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1. Introduction

Steffensen [1] stated that if f and g are integrable functions on (a,b) with f nonincreas-
ing and 0≤ g ≤ 1, then

∫ b

b−λ
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+λ

a
f (t)dt, (1.1)

where λ = ∫ ba g(t)dt. This inequality is usually called Steffensen’s inequality in the litera-
ture. A comprehensive survey on Steffensen’s inequality can be found in [2].

Recently, Anderson [3] has given the time scale version of Steffensen’s integral in-
equality, using nabla integral as follows: let a,b ∈ Tκ

κ and let f ,g : [a,b]T → R be nabla
integrable functions, with f of one sign and decreasing and 0≤ g ≤ 1 on [a,b]T. Assume
�,γ ∈ [a,b]T such that

b− � ≤
∫ b

a
g(t)∇t ≤ γ− a if f ≥ 0, t ∈ [a,b]T,

γ− a≤
∫ b

a
g(t)∇t ≤ b− � if f ≤ 0t ∈ [a,b]T.

(1.2)
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Then

∫ b

�
f (t)∇t ≤

∫ b

a
f (t)g(t)∇t ≤

∫ γ

a
f (t)∇t. (1.3)

In the theorem above which can be found in [3] as Theorem 3.1, we could replace the
nabla integrals with delta integrals under the same hypotheses and get a completely anal-
ogous result.

Wu [4] has given some generalizations of Steffensen’s integral inequality which can
be written as the following inequality: let f , g, and h be integrable functions defined on
[a,b] with f nonincreasing. Also let

0≤ g(t)≤ h(t)
(
t ∈ [a,b]

)
. (1.4)

Then

∫ b

b−λ
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+λ

a
f (t)h(t)dt, (1.5)

where λ is given by

∫ a+λ

a
h(t)dt =

∫ b

a
g(t)dt =

∫ b

b−λ
h(t)dt. (1.6)

The aim of this paper is to extend some generalizations of Steffensen’s integral in-
equality to an arbitrary time scale. We obtain Steffensen’s integral inequality using the
diamond-α derivative on time scales. The diamond-α derivative reduces to the standard
Δ derivative for α = 1, or the standard ∇ derivative for α= 0. We refer the reader to [5]
for an account of the calculus corresponding to the diamond-α dynamic derivative. The
paper is organized as follows: the next section contains basic definitions and theorems of
time scales theory, which can also be found in [5–9], and of delta, nabla, and diamond-
α dynamic derivatives. In Section 3, we present our results, which are generalizations of
Steffensen’s integral inequality on time scales.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of real numbers. The calculus of
time scales was initiated by Stefan Hilger in his Ph.D. thesis [9] in order to create a theory
that can unify discrete and continuous analysis. Let T be a time scale. T has the topology
that it inherits from the real numbers with the standard topology. Let σ(t) and ρ(t) be
the forward and backward jump operators in T, respectively. For t ∈ T, we define the
forward, jump operator σ : T→ T by

σ(t)= inf{s∈ T : s > t}, (2.1)

while the backward jump operator ρ : T→ T is defined by

ρ(t)= sup{s∈ T : s < t}. (2.2)
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If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered.
Points that are right-scattered and left-scattered at the same time are called isolated. If
σ(t) = t, then t is called right-dense, and if ρ(t) = t, then t is called left-dense. Points
that are right-dense and left-dense at the same time are called dense. Let t ∈ T, then two
mappings μ,ν : T→[0,∞) satisfying

μ(t) := σ(t)− t, ν(t) := t− ρ(t) (2.3)

are called the graininess functions.
We introduce the sets Tκ, Tκ, and Tκ

κ which are derived from the time scales T as
follows. If T has a left-scattered maximum t1, then Tκ = T−{t1}, otherwise Tκ = T. If
T has a right-scattered minimum t2, then Tκ = T−{t2}, otherwise Tκ = T. Finally, Tκ

κ =
Tκ∩Tκ.

Let f : T→R be a function on time scales. Then for t ∈ Tκ, we define f Δ(t) to be the
number, if one exists, such that for all ε > 0, there is a neighborhood U of t such that for
all s∈U ,

∣∣ f (σ(t))− f (s)− f Δ(t)[σ(t)− s]
∣∣≤ ε|σ(t)− s|. (2.4)

We say that f is delta differentiable on Tκ, provided f Δ(t) exists for all t ∈ Tκ. Similarly,
for t ∈ Tκ, we define f ∇(t) to be the number value, if one exists, such that for all ε > 0,
there is a neighborhood V of t such that for all s∈V ,

∣∣ f (ρ(t))− f (s)− f ∇(t)
[
ρ(t)− s

]∣∣≤ ε
∣∣ρ(t)− s

∣∣. (2.5)

We say that f is nabla differentiable on Tκ, provided f ∇(t) exists for all t ∈ Tκ.
If f : T→R is a function, then we define the function f σ : T→R by f σ(t) = f (σ(t))

for all t ∈ T, that is, f σ = f ◦ σ .
If f : T→R is a function, then we define the function f ρ : T→R by f ρ(t) = f (ρ(t))

for all t ∈ T, that is, f ρ = f ◦ ρ.
Assume that f : T→R is a function and let t ∈ Tκ(t 
=minT). Then we have the fol-

lowing.
(i) If f is delta differentiable at t, then f is continuous at t.
(ii) If f is left continuous at t and t is right-scattered, then f is delta differentiable at t

with

f Δ(t)= f σ(t)− f (t)
μ(t)

. (2.6)

(iii) If t is right-dense, then f is delta differentiable at t if and only if the limit

lim
s→t

f (t)− f (s)
t− s

(2.7)

exists as a finite number. In this case,

f Δ(t)= lim
s→t

f (t)− f (s)
t− s

. (2.8)
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(iv) If f is delta differentiable at t, then

f σ(t)= f (t) +μ(t) f Δ(t). (2.9)

Assume that f : T→R is a function and let t ∈ Tκ(t 
=maxT). Then we have the fol-
lowing.

(i) If f is nabla differentiable at t, then f is continuous at t.
(ii) If f is right continuous at t and t is left-scattered, then f is nabla differentiable at

t with

f ∇(t)= f (t)− f ρ(t)
ν(t)

. (2.10)

(iii) If t is left-dense, then f is nabla differentiable at t if and only if the limit

lim
s→t

f (t)− f (s)
t− s

(2.11)

exists as a finite number. In this case,

f ∇(t)= lim
s→t

f (t)− f (s)
t− s

. (2.12)

(iv) If f is nabla differentiable at t, then

f ρ(t)= f (t)− ν(t) f ∇(t). (2.13)

A function f : T→R is called rd-continuous, provided it is continuous at all right-
dense points in T and its left-sided limits finite at all left-dense points in T.

A function f : T→R is called ld-continuous, provided it is continuous at all left-dense
points in T and its right-sided limits finite at all right-dense points in T.

A function F : T→R is called a delta antiderivative of f : T→R, provided FΔ(t)= f (t)
holds for all t ∈ Tκ. Then the delta integral of f is defined by

∫ b

a
f (t)Δt = F(b)−F(a). (2.14)

A function G : T→R is called a nabla antiderivative of g : T→R, provided G∇(t) =
g(t) holds for all t ∈ Tκ. Then the nabla integral of g is defined by

∫ b

a
g(t)∇t =G(b)−G(a). (2.15)

Many other information sources concerning time scales can be found in [6–8].
Now, we briefly introduce the diamond-α dynamic derivative and the diamond-α dy-

namic integra,l and we refer the reader to [5] for a comprehensive development of the
calculus of the diamond-α dynamic derivative and the diamond-α dynamic integration.
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Let T be a time scale and f (t) be differentiable on T in the Δ and∇ senses. For t ∈ T,
we define the diamond-α dynamic derivative f �α(t) by

f �α(t)= α f �(t) + (1−α) f (t), 0≤ α≤ 1. (2.16)

Thus f is diamond-α differentiable if and only if f is Δ and ∇ differentiable. The
diamond-α derivative reduces to the standard Δ derivative for α = 1, or the standard ∇
derivative for α= 0. On the other hand, it represents a “weighted dynamic derivative” for
α∈ (0,1). Furthermore, the combined dynamic derivative offers a centralized derivative
formula on any uniformly discrete time scale T when α= 1/2.

Let f ,g : T→R be diamond-α differentiable at t ∈ T. Then
(i) f + g : T→R is diamond-α differentiable at t ∈ T with

( f + g)�α(t)= f �α(t) + g�α(t); (2.17)

(ii) for any constant c, c f : T→R is diamond-α differentiable at t ∈ T with

(c f )�α(t)= c f �α(t); (2.18)

(iii) f g : T→R is diamond-α differentiable at t ∈ T with

( f g)�α(t)= f �α(t)g(t) +α f σ(t)gΔ(t) + (1−α) f ρ(t)g∇(t). (2.19)

Let a, t ∈ T, and h : T→R. Then the diamond-α integral from a to t of h is defined by

∫ t

a
h(τ)♦ατ = α

∫ t

a
h(τ)Δτ + (1−α)

∫ t

a
h(τ)∇τ, 0≤ α≤ 1. (2.20)

We may notice that since the ♦α integral is a combined Δ and ∇ integral, we, in general,
do not have

(∫ t

a
h(τ)♦ατ

)♦α

= h(t), t ∈ T. (2.21)

Let a,b, t ∈ T, c ∈R, then
(i)
∫ t
a[ f (τ) + g(τ)]♦ατ =

∫ t
a f (τ)♦ατ +

∫ t
a g(τ)♦ατ,

(ii)
∫ t
a c f (τ)♦ατ = c

∫ t
a f (τ)♦ατ,

(iii)
∫ t
a f (τ)♦ατ =

∫ b
a f (τ)♦ατ +

∫ t
b f (τ)♦ατ.

3. Main results

Throughout this section, we suppose that T is a time scale, a < b are points in T. For a q-
difference equation version of the following result, including proof techniques, see [10].
We refer the reader to [10] for an account of q-calculus and its applications.

Theorem 3.1. Let a,b ∈ Tκ
κ with a < b and f , g, and h : [a,b]T→R be ♦α-integrable func-

tions, with f of one sign and decreasing and 0≤ g(t)≤ h(t) on [a,b]T. Assume �,γ ∈ [a,b]T



6 Journal of Inequalities and Applications

such that

∫ b

�
h(t)♦αt ≤

∫ b

a
g(t)♦αt ≤

∫ γ

a
h(t)♦αt if f ≥ 0, t ∈ [a,b]T,

∫ γ

a
h(t)♦αt ≤

∫ b

a
g(t)♦αt ≤

∫ b

�
h(t)♦αt if f ≤ 0, t ∈ [a,b]T.

(3.1)

Then

∫ b

�
f (t)h(t)♦αt ≤

∫ b

a
f (t)g(t)♦αt ≤

∫ γ

a
f (t)h(t)♦αt. (3.2)

Proof. The proof given in the q-difference case [10] can be extended to general time
scales. We prove only the left inequality in (3.2) in the case f ≥ 0. The proofs of the
other cases are similar. Since f is decreasing and g is nonnegative, we get

∫ b

a
f (t)g(t)♦αt−

∫ b

�
f (t)h(t)♦αt =

∫ �

a
f (t)g(t)♦αt+

∫ b

�
f (t)g(t)♦αt−

∫ b

�
f (t)h(t)♦αt

=
∫ �

a
f (t)g(t)♦αt−

∫ b

�
f (t)

[
h(t)− g(t)

]
♦αt

≥
∫ �

a
f (t)g(t)♦αt− f (�)

∫ b

�

[
h(t)− g(t)

]
♦αt

=
∫ �

a
f (t)g(t)♦αt− f (�)

∫ b

�
h(t)♦αt+ f (�)

∫ b

�
g(t)♦αt

≥
∫ �

a
f (t)g(t)♦αt− f (�)

∫ b

a
g(t)♦αt+ f (�)

∫ b

�
g(t)♦αt

=
∫ �

a
f (t)g(t)♦αt− f (�)

(∫ b

a
g(t)♦αt−

∫ b

�
g(t)♦αt

)

=
∫ �

a
f (t)g(t)♦αt− f (�)

∫ �

a
g(t)♦αt

=
∫ �

a

[
f (t)− f (�)

]
g(t)♦αt ≥ 0.

(3.3)

�

Remark 3.2. When α = 0 and setting h(t) = 1, inequality (3.2) reduces to inequality [3,
(3.1)].

In order to obtain our other results, we need the following lemma.

Lemma 3.3. Let a,b ∈ Tκ
κ with a < b and f , g, and h : [a,b]T → R be ♦α-integrable func-

tions. Suppose also that �,γ ∈ [a,b]T such that

∫ γ

a
h(t)♦αt =

∫ b

a
g(t)♦αt =

∫ b

�
h(t)♦αt. (3.4)
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Then
∫ b

a
f (t)g(t)♦αt =

∫ γ

a

(
f (t)h(t)−[ f (t)− f (γ)

][
h(t)− g(t)

])
♦αt+

∫ b

γ

[
f (t)− f (γ)

]
g(t)♦αt,

(3.5)
∫ b

a
f (t)g(t)♦αt =

∫ �

a

[
f (t)− f (�)

]
g(t)♦αt+

∫ b

�

(
f (t)h(t)− [ f (t)− f (�)

][
h(t)− g(t)

])
♦α.

(3.6)

Proof. We prove the integral identity (3.5). By direct computation, we have

∫ γ

a

(
f (t)h(t)− [ f (t)− f (γ)

][
h(t)− g(t)

])
♦αt−

∫ b

a
f (t)g(t)♦αt

=
∫ γ

a

(
f (t)h(t)− f (t)g(t)− [ f (t)− f (γ)

][
h(t)− g(t)

])
♦αt

+
∫ γ

a
f (t)g(t)♦αt−

∫ b

a
f (t)g(t)♦αt

=
∫ γ

a
f (γ)

[
h(t)− g(t)

]
♦αt−

∫ b

γ
f (t)g(t)♦αt

= f (γ)
(∫ γ

a
h(t)♦αt−

∫ γ

a
g(t)♦αt

)
−
∫ b

γ
f (t)g(t)♦αt.

(3.7)

If we apply assumption

∫ γ

a
h(t)♦αt =

∫ b

a
g(t)♦αt (3.8)

to (3.7), we obtain

f (γ)
(∫ γ

a
h(t)♦αt−

∫ γ

a
g(t)♦αt

)
−
∫ b

γ
f (t)g(t)♦αt

= f (γ)
(∫ b

a
g(t)♦αt−

∫ γ

a
g(t)♦αt

)
−
∫ b

γ
f (t)g(t)♦αt

= f (γ)
∫ b

γ
g(t)♦αt−

∫ b

γ
f (t)g(t)♦αt

=
∫ b

γ

[
f (γ)− f (t)

]
g(t)♦αt.

(3.9)

By combining the integral identities (3.7) and (3.9), we have integral identity (3.5). The
proof of identity (3.6) is similar to that of integral identity (3.5) and is omitted. �

Theorem 3.4. Let a,b ∈ Tκ
κ with a < b and f , g and h : [a,b]T→R be ♦α-integrable func-

tions, f of one sign and decreasing and 0≤ g(t)≤ h(t) on [a,b]T. Assume �,γ ∈ [a,b]T such
that

∫ γ

a
h(t)♦αt =

∫ b

a
g(t)♦αt =

∫ b

�
h(t)♦αt. (3.10)
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Then
∫ b

�
f (t)h(t)♦αt ≤

∫ b

�

(
f (t)h(t)− [ f (t)− f (�)

][
h(t)− g(t)

])
♦αt

≤
∫ b

a
f (t)g(t)♦αt

≤
∫ γ

a

(
f (t)h(t)− [ f (t)− f (γ)

][
h(t)− g(t)

])
♦αt

≤
∫ γ

a
f (t)h(t)♦αt.

(3.11)

Proof. In view of the assumptions that the function f is decreasing on [a,b]T and that
0≤ g(t)≤ h(t), we conclude that

∫ �

a

[
f (t)− f (�)

]
g(t)♦αt ≥ 0, (3.12)

∫ b

�

[
f (�)− f (t)

][
h(t)− g(t)

]
♦αt ≥ 0. (3.13)

Using the integral identity (3.6) together with the integral inequalities (3.12) and (3.13),
we have

∫ b

�
f (t)h(t)♦αt ≤

∫ b

�

(
f (t)h(t)− [ f (t)− f (�)

][
h(t)− g(t)

])
♦αt ≤

∫ b

a
f (t)g(t)♦αt.

(3.14)

In the same way as above, we can prove that

∫ b

a
f (t)g(t)♦αt ≤

∫ γ

a

(
f (t)h(t)− [ f (t)− f (γ)

][
h(t)− g(t)

])
♦αt

≤
∫ γ

a
f (t)h(t)♦αt.

(3.15)

The proof of Theorem 3.4 is completed by combining the inequalities (3.14) and (3.15).
�

Theorem 3.5. Let a,b ∈ Tκ
κ with a < b and f , g, h and ϕ : [a,b]T → R be ♦α-integrable

functions, f of one sign and decreasing and 0≤ ϕ(t)≤ g(t)≤ h(t)−ϕ(t) on [a,b]T. Assume
�,γ is given by

∫ γ

a
h(t)♦αt =

∫ b

a
g(t)♦αt =

∫ b

�
h(t)♦αt (3.16)

such that �,γ ∈ [a,b]T. Then

∫ b

�
f (t)h(t)♦αt+

∫ b

a

∣∣[ f (t)− f (�)
]
ϕ(t)

∣∣♦αt

≤
∫ b

a
f (t)g(t)♦αt ≤

∫ γ

a
f (t)h(t)♦αt−

∫ b

a

∣∣[ f (t)− f (γ)
]
ϕ(t)

∣∣♦αt.

(3.17)
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Proof. By the assumptions that the function f is decreasing on [a,b]T and that

0≤ ϕ(t)≤ g(t)≤ h(t)−ϕ(t)
(
t ∈ [a,b]T

)
, (3.18)

it follows that
∫ γ

a

[
f (t)− f (γ)

][
h(t)− g(t)

]
♦αt+

∫ b

γ

[
f (γ)− f (t)

]
g(t)♦αt

=
∫ γ

a

∣∣ f (t)− f (γ)
∣∣[h(t)− g(t)]♦αt+

∫ b

γ

∣∣ f (γ)− f (t)
∣∣g(t)♦αt

≥
∫ γ

a

∣∣ f (t)− f (γ)
∣∣ϕ(t)♦αt+

∫ b

γ

∣∣ f (γ)− f (t)
∣∣ϕ(t)♦αt

=
∫ b

a

∣∣[ f (t)− f (γ)
]
ϕ(t)

∣∣♦αt.

(3.19)

Similarly, we find that

∫ �

a

[
f (t)− f (�)

]
g(t)♦αt+

∫ b

�

[
f (�)− f (t)

][
h(t)− g(t)

]
♦αt ≥

∫ b

a
|[ f (t)− f (�)

]
ϕ(t)|♦αt.

(3.20)

By combining the integral identities (3.5) and (3.6) and the inequalities (3.19) and (3.20),
we have inequality (3.17). �

Remark 3.6. When α = 0 and setting h(t) = 1 and ϕ(t) = 0, inequality (3.17) reduces to
[3, inequality (3.1)].
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