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1. Introduction

The integral inequalities play a fundamental role in the study of existence, uniqueness,
boundedness, stability, invariant manifolds, and other qualitative properties of solutions
of the theory of differential and integral equations. There are a lot of papers investigating
them such as [1–8]. In particular, Pachpatte [2] discovered some new integral inequalities
involving functions of two variables. These inequalities are applied to study the bound-
edness and uniqueness of the solutions of the following terminal value problem for the
hyperbolic partial differential equation (1.1) with conditions (1.2):

D1D2u(x, y)= h
(
x, y,u(x, y)

)
+ r(x, y), (1.1)

u(x,∞)= σ∞(x), u(∞, y)= τ∞(y), u(∞,∞)= k. (1.2)

Cheung [9], and Dragomir and Kim [10, 11] established additional Gronwall-Ou-Iang
type integral inequalities involving functions of two independent variables. Meng and Li
[12] generalized the results of Pachpatte [2] to certain new integrals. Recently, Cheung
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and Ma[13] discussed the following inequalities

u(x, y)≤ a(x, y) + c(x, y)
∫ x

0

∫∞

y
d(s, t)w

(
u(s, t)

)
dtds,

u(x, y)≤ a(x, y) + c(x, y)
∫∞

x

∫∞

y
d(s, t)w

(
u(s, t)

)
dtds,

(1.3)

where a(x, y) and c(x, y) have certain monotonicity.
Our main aim here, motivated by the work of Cheung and Ma [13], is to discuss more

general integral inequalities with n nonlinear terms:

u(x, y)≤ a(x, y) +
n∑

i=1

∫ x

0

∫∞

y
di(x, y,s, t)wi

(
u(s, t)

)
dtds, (1.4)

u(x, y)≤ a(x, y) +
n∑

i=1

∫∞

x

∫∞

y
di(x, y,s, t)wi

(
u(s, t)

)
dtds, (1.5)

where we do not require the monotonicity of a(x, y) and di(x, y,s, t). Furthermore, we
also show that some results of Cheung and Ma [13] can be deduced from our results as
some special cases. Our results are also applied to show the boundedness of the solutions
of a partial differential equation.

2. Main results

Let R= (−∞,∞) and R+ = [0,∞). D1z(x, y) and D2z(x, y) denote the first-order partial
derivatives of z(x, y) with respect to x and y, respectively.

As in [1, 5, 6], we definew1∝w2 forw1,w2 :A⊂R→R\{0} ifw2/w1 is nondecreasing
on A. This concept helps us compare monotonicity of different functions. Suppose that

(C1) wi(u) (i= 1, . . . ,n) is a nonnegative, nondecreasing, and continuous function for
u∈R+ with wi(u) > 0 for u > 0 such that w1∝w2∝ ··· ∝wn;

(C2) a(x, y) is a nonnegative and continuous function for x, y ∈R+;
(C3) di(x, y,s, t) (i = 1, . . . ,n) is a continuous and nonnegative function for x, y,s, t ∈

R+.
Take the notation Wi(u) :=

∫ u
ui(dz/wi(z)), for u ≥ ui, where ui > 0 is a given constant.

Clearly, Wi is strictly increasing, so its inverse W−1
i is well defined, continuous, and in-

creasing in its corresponding domain.

Theorem 2.1. In addition to the assumptions (C1), (C2), and (C3), suppose that a(x, y)
and di(x, y,s, t) are bounded in y ∈ R+ for each fixed x,s, t ∈ R+. If u(x, y) is a continuous
and nonnegative function satisfying (1.4) for x, y ∈R+, then

u(x, y)≤W−1
n

[

Wn
(
bn(x, y)

)
+
∫ x

0

∫∞

y
d̃n(x, y,s, t)dtds

]

(2.1)
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for all 0≤ x ≤ x1, y1 ≤ y <∞, where bn(x, y) is determined recursively by

b1(x, y)= ã(x, y),

bi+1(x, y)=W−1
i

[

Wi
(
bi(x, y)

)
+
∫ x

0

∫∞

y
d̃i(x, y,s, t)dtds

]

,

ã(x, y)= sup
0≤τ≤x

sup
y≤μ<∞

a(τ,μ), d̃i(x, y,s, t)= sup
0≤τ≤x

sup
y≤μ<∞

di(τ,μ,s, t),

(2.2)

W1(0) := 0, and x1, y1 ∈R+ are chosen such that

Wi
(
bi
(
x1, y1

))
+
∫ x1

0

∫∞

y1
d̃i(x, y,s, t)dtds≤

∫∞

ui

dz

wi(z)
(2.3)

for i= 1, . . . ,n.

Remark 2.2. x1 and y1 are confined by (2.3). In particular, (2.1) is true for all x, y ∈ R+

when all wi (i= 1, . . . ,n) satisfy
∫∞
ui (dz/wi(z))=∞.

Remark 2.3. As in [6, 5, 1], different choices of ui inWi do not affect our results.

Proof of Theorem 2.1. From the assumptions, we know that ã(x, y) and d̃i(x, y,s, t) are

well defined. Moreover, ã(x, y) and d̃i(x, y,s, t) are nonnegative, nondecreasing in x, non-

increasing in y; and satisfy ã(x, y) ≥ a(x, y) and d̃i(x, y,s, t) ≥ di(x, y,s, t) for each i =
1, . . . ,n.

We first discuss the case that a(x, y) > 0 for all x, y ∈ R+. Thus, b1(x, y) is positive,
nondecreasing in x, nonincreasing in y; and satisfies b1(x, y) ≥ a(x, y) for all x, y ∈ R+.
From (1.4), we have

u(x, y)≤ b1(x, y) +
n∑

i=1

∫ x

0

∫∞

y
d̃i(x, y,s, t)wi

(
u(s, t)

)
dtds. (2.4)

Choose arbitrary x̃1, ỹ1 such that 0≤ x̃1 ≤ x1, y1 ≤ ỹ1 <∞. From (2.4), we obtain

u(x, y)≤ b1
(
x̃1, ỹ1

)
+

n∑

i=1

∫ x

0

∫∞

y
d̃i
(
x̃1, ỹ1,s, t

)
wi
(
u(s, t)

)
dtds (2.5)

for all 0≤ x ≤ x̃1 ≤ x1, y1 ≤ ỹ1 ≤ y <∞.
Having (2.5), we claim

u(x, y)≤W−1
n

[

Wn
(
b̃n
(
x̃1, ỹ1,x, y

))
+
∫ x

0

∫∞

y
d̃n
(
x̃1, ỹ1,s, t

)
dtds

]

(2.6)

for all 0≤ x ≤min{x̃1,x2}, max{ ỹ1, y2} ≤ y <∞, where

b̃1
(
x̃1, ỹ1,x, y

)= b1
(
x̃1, ỹ1

)
,

b̃i+1
(
x̃1, ỹ1,x, y

)=W−1
i

[

Wi
(
b̃i
(
x̃1, ỹ1,x, y

))
+
∫ x

0

∫∞

y
d̃i
(
x̃1, ỹ1,s, t

)
dtds

]
(2.7)
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for i= 1, . . . ,n− 1 and x2, y2 ∈R+ are chosen such that

Wi
(
b̃i
(
x̃1, ỹ1,x2, y2

))
+
∫ x2

0

∫∞

y2
d̃i
(
x̃1, ỹ1,s, t

)
dtds≤

∫∞

ui

dz

wi(z)
(2.8)

for i= 1, . . . ,n.
Note that we may take x2 = x1 and y2 = y1. In fact, b̃i(x̃1, ỹ1,x, y) and d̃i(x̃1, ỹ1,x, y) are

nondecreasing in x̃1, nonincreasing in ỹ1 for fixed x, y. Furthermore, it is easy to check

that b̃i(x̃1, ỹ1, x̃1, ỹ1)= bi(x̃1, ỹ1) for i= 1, . . . ,n. If x2, y2 are replaced by x1, y1 on the left
side of (2.8), we have from (2.3)

Wi
(
b̃i
(
x̃1, ỹ1,x1, y1

))
+
∫ x1

0

∫∞

y1
d̃i
(
x̃1, ỹ1,s, t

)
dtds

≤Wi
(
b̃i
(
x1, y1,x1, y1

))
+
∫ x1

0

∫∞

y1
d̃i
(
x1, y1,s, t

)
dtds

=Wi
(
bi
(
x1, y1

))
+
∫ x1

0

∫∞

y1
d̃i
(
x1, y1,s, t

)
dtds≤

∫∞

ui

dz

wi(z)
.

(2.9)

Thus, it means that we can take x2 = x1, y2 = y1.
In the following, we will use mathematical induction to prove (2.6).
For n= 1, let

z(x, y)=
∫ x

0

∫∞

y
d̃1
(
x̃1, ỹ1,s, t

)
w1
(
u(s, t)

)
dtds. (2.10)

Then z(x, y) is differentiable, nonnegative, nondecreasing for x ∈ [0, x̃1], and nonincreas-
ing for y ∈ [ ỹ1,∞) and z(0, y)= z(x,∞)= 0. From (2.5), we have the following:

u(x, y)≤ b1
(
x̃1, ỹ1

)
+ z(x, y),

D1z(x, y)=
∫∞

y
d̃1
(
x̃1, ỹ1,x, t

)
w1
(
u(x, t)

)
dt

≤
∫∞

y
d̃1
(
x̃1, ỹ1,x, t

)
w1
(
b1
(
x̃1, ỹ1

)
+ z(x, t)

)
dt

≤w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)
∫∞

y
d̃1
(
x̃1, ỹ1,x, t

)
dt.

(2.11)

Since w1 is nondecreasing and b1(x̃1, ỹ1) + z(x, y) > 0, we get

D1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

) = D1z(x, y)
w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

≤ w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)∫∞
y d̃1

(
x̃1, ỹ1,x, t

)
dt

w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

=
∫∞

y
d̃1
(
x̃1, ỹ1,x, t

)
dt.

(2.12)
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Integrating both sides of the above inequality from 0 to x, we obtain

W1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)≤W1
(
b1
(
x̃1, ỹ1

)
+ z(0, y)

)
+
∫ x

0

∫∞

y
d̃1
(
x̃1, ỹ1,s, t

)
dtds

=W1
(
b1
(
x̃1, ỹ1

))
+
∫ x

0

∫∞

y
d̃1
(
x̃1, ỹ1,s, t

)
dtds.

(2.13)

Thus the monotonicity ofW−1
1 implies

u(x, y)≤ b1
(
x̃1, ỹ1

)
+ z(x, y)≤W−1

1

[

W1
(
b1
(
x̃1, ỹ1

))
+
∫ x

0

∫∞

y
d̃1
(
x̃1, ỹ1,s, t

)
dtds

]

,

(2.14)

that is, (2.6) is true for n= 1.
Assume that (2.6) is true for n=m. Consider

u(x, y)≤ b1
(
x̃1, ỹ1) +

m+1∑

i=1

∫ x

0

∫∞

y
d̃i
(
x̃1, ỹ1,s, t

)
wi
(
u(s, t)

)
dtds (2.15)

for all 0≤ x ≤ x̃1, ỹ1 ≤ y <∞. Let

z(x, y)=
m+1∑

i=1

∫ x

0

∫∞

y
d̃i
(
x̃1, ỹ1,s, t

)
wi
(
u(s, t)

)
dtds. (2.16)

Then z(x, y) is differentiable, nonnegative, nondecreasing for x ∈ [0, x̃1], and nonincreas-
ing for y ∈ [ ỹ1,∞). Obviously, z(0, y) = z(x,∞) = 0 and u(x, y) ≤ b1(x̃1, ỹ1) + z(x, y).
Since w1 is nondecreasing and b1(x̃1, ỹ1) + z(x, y) > 0, we have

D1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

≤
∑m+1

i=1
∫∞
y d̃i

(
x̃1, ỹ1,x, t

)
wi
(
u(x, t)

)
dt

w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

≤
∑m+1

i=1
∫∞
y d̃i

(
x̃1, ỹ1,x, t

)
wi
(
b1(x̃1, ỹ1

)
+ z(x, t)

)
dt

w1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)

≤
∫∞

y
d̃1
(
x̃1, ỹ1,x, t

)
dt+

m+1∑

i=2

∫∞

y
d̃i
(
x̃1, ỹ1,x, t

)
φi
(
b1
(
x̃1, ỹ1

)
+ z(x, t)

)
dt

≤
∫∞

y
d̃1
(
x̃1, ỹ1,x, t

)
dt+

m∑

i=1

∫∞

y
d̃i+1

(
x̃1, ỹ1,x, t

)
φi+1

(
b1
(
x̃1, ỹ1

)
+ z(x, t)

)
dt,

(2.17)
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where φi+1(u)= wi+1(u)/w1(u), i= 1, . . . ,m. Integrating the above inequality from 0 to x,
we obtain

W1
(
b1
(
x̃1, ỹ1

)
+ z(x, y)

)≤W1
(
b1
(
x̃1, ỹ1

))
+
∫ x

0

∫∞

y
d̃1
(
x̃1, ỹ1,s, t

)
dtds

+
m∑

i=1

∫ x

0

∫∞

y
d̃i+1

(
x̃1, ỹ1,s, t

)
φi+1

(
b1(x̃1, ỹ1

)
+ z(s, t)

)
dtds,

(2.18)

or

ξ(x, y)≤ c1(x, y) +
m∑

i=1

∫ x

0

∫∞

y
d̃i+1

(
x̃1, ỹ1,s, t

)
φi+1

(
W−1

1

(
ξ(s, t)

))
dtds (2.19)

for 0≤ x ≤ x̃1 and ỹ1 ≤ y <∞, the same as (2.6) for n=m, where ξ(x, y)=W1(b1(x̃1, ỹ1) +

z(x, y)) and c1(x, y)=W1(b1(x̃1, ỹ1)) +
∫ x
0

∫∞
y d̃1(x̃1, ỹ1,s, t)dtds.

From the assumption (C1), each φi+1(W−1
1 (u)), i = 1, . . . ,m, is continuous and non-

decreasing for u. Moreover, φ2(W−1
1 )∝ φ3(W−1

1 )∝ ··· ∝ φm+1(W−1
1 ). By the inductive

assumption, we have

ξ(x, y)≤Φ−1
m+1

[

Φm+1
(
cm(x, y)

)
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

]

(2.20)

for all 0≤ x ≤min{x̃1,x3}, max{ ỹ1, y3} ≤ y <∞, whereΦi+1(u)=
∫ u
ũi+1 (dz/φi+1(W

−1
1 (z))),

u > 0, ũi+1 =W1(ui+1), Φ−1
i+1 is the inverse of Φi+1, i= 1, . . . ,m,

ci+1(x, y)=Φ−1
i+1

[
Φi+1

(
ci(x, y)

)
+
∫ x

0

∫∞

y
d̃i+1

(
x̃1, ỹ1,s, t

)
dtds

]
, i= 1, . . . ,m, (2.21)

and x3, y3 ∈R+ are chosen such that

Φi+1
(
ci
(
x3, y3

))
+
∫ x3

0

∫∞

y3
d̃i+1

(
x̃1, ỹ1,s, t

)
dtds≤

∫W1(∞)

ũi+1

dz

φi+1
(
W−1

1 (z)
) (2.22)

for i= 1, . . . ,m.
Note that

Φi(u)=
∫ u

ũi

dz

φi
(
W−1

1 (z)
) =

∫ u

W1(ui)

w1
(
W−1

1 (z)
)
dz

wi
(
W−1

1 (z)
)

=
∫W−1

1 (u)

ui

dz

wi(z)
=Wi ◦W−1

1 (u), i= 2, . . . ,m+1.

(2.23)

From (2.20), we have

u(x, y)≤ b1
(
x̃1, ỹ1

)
+ z(x, y)=W−1

1

(
ξ(x, y)

)

≤W−1
m+1

[

Wm+1
(
W−1

1

(
cm(x, y)

))
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

]
(2.24)
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for all 0≤ x ≤min{x̃1,x3}, max{ ỹ1, y3} ≤ y <∞. Let c̃i(x, y)=W−1
1 (ci(x, y)). Then,

c̃1(x, y)=W−1
1

(
c1(x, y)

)

=W−1
1

[

W1
(
b1
(
x̃1, ỹ1

))
+
∫ x

0

∫∞

y
d̃1
(
x̃1, ỹ1,s, t

)
dtds

]

= b̃2
(
x̃1, ỹ1,x, y

)
.

(2.25)

Moreover, with the assumption that c̃m(x, y)= b̃m+1(x̃1, ỹ1,x, y), we have

c̃m+1(x, y)=W−1
1

[

Φ−1
m+1

(
Φm+1

(
cm(x, y)

)
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

)
]

=W−1
m+1

[

Wm+1
(
W−1

1

(
cm(x, y)

))
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

]

=W−1
m+1

[

Wm+1
(
c̃m(x, y)

)
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

]

=W−1
m+1

[

Wm+1
(
b̃m+1

(
x̃1, ỹ1,x, y

))
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

]

= b̃m+2
(
x̃1, ỹ1,x, y

)
.

(2.26)

This proves that

c̃i(x, y)= b̃i+1
(
x̃1, ỹ1,x, y

)
, i= 1, . . . ,m. (2.27)

Therefore, (2.22) becomes

Wi+1
(
b̃i+1

(
x̃1, ỹ1,x3, y3

))
+
∫ x3

0

∫∞

y3
d̃i+1

(
x̃1, ỹ1,s, t

)
dtds

≤
∫W1(∞)

ũi+1

dz

φi+1
(
W−1

1 (z)
) =

∫∞

ui+1

dz

wi+1(z)
, i= 1, . . . ,m.

(2.28)

The above inequalities and (2.8) imply that we may take x2 = x3, y2 = y3. From (2.24),
we get

u(x, y)≤W−1
m+1

[

Wm+1
(
b̃m+1

(
x̃1, ỹ1,x, y

))
+
∫ x

0

∫∞

y
d̃m+1

(
x̃1, ỹ1,s, t

)
dtds

]

(2.29)

for all 0≤ x ≤ x̃1 ≤ x2, y2 ≤ ỹ1 ≤ y <∞. This proves (2.6) by mathematical induction.
Taking x = x̃1, y = ỹ1, x2 = x1, and y2 = y1, we have

u
(
x̃1, ỹ1

)≤W−1
n

[

Wn
(
b̃n
(
x̃1, ỹ1, x̃1, ỹ1

))
+
∫ x̃1

0

∫∞

ỹ1
d̃n
(
x̃1, ỹ1,s, t

)
dtds

]

(2.30)
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for 0≤ x̃1 ≤ x1, y1 ≤ ỹ1 <∞. It is easy to verify b̃n(x̃1, ỹ1, x̃1, ỹ1)= bn(x̃1, ỹ1). Thus, (2.30)
can be written as

u
(
x̃1, ỹ1

)≤W−1
n

[

Wn
(
bn
(
x̃1, ỹ1

))
+
∫ x̃1

0

∫∞

ỹ1
d̃n
(
x̃1, ỹ1,s, t

)
dtds

]

. (2.31)

Since x̃1, ỹ1 are arbitrary, replace x̃1 and ỹ1 by x and y respectively and we have

u(x, y)≤W−1
n

[

Wn
(
bn(x, y)

)
+
∫ x

0

∫∞

y
d̃n(x, y,s, t)dtds

]

(2.32)

for all 0≤ x ≤ x1, y1 ≤ y <∞.
In case a(x, y) = 0 for some x, y ∈ R+. Let b1,ε(x, y) := b1(x, y) + ε for all x, y ∈ R+,

where ε > 0 is arbitrary, and then b1,ε(x, y) > 0. Using the same arguments as above, where
b1(x, y) is replaced with b1,ε(x, y) > 0 , we get

u(x, y)≤W−1
n

[

Wn
(
bn,ε(x, y)

)
+
∫ x

0

∫∞

y
d̃n(x, y,s, t)dtds

]

. (2.33)

Letting ε→ 0+, we obtain (2.1) by the continuity of b1,ε in ε and the continuity ofWi and
W−1

i under the notationW1(0) := 0. �

Theorem 2.4. In addition to the assumptions (C1), (C2), and (C3), suppose that a(x, y)
and di(x, y,s, t) are bounded in x, y ∈ R+ for each fixed s, t ∈ R+. If u(x, y) is a continuous
and nonnegative function satisfying (1.5) for x, y ∈R+, then

u(x, y)≤W−1
n

[

Wn
(
bn(x, y)

)
+
∫∞

x

∫∞

y
d̂n(x, y,s, t)dtds

]

(2.34)

for all x4 ≤ x <∞, y4 ≤ y <∞, where bn(x, y) is determined recursively by

b1(x, y)= â(x, y),

bi+1(x, y)=W−1
i

[

Wi
(
bi(x, y)

)
+
∫∞

x

∫∞

y
d̂i(x, y,s, t)dtds

]

,
(2.35)

â(x, y)= sup
x≤τ<∞

sup
y≤μ<∞

a(τ,μ),

d̂i(x, y,s, t)= sup
x≤τ<∞

sup
y≤μ<∞

di(τ,μ,s, t),
(2.36)

W1(0) := 0, and x4, y4 ∈R+ are chosen such that

Wi
(
bi
(
x4, y4

))
+
∫∞

x4

∫∞

y4
d̂i(x, y,s, t)dtds≤

∫∞

ui

dz

wi(z)
(2.37)

for i= 1, . . . ,n.

The proof is similar to the argument in the proof of Theorem 2.1 with suitable modi-
fication. We omit the details here.
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Remark 2.5. Take d1(x, y,s, t)= c(x, y)d(s, t) and n= 1 in (1.4). Suppose that a(x, y) and
c(x, y) are continuous, nonnegative, nondecreasing in x and nonincreasing in y; and
d(s, t) is nonnegative and continuous. We note that

b1(x, y)= a(x, y), d̃1(x, y,s, t)= c(x, y)d(s, t). (2.38)

From Theorem 2.1, we get

u(x, y)≤W−1
1

[

W1
(
a(x, y)

)
+ c(x, y)

∫ x

0

∫∞

y
d(s, t)dtds

]

, (2.39)

which is exactly (2.6) of Lemma 2.2 in [13].

Remark 2.6. Take d1(x, y,s, t)= c(x, y)d(s, t) and n= 1 in (1.5). Suppose that a(x, y) and
c(x, y) are continuous, nonnegative, nonincreasing in x, y; and d(s, t) is nonnegative and
continuous. It is easy to check that

b1(x, y)= a(x, y), d̂1(x, y,s, t)= c(x, y)d(s, t). (2.40)

From Theorem 2.4, we get

u(x, y)≤W−1
1

[
W1
(
a(x, y)

)
+ c(x, y)

∫∞

x

∫∞

y
d(s, t)dtds

]
(2.41)

which is (2.10) of Lemma 2.2 in [13].

3. Applications

Consider the partial differential equation

D1D2v(x, y)= 1
(x+1)2(y +1)2

+ exp(−x)exp(−y)
√∣
∣v(x, y)

∣
∣+1

+ xexp(−x)exp(−y)Tv(x, y),
(3.1)

v(x,∞)= σ(x),v(0, y)= τ(y),v(0,∞)= k (3.2)

for x, y ∈ R+, where σ ,τ ∈ C(R+,R), σ(x) is nondecreasing in x, τ(y) is nonincreasing
in y, k is a real constant, and T is a continuous operator on C(R+ ×R+,R) such that
|Tv| ≤ c0|v| for a constant c0 > 0. Integrating (3.1) with respect to x and y and using the
initial conditions (3.2), we get

v(x, y)= σ(x) + τ(y)− k− x

(x+1)(y +1)

−
∫ x

0

∫∞

y
exp(−s)exp(−t)

√∣
∣v(s, t)

∣
∣+1dtds

−
∫ x

0

∫∞

y
sexp(−s)exp(−t)Tv(s, t)dtds.

(3.3)
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Thus,
∣
∣v(x, y)

∣
∣≤ ∣∣σ(x) + τ(y)− k

∣
∣+

x

(x+1)(y +1)

+
∫ x

0

∫∞

y
exp(−s)exp(−t)

√∣
∣v(s, t)

∣
∣+1dtds

+
∫ x

0

∫∞

y
sexp(−s)exp(−t)c0

∣
∣v(s, t)

∣
∣dtds.

(3.4)

Letting u(x, y)= |v(x, y)|, we have

u(x, y)≤ a(x, y) +
∫ x

0

∫∞

y
d1(x, y,s, t)w1(u)dtds+

∫ x

0

∫∞

y
d2(x, y,s, t)w2(u)dtds, (3.5)

where a(x, y)= |σ(x) + τ(y)− k|+ x/(x+1)(y +1), w1(u)=
√
u+1, w2(u)= c0u, d1(x, y,

s, t) = exp(−s)exp(−t), d2(x, y,s, t) = sexp(−s)exp(−t). Clearly, w2(u)/w1(u) = c0(u/√
u+1) is nondecreasing for u > 0, that is, w1∝w2. Then for u1,u2 > 0,

b1(x, y)= a(x, y), d̃1(x, y,s, t)= d1(x, y,s, t), d̃2(x, y,s, t)= d2(x, y,s, t),

W1(u)=
∫ u

u1

dz√
z+1

= 2
(√

u+1−√u1 + 1
)
, W−1

1 (u)=
(
u

2
+
√
u1 + 1

)2
− 1,

W2(u)=
∫ u

u2

dz

c0z
= 1

c0
ln

u

u2
, W−1

2 (u)= u2exp
(
c0u
)
,

b2(x, y)=W−1
1

[
W1
(
b1(x, y)

)
+
∫ x

0

∫∞

y
d̃1(x, y,s, t)dtds

]

=W−1
1

[
2
(√

b1(x, y) + 1−√u1 + 1
)
+
(
1− exp(−x))exp(−y)]

=
[√

b1(x, y) + 1+
1− exp(−x)

2
exp(−y)

]2− 1.

(3.6)

By Theorem 2.1, we have

∣
∣v(x, y)

∣
∣≤W−1

2

[
W2
(
b2(x, y)

)
+
∫ x

0

∫∞

y
d̃2(x, y,s, t)dtds

]

=W−1
2

[
1
c0
ln

b2(x, y)
u2

+
(
1− (x+1)exp(−x))exp(−y)

]

= u2 exp
[
c0

(
1
c0
ln

b2(x, y)
u2

+
(
1− (x+1)exp(−x))exp(−y)

)]

= b2(x, y)exp
[
c0
(
1− (x+1)exp(−x))exp(−y)]

=
[(√

∣
∣σ(x) + τ(y)− k

∣
∣+

x

(x+1)(y +1)
+1+

1− exp(−x)
2

exp(−y)
)2

− 1

]

× exp
[
c0
(
1− (x+1)exp(−x))exp(−y)].

(3.7)

This implies that the solution of (3.1) is bounded for x, y ∈ R+ provided that σ(x) +
τ(y)− k is bounded for all x, y ∈R+.
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