∫∞

0

1
max{x, y}

(
y

x

)1/2

dx =
∫∞

0

1
max{1, t} t

−1/2dt = 4.

(2.4)

�

Theorem 2.2. Let A≥ 0, B > 0 and T : L2(0,∞)→L2(0,∞) is defined as follows:

(T f )(y) :=
∫∞

0

1
Amin{x, y}+Bmax{x, y} f (x)dx (y ∈ (0,∞)). (2.5)

Then ‖T‖ = D(A,B), and for any f (x),g(x) ≥ 0, f ,g ∈ L2(0,∞), one has (T f ,g) <
D(A,B)‖ f ‖‖g‖, that is,

∫∞

0

∫∞

0

f (x)g(y)
Amin{x, y}+Bmax{x, y}dx dy < D(A,B)

{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

,

(2.6)

where the constant factor D(A,B) is the best possible. In particular,
(i) for A= B = 1, it reduces to Hardy-Hilbert’s inequality:

∫∞

0

∫∞

0

f (x)g(y)
x+ y

dx dy < π

{∫∞

0
f 2(x)dx

}1/2 {∫∞

0
g2(x)dx

}1/2

; (2.7a)

(ii) for A= 0, B = 1, it reduces to Hardy-Hilbert’s type inequality:

∫∞

0

∫∞

0

f (x)g(y)
max{x, y}dx dy < 4

{∫∞

0
f 2(x)dx

}1/2 {∫∞

0
g2(x)dx

}1/2

. (2.7b)

Proof. For A > 0, B > 0. Applying Hölder’s inequality, we obtain

(T f ,g)=
(∫∞

0

f (x)
A min{x, y}+B max{x, y}dx,g(y)

)

=
∫∞

0

(∫∞

0

f (x)
A min{x, y}+B max{x, y}dx

)
g(y)dy
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=
∫∞

0

∫∞

0

f (x)g(y)
A min{x, y}+B max{x, y}dx dy

=
∫∞

0

∫∞

0

1
A min{x, y}+B max{x, y}

[
f (x)

(
x

y

)1/4][
g(y)

(
y

x

)1/4]
dx dy

≤
{∫∞

0

∫∞

0

f 2(x)
A min{x, y}+B max{x, y}

(
x

y

)1/2

dxdy

}1/2

×
{∫∞

0

∫∞

0

g2(y)
A min{x, y}+B max{x, y}

(
y

x

)1/2

dx dy

}1/2

=
{∫∞

0
�(x) f 2(x)dx

}1/2{∫∞

0
�(y)g2(y)dy

}1/2

=D(A,B)

{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(y)dy

}1/2

=D(A,B)‖ f ‖‖g‖.
(2.8)

Thus ‖T‖ ≤D(A,B) and the inequality (2.6) holds.
Assume that (2.8) takes the form of the equality, then there exist constants a and b,

such that they are not both zero and (see [8])

a f 2(x)

(
x

y

)1/2

= bg2(y)

(
y

x

)1/2

. (2.9)

Then, we have

a f 2(x)x = bg2(y)y a.e. on (0,∞) × (0,∞). (2.10)

Hence there exist a constant d, such that

a f 2(x)x = bg2(y)y = d a.e. on (0,∞) × (0,∞). (2.11)

Without losing the generality, suppose a 	= 0, then we obtain f 2(x) = d/(ax), a.e. on
(0,∞), which contradicts the fact that 0 <

∫∞
0 f 2(x)dx <∞. Hence (2.8) takes the form

of strict inequality, we obtain (2.6).
For ε > 0 sufficiently small, set fε(x)= x(−1−ε)/2, for x ∈ [1,∞); fε(x)= 0, for x ∈ (0,1).

Then gε(y)= y(−1−ε)/2, for y ∈ [1,∞); gε(y)= 0, for y ∈ (0,1). Assume that the constant
factor D(A,B) in (2.6) is not the best possible, then there exist a positive real number K
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with K <D(A,B), such that (2.6) is valid by changing D(A,B) to K . On one hand,

∫∞

0

∫∞

0

f (x)g(y)
Amin{x, y}+Bmax{x, y}dx dy < K

{∫∞

0
f 2ε (x)dx

}1/2{∫∞

0
g2ε (x)dx

}1/2

= K/ε.

(2.12)

On the other hand, setting t = y/x, we have

∫∞

0

∫∞

0

fε(x)gε(y)
Amin{x, y}+Bmax{x, y}dx dy

=
∫∞

1

∫∞

1

x(−1−ε)/2y(−1−ε)/2

Amin{x, y}+Bmax{x, y}dx dy

=
∫∞

1
x−1−ε

∫∞

1/x

t(−1−ε)/2

Amin{1, t}+Bmax{1, t}dt dx

=
∫∞

1
x−1−ε

∫∞

0

t(−1−ε)/2

Amin{1, t}+Bmax{1, t}dt dx

−
∫∞

1
x−1−ε

∫ 1/x

0

t(−1−ε)/2

Amin{1, t}+Bmax{1, t}dt dx.

(2.13)

For x ≥ 1, we get

∫ 1/x

0

t(−1−ε)/2

Amin{1, t}+Bmax{1, t}dt

=
∫ 1/x

0

t(−1−ε)/2

At+B
dt

≤ 1
B

∫ 1/x

0
t(−1−ε)/2dt

= 1
B

1
1− (1+ ε)/2

(
1
x

)1−(1+ε)/2

≤ 4
B
x−1/4

(2.14)

(setting 0 < ε < 1/2).
Thus

0 <
∫∞

1
x−1−ε

∫ 1/x

0

t(−1−ε)/2

Amin{1, t}+Bmax{1, t}dtdx

≤ 4
B

∫∞

1
x−1−ε−1/4dx

≤ 4
B

∫∞

1
x−1−1/4dx = 16

B
.

(2.15)
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Note that

∫∞

1
x−1−ε

∫ 1/x

0

t(−1−ε)/2

Amin{1, t}+Bmax{1, t}dtdx =O(1). (2.16)

So the inequality
∫∞
0

∫∞
0 ( fε(x)gε(y)/(Amin{x, y}+Bmax{x, y}))dxdy = (1/ε)[D(A,B) +

o(1)]−O(1)= (1/ε)[D(A,B) + o(1)]. Thus we get (1/ε)[D(A,B, p) + o(1)]≤ K/ε, that is,
D(A,B) ≤ K when ε is sufficiently small, which contradicts the hypothesis. Hence the
constant factor D(A,B) in (2.6) is the best possible and ‖T‖ = D(A,B). This completes
the proof. �

Theorem 2.3. Suppose that f ≥ 0, A≥ 0, B > 0 and 0 <
∫∞
0 f 2(x)dx <∞. Then

∫∞

0

[∫∞

0

f (x)
Amin{x, y}+Bmax{x, y}dx

]2

dy < D2(A,B)
∫∞

0
f 2(x)dx, (2.17)

where the constant factorD2(A,B) is the best possible. Inequality (2.17) is equivalent to (2.6).

Proof. Let g(y)= ∫∞0 ( f (x)/(Amin{x, y}+Bmax{x, y}))dx, then by (2.6), we get

0 <
∫∞

0
g2(y)dy

=
∫∞

0

[∫∞

0

f (x)
Amin{x, y}+Bmax{x, y}dx

]2

dy

=
∫∞

0

∫∞

0

f (x)g(y)
Amin{x, y}+Bmax{x, y}dx dy

≤D(A,B)

{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(y)dy

}1/2

.

(2.18)

Hence, we obtain

0 <
∫∞

0
g2(y)dy =D2(A,B)

∫∞

0
f 2(x)dx <∞. (2.19)

By (2.6), both (2.18) and (2.19) take the form of strict inequality, so we have (2.17). On
the other hand, suppose that (2.17) is valid. By Hölder’s inequality, we find

∫∞

0

∫∞

0

f (x)g(y)
Amin{x, y}+Bmax{x, y}dx dy

=
∫∞

0

[∫∞

0

f (x)
Amin{x, y}+Bmax{x, y}dx

]
g(y)dy

≤
{∫∞

0

[∫∞

0

f (x)
Amin{x, y}+Bmax{x, y}dx

]2

dy

}1/2{∫∞

0
g2(x)dx

}1/2

.

(2.20)

By (2.17), we have (2.6). Thus (2.6) and (2.17) are equivalent.
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If the constant D2(A,B) in (2.17) is not the best possible, by (2.20), we may get a
contradiction that the constant factor in (2.6) is not the best possible. This completes the
proof. �

It is easy to see that for A= 1, B = 1, the inequality (2.17) reduces to

∫∞

0

[∫∞

0

f (x)
x+ y

dx

]2

dy < π2
∫∞

0
f 2(x)dx, (2.21a)

and for A= 0, B = 1, the inequality (2.17) reduces to

∫∞

0

[∫∞

0

f (x)
max{x, y}dx

]2

dy < 16
∫∞

0
f 2(x)dx, (2.21b)

where both the constant factors π2 and 16 are the best possible.

3. The corresponding theorem for series

Theorem 3.1. Suppose that an,bn ≥ 0, A≥ 0, B > 0, and 0 <
∑∞

n=1a2n <∞, 0 <
∑∞

n=1b2n <
∞. Then

∞∑

n=1

∞∑

m=1

ambn
Amin{m,n}+Bmax{m,n} < D(A,B)

( ∞∑

n=1
a2n

)1/2( ∞∑

n=1
b2n

)1/2

, (3.1)

∞∑

n=1

[ ∞∑

m=1

am
Amin{m,n}+Bmax{m,n}

]2

< D2(A,B)
∞∑

n=1
a2n, (3.2)

where the constant factor D(A,B) and D2(A,B) are both the best possible, (3.1) and (3.2)
are equivalent. In particular,

(i) for A= 1, B = 1, it reduces to Hardy-Hilbert’s inequality:

∞∑

n=1

∞∑

m=1

ambn
m+n

< π

( ∞∑

n=1
a2n

)1/2( ∞∑

n=1
b2n

)1/2

; (3.3a)

(ii) for A= 0, B = 1, it reduces to Hardy-Hilbert’s type inequality:

∞∑

n=1

∞∑

m=1

ambn
max{m,n} < 4

( ∞∑

n=1
a2n

)1/2( ∞∑

n=1
b2n

)1/2

. (3.3b)

Proof. Define the weight function ω(n) as

ω(n) :=
∞∑

m=1

1
A min{m,n}+B max{m,n}

(
n

m

)1/2

, n∈N. (3.4)
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Then we obtain

ω(n) < �(n)=D(A,B). (3.5)

Using the method similar to Theorem 2.2 and applying Hölder’s inequality, we obtain

∞∑

n=1

∞∑

m=1

ambn
Amin{m,n}+Bmax{m,n} ≤

[ ∞∑

n=1
ω(n)a2n

]1/2[ ∞∑

n=1
ω(n)b2n

]1/2

. (3.6)

By (3.5), we obtain (3.1).

For ε > 0 sufficiently small, setting ãn = n−(1+ε)/2, b̃n = n−(1+ε)/2, then

∞∑

n=1

∞∑

m=1

ãmb̃n
Amin{m,n}+Bmax{m,n} >

∫∞

1

∫∞

1

fε(x)gε(y)
Amin{x, y}+Bmax{x, y}dx dy,

{ ∞∑

n=1
ã2n

}1/2{ ∞∑

n=1
b̃2n

}1/2

=
∞∑

n=1

1
n1+ε

< 1+
∫∞

1

1
t1+ε

= 1+
1
ε
.

(3.7)

If the constant factor D(A,B) in (3.1) is not the best possible, then applying the re-
sult of Theorem 2.2, we can get the contradiction. Let bn =

∑∞
m=1(am/(A min{m,n} +

B max{m,n})) and we can obtain the following relation:

∞∑

n=1

[ ∞∑

m=1

am
Amin{m,n}+Bmax{m,n}

]2

=
∞∑

n=1
b2n =

∞∑

n=1

∞∑

m=1

ambn
Amin{m,n}+Bmax{m,n} .

(3.8)

Applying (3.1) and the method similar to Theorem 2.3, we get (3.2), and (3.2) is equiva-
lent to (3.1) with the best constant. �
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